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Abstract
Cross-species translational approaches to human genomic analyses are lacking. The present study uses an integrative
framework to investigate how genes associated with nicotine use in model organisms contribute to the genetic
architecture of human tobacco consumption. First, we created a model organism geneset by collecting results from
five animal models of nicotine exposure (RNA expression changes in brain) and then tested the relevance of these
genes and flanking genetic variation using genetic data from human cigarettes per day (UK BioBank N= 123,844; all
European Ancestry). We tested three hypotheses: (1) DNA variation in, or around, the ‘model organism geneset’ will
contribute to the heritability to human tobacco consumption, (2) that the model organism genes will be enriched for
genes associated with human tobacco consumption, and (3) that a polygenic score based off our model organism
geneset will predict tobacco consumption in the AddHealth sample (N= 1667; all European Ancestry). Our results
suggested that: (1) model organism genes accounted for ~5–36% of the observed SNP-heritability in human tobacco
consumption (enrichment: 1.60–31.45), (2) model organism genes, but not negative control genes, were enriched for
the gene-based associations (MAGMA, H-MAGMA, SMultiXcan) for human cigarettes per day, and (3) polygenic scores
based on our model organism geneset predicted cigarettes per day in an independent sample. Altogether, these
findings highlight the advantages of using multiple species evidence to isolate genetic factors to better understand
the etiological complexity of tobacco and other nicotine consumption.

Introduction
Contemporary thought on human genetic research is

that large genome-wide association studies (GWAS) are
required to identify reproducible single nucleotide poly-
morphism (SNP) associations that can lead to insights
into biological systems that underpin a particular phe-
notype. The agnostic nature of GWAS (i.e., all SNPs being
tested without bias) enables the identification of pre-
viously unrecognized biological underpinnings for human
traits. However, GWASs are not without limitations. One

limitation is the stiff penalty for multiple comparisons
leading to the need for increasingly large sample sizes.
The requirement of sample sizes in the 100’s of thousands
to millions (i.e., mega-GWAS) exerts pressure on the
depth of phenotyping that may be done (i.e., more
intensive and costly phenotypes are untenable for mega-
GWAS studies). Additionally, SNPs implicated by GWAS
are not always readily associated with gene function.
Specifically, the majority of GWAS associations reside in
non-coding or intergenic regions1. To help make sense of
these signals, studies rely upon arbitrarily defined gene
regulatory regions (up/downstream of a gene). While
GWAS findings have become increasingly reproducible as
sample sizes increase, additional sources of data (e.g., gene
regulatory and epigenetic data2) are needed to understand
how SNP effects increase the risk for trait pathology3.
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Association studies of tobacco consumption assume
that variation in the biological sample collected (e.g., DNA
extracted from blood and saliva) reflects the genetic
influences in the brain that mediate the psychoactive
properties of nicotine and other chemicals found in
tobacco products. Nicotine causes changes in the neural
organization, particularly in the brain’s reward systems,
psychomotor, and cognitive processes via its ability
to interact with nicotinic acetylcholine receptors
(nAChRs)4,5. Nicotine takes on the properties of a rein-
forcer by altering neural circuits, in particular those
comprising the dopaminergic systems of the midbrain6.
Altogether, these properties of tobacco products highlight
putative genetic mechanisms that may mediate con-
sumption. The largest tobacco consumption meta-
GWAS, to date, has identified 566 genetic variants in 406
loci associated with phenotypes related to tobacco con-
sumption (i.e., initiation, cessation, and heaviness of use)7,
yet how most of these gene variants contribute to specific
tobacco behaviors is unknown.
The lack of accessible human brain tissue for tobacco

use has precluded understanding of how gene variants
contribute to tissue-specific epigenetic and/or expression
differences that arise from continued drug exposure. We
used a novel and integrative framework that combined
human GWAS data with high throughput model organ-
ism data to clarify how the genetic liability to human
tobacco consumption relates to specific nicotine beha-
viors in particular brain regions. We hypothesized that
genes associated with nicotine exposure paradigms in
model organisms will: (1) contribute to the heritability to
human tobacco consumption, (2) be enriched for genes
associated with human tobacco consumption, and (3) aid
in the prediction of a polygenic score of human tobacco
consumption in an independent sample (see Fig. 1).

Materials and methods
Samples and phenotypes
To find genes associated with nicotine exposure, we

used GeneWeaver8–10—a genomics and bioinformatics
data repository and suite of tools. We created a model
organism geneset that included brain-related RNA asso-
ciations with animal paradigms of nicotine exposure from
multiple species: Mus musculus, Rattus norvegicus, and
Danio rerio (Table 1; GeneWeaver data gathered in
October 2019). Aggregating across all GeneWeaver stu-
dies, we identified 786 orthologous genes with humans,
which we dubbed “model organism genes”.
We used two independent human datasets from two

different countries investigating the same trait—cigarettes
per day (CPD; tobacco consumption). All individuals
reported using tobacco (e.g., current or former smoker)
and were of European ancestry. Our analyses used data
from the UK BioBank11 (UKB; N= 123,844; Age = 58.1,

SD= 7.8; Sex = 48.3% Female), which we used for par-
titioned heritability analyses and gene-based tests, and the
National Study of Adolescent Health12 (Add Health,
Wave IV; N= 1667, Age = 28.9, S.D= 1.70; Sex = 49%
female) that was used for polygenic score prediction.
Ancestry in both samples was determined using principal
components analyses and multidimensional scaling13,14.
This study was approved by the Institutional Review
Board at Emory University (IRB00090295).

Genotype quality control
Human genomic analyses in UKBiobank samples focused

on raw and imputed genotypes obtained using the
Affymetrix UK BiLEVE Axiom and UK Biobank Axiom®
arrays, which genotyped ~850,000 variants (details available
here: https://www.ukbiobank.ac.uk/scientists-3/genetic-
data/). Analyses in both samples focused on genotyped
and imputed SNPs with good quality scores (r2 > 0.3).
PLINK (version 1.9)15 was used to filter markers using the
following criteria: genotyping rate >99%, minor allele fre-
quency >0.01, Hardy–Weinberg equilibrium p value
>0.0001, and missing genotype rate <0.10.

Partitioned heritability of cigarettes per day using nicotine
genesets
Our study investigated whether model organism data on

nicotine exposure was relevant to the genetics of human
tobacco consumption via partitioned heritability analyses.
To test this, we used Genome Complex Trait Analysis
(GCTA; version 1.92)16 with multiple genetic components
effects estimated via genome-based restricted maximum
likelihood (GREML). To reduce the computational bur-
den and to demonstrate the robustness of our partitioned
heritability analyses, we separated the UKB into three
separate subsets. Using the GCTA-GREML Power Cal-
culator17 we estimated the sample sizes needed to provide
at least 70% power to detect SNP-heritability estimates as
small as one-third of 1% (i.e., 0.333%)2. Power was based
on the previously reported SNP-heritability of CPD7 and
the observed variance of the off-diagonal elements
(~6.68 × 10−4) of the genomic relatedness matrix for
individuals with smoking data in UKBiobank. We used
this information to split the UKB sample into three
approximately equal subsets (n1= 41,263, n2= 41,368,
n3= 41,213), each of which was made constitutionally
equivalent by randomly sampling individuals from each
quartile of the nicotine consumption distribution; indivi-
duals in each subset were no more related than second
cousins.
We partitioned the SNP-heritability of tobacco con-

sumption into three regions-of-interest (ROI; and thus
set of three genetic relatedness matrices) based on the
GeneWeaver model organism genes: (1) protein-coding
regions, (2) surrounding regions, and (3) all other variants.
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Protein coding regions included all SNPs between the
start and stop positions for each of the model organism
genes that were orthologous in humans. The surrounding
regions encompassed genomic loci up and downstream of
the 5′ and 3′ ends of each gene, respectively, and captured
potential regulatory DNA variants of genomic regions
around the model organism genes (e.g., cis-expression
quantitative trait loci; cis-eQTLs). The category “All other
variants” reflected aggregate genetic effects from the
remainder of the genome, given the corresponding size
protein coding and surrounding regions. We investigated
five differently sized surrounding regions around the
model organism genes as the sizes vary substantially in the
literature (5 kilobase pairs (kB), 10 kB, 25 kB, 35 kB, and
50 kB). In order to estimate the contribution of each of
these regions to the genetic variance for CPD, we fitted six
partitioned heritability models that included variance
components including the effects of SNPs within the
protein-coding regions identified by the model organism
nicotine gene set + buffer around these genes of varying
length + effects of all other variants in genome + error
(i.e., (1) protein-coding regions + the effect of variants in

the remainder of the genome, (2) protein-coding regions
+ SNP effects within a 5 kB buffer + all other variants in
the genome, as well as subsequent models of varying
buffer lengths, (3) 10 kB buffer, (4) 25 kB buffer, (5) 35 kB
buffer, and (6) 50 kB buffer), which tested the role of the
protein-coding regions and surrounding regions of the
model organism genes, as well as all other variants and
the total heritability of human tobacco consumption,
simultaneously. Additional details are provided in the
supplementary methods.
The significance of each variance component was

assessed using a likelihood ratio test while accounting
for covariates (sex, testing site location, age, and age2).
Population stratification effects were controlled using
strict selection for individuals of European Ancestry using
genomic principal components and multidimensional
scaling14,18. Enrichment was calculated to determine
whether the observed component-heritability estimates
were greater than what would be expected by chance
given the observed total genetic variance and ~4.6 million
SNPs used in the analysis (i.e., the variance explained that
we would expect via a random selection of loci of the

Fig. 1 Schematic outlining our study design. Schematic of analytical pipeline used for cross-species analysis. Panels indicate: 1) Derivation of gene
list using genes associated with nicotine exposure from various animal paradigms. 2) Multicomponent SNP-heritability analysis in UKBiobank smokers
using mixed linear models. 3) Examination of gene-list overlap using Jaccard similarity and Fisher exact tests. 4) Multicomponent polygenic score
analysis using GWAS-LOCO summary statistics in an independent sample.
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same size from the genome). As such, the statistical sig-
nificance of enrichment was evaluated on whether the
expected h2SNP fell within the 95% confidence interval of
the observed h2SNP (i.e., enrichment >1.96).

Expected SNP� heritability

¼ ð# SNP loci of interestÞ x ðObserved SNP�heritabilityÞ
ðTotal # of SNPs used to estimate Observed SNP�heritabilityÞ

Total SNP-heritability estimates were obtained by
pooling results across folds and meta-analyzing using a
standard weighted fixed-effect model. Heritability esti-
mates across UKB subsets were combined using fixed-
effects inverse-variance meta-analysis implemented in R
using the “rmeta” package.

Gene-based associations
To investigate the overlap of individual genes asso-

ciated with human tobacco consumption and animal
paradigms of nicotine exposure, we compared our model
organism genes with human findings from three gene-
based tests. First, mixed linear model association analyses
(MLMA) were performed in GCTA using the MLMA-
leave one chromosome out approach (MLMA-LOCO)16.
MLMA-LOCO analyses are powerful approaches to
assess DNA associations with human traits (fixed effect)
and assume a linear model while adjusting for population
structure by estimating genomic relatedness matrices
(random effect). Second, we used a conventional gene-
based association approach: Multi-marker Analysis of
GenoMic Annotation (MAGMA) via submitting GWAS
summary statistics to Functional Mapping and Annota-
tion (FUMA)19 of GWASs (using a 10 kb window to
define a gene). Next, we used Hi-C coupled MAGMA (H-
MAGMA)20, which investigates gene associations by
encompassing regulatory SNPs based on chromatin
interactions within a cell (cis-eQTLs and trans-eQTLs
[long distance regulatory variants]). We collapsed find-
ings across all cell data for H-MAGMA, including neu-
ronal and astrocyte cell types as well as data from fetal
and adult brains. Lastly, we used SMultiXcan21, which
examines DNA to RNA relationships (cis-eQTLs) in
specific tissues from GWAS summary statistics by
training an elastic neural net algorithm on human donors
from the Genotype-Tissue Expression database
(GTEx)22. We elected to use 13 brain regions from GTEx
and utilized multivariate regression from SMultiXcan to
predict human brain-related gene expression associa-
tions with human cigarettes per day. Thus, H-MAGMA
characterizes gene-based associations using specific cell-
types and developmental stages whereas SMultiXcan
reveals the direction of RNA expression in brain tissues
for those at high genetic risk for tobacco consumption.
All gene-based analyses utilized a Benjamini–HochbergTa
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False Discovery Rate correction for multiple testing (padj
< 0.05). To determine whether the overlap of gene-based
associations and the model organism genes were more
than we would expect by chance, we performed a Fisher’s
Exact test—including the 20,809 homologous genes
identified by biomaRt21.
Using two common negative controls from model

organism research, we tested whether gene-based associa-
tions of human tobacco consumption were enriched for
genes associated with mouse locomotor behavior23 and rat
sucrose exposure24. Similar to our model organism geneset
for nicotine exposure, these negative control studies exam-
ined RNA associations in similar brain regions and were also
identified from GeneWeaver. Collapsing across locomotor
behavior and sucrose exposure, our negative control geneset
included 845 orthologous genes.

Polygenic prediction of CPD
To investigate the reproducibility of our model

organism geneset in humans, we created polygenic
scores from the full UKB sample and tested its predictive
utility in AddHealth. We created polygenic scores using
the summary-based Best Linear Unbiased Prediction
(SBLUP25 implemented in GCTA16 method, which
improves prediction accuracy26. These analyses adjusted
genetic effect sizes based on linkage disequilibrium
patterns using the European reference sample from the
1000 Genomes Project27. To adjust for population stra-
tification, our polygenic scores co-varied for the first six
principal components extracted from the genetic data of
the Add Health sample. Similar to our partitioned her-
itability approach, we investigated whether polygenic
scores were associated with tobacco consumption (1)
within-protein coding regions of our nicotine geneset,
(2) in the surrounding regions (using a 10 kB sur-
rounding region window to maximize signal to noise
ratio as indicated by enrichment analyses in UKB), and
(3) all other genomic variants. We also examined whe-
ther a PGS using all variants (nSNPs= 4656938) was
associated with CPD.

Results
Model organism nicotine genes
First, using GeneWeaver, we investigated our model

organism genes and found that there was a small overlap
across studies of the genes associated with nicotine
exposure (Supplementary Table 1). For instance, some
mouse and rat studies of nicotine use demonstrated
significant overlap (Jaccard Similarity 0.01–0.02). Col-
lapsing across the study, we found 21 replicated model
organism genes (Supplementary Table 2). Subsequent
analyses focused on the SNPs in and around the 786
orthologous model organism genes associated with
nicotine exposure.

Partitioned heritability—human tobacco consumption
Additive genetic factors accounted for 7.6% to 9.5% of the

variability in CPD across all subsets of UKB participants
(see Table 2). Less than five percent of the SNP-heritability
of CPD could be attributed to SNPs within protein-coding
regions of the model organism genes, whereas up to 37% of
the heritability was observed in the surrounding genomic
regions of these genes. The enrichment of heritability
started to decline after expanding the region to include a
10kB window of the surrounding genomic regions (directly
up/downstream) of the model organism genes. The
remaining regions of the genome (i.e., All other variants)
were not significantly enriched across models 1 through 6
(see Table 2), indicating that the SNPs in and around genes
associated with nicotine exposure in various animal para-
digms pointed to important genomic regions underlying
human tobacco consumption.

Nicotine/tobacco gene overlap across species
We then investigated the overlap of individual genes

from model organisms and the gene-based tests associated
with human tobacco consumption. Collapsing across
MAGMA, H-MAGMA, and SMultiXcan methods, we
identified 115 unique genes (with annotated HGNC gene
symbols) associated with human cigarettes per day (all padj
< 0.05; see Fig. 2; see Supplementary Files 1–3 for gene-
based test results). Ten genes were significant across all
gene-based tests (ADAMTS7, C19orf54, CHRNA3,
CHRNA5, CYP2A7, GTF2I, HYKK, ITPKC, PSMA4, and
SNRPA). Of all human gene-based associations, we found
ten genes that were present in our model organism geneset
(ADAR, CHRNA4, CHRNA5, CHRNB4, CTSL, CTSH,
DNAJA4, NAA20, PSMC3, and RAB4B; see Fig. 3 for
summary). This overlap was more than expected by chance
(OR= 2.44, p= 0.012, 95% CI [1.13, 4.70]) and no
enrichment was observed among our negative control
geneset (locomotor behavior and sucrose exposure; OR=
0.458, p= 0.450, 95% CI [0.055, 1.70]). Eight out of ten of
the overlapping genes from our model organism nicotine
exposure genes came from a single study28 that investi-
gated chronic nicotine self-administration from five brain
regions using two strains of mice. When restricting our
gene-based analyses to just the model organism nicotine
exposure genes, we found three additional gene-based
associations with tobacco consumption (NUP50, UCHL5,
and SDC3; see Supplementary Fig. 1). Post-hoc examina-
tion of the gene-based association signals (–log10
p values) indicated that model organism genes from Mus
musculus studies performed better than Rattus norvegicus,
studies (all padj < 0.001) and better than random genes (via
permutations, padj < 0.001; see Supplementary Fig. 2). Col-
lapsing across gene-based tests, the 21 replicated nicotine
genes (across studies in model organisms) were not more
significant than random (permuted) genes (padj= 0.244).

Palmer et al. Translational Psychiatry           (2021) 11:98 Page 5 of 10



Table 2 Partitioned SNP-heritability (h2SNP) of Human Tobacco Consumption with Model Organism Nicotine Genes.

Model components

(buffer size)

Subset 1 (n1 = 41,263) Subset 2 (n2 = 41,368) Subset 3 (n3 = 41,213) All (n = 123,844)

# SNPs h2SNP (S.E.) Enrichment h2SNP (S.E.) Enrichment h2SNP (S.E.) Enrichment % total h2SNP

Model 1 (0 kB)

Protein coding

regions

81453 0.38% (0.16%) 2.90c 0.33% (0.16%) 2.38c 0.55% (0.18%) 3.32c 4.96%

Surrounding regions NA NA NA NA NA NA NA NA

All other variants 4575485 7.14% (0.78%) 0.97c 7.59% (0.78%) 0.98 8.85% (0.80%) 0.96b 94.92%

Total heritability 4656938 7.53% (0.79%) NA 7.92% (0.78%) NA 9.40% (0.81%) NA NA

Model 2 (5 kB)

Protein coding

regions

81453 0.22% (0.17%) 1.62c 0.15% (0.16%) 1.11 0.42% (0.19%) 2.54c 3.26%

Surrounding regions 10815 0.45% (0.18%) 25.20c 0.58% (0.19%) 31.45c 0.34% (0.19%) 15.68c 4.95%

All other variants 4564670 6.92% (0.79%) 0.93c 7.24% (0.78%) 0.93c 8.67% (0.81%) 0.94c 91.44%

Total heritability 4656938 7.53% (0.79%) NA 7.97% (0.78%) NA 9.42% (0.81%) NA NA

Model 3 (10 kB)

Protein coding

regions

81453 0.19% (0.17%) 1.27 0.09% (0.16%) 0.63c 0.29% (0.18%) 1.77c 2.16%

Surrounding regions 21288 0.82% (0.21%) 21.56c 0.90% (0.21%) 24.43c 0.77% (0.21%) 17.82c 9.84%

All other variants 4554197 6.61% (0.78%) 0.90c 7.04% (0.77%) 0.90c 8.41% (0.80%) 0.91c 88.00%

Total heritability 4656938 7.57% (0.78%) NA 8.03% (0.78%) NA 9.47% (0.81%) NA NA

Model 4 (25 kB)

Protein coding

regions

81453 0.12% (0.16%) 0.85 0.11% (0.16%) 0.76 0.28% (0.18%) 1.67c 1.92%

Surrounding regions 53341 1.03% (0.23%) 11.56c 0.96% (0.23%) 10.50c 1.02% (0.24%) 9.36c 12.36%

All other variants 4522144 6.36% (0.78%) 0.88c 6.93% (0.77%) 0.89c 8.18% (0.80%) 0.89c 85.71%

Total heritability 4656938 7.59% (0.78%) NA 8.00% (0.78%) NA 9.48% (0.81%) NA NA

Model 5 (35 kB)

Protein coding

regions

81453 0.13% (0.16%) 0.97 0.13% (0.16%) 0.94 0.30% (0.18%) 1.81c 2.16%

Surrounding regions 74436 1.04% (0.24%) 8.39c 0.95% (0.24%) 7.48c 1.05% (0.25%) 6.94c 12.50%

All other variants 4501049 6.32% (0.77%) 0.88c 6.90% (0.77%) 0.89c 8.12% (0.80%) 0.89c 85.22%

Total heritability 4656938 7.59% (0.78%) NA 7.98% (0.78%) NA 9.45% (0.81%) NA NA

Model 6 (50 kB)

Protein coding

regions

81453 0.29% (0.16%) 1.97c 0.26% (0.16%) 1.84c 0.50% (0.18%) 2.98c 4.17%

Surrounding regions 841092 3.22% (0.53%) 2.15c 3.30% (0.53%) 2.26c 2.74% (0.53%) 1.60c 36.47%

All other variants 3734393 4.23% (0.74%) 0.66c 4.53% (0.73%) 0.70c 6.24% (0.77%) 0.82c 59.12%

Total heritability 4656938 7.67% (0.79%) NA 8.09% (0.78%) NA 9.48% (0.81%) NA NA

This table shows the heritability of human tobacco consumption attributed to genes associated with nicotine exposure from various animal paradigms. We report the
total heritability, the proportion of heritability within and around model organism genes as well as the degree of enrichment from our partitioned heritability analyses
by subset. Note that we performed 6 total models with varying lengths of genomic regions surrounding the model organism genes. NA not applicable, SE standard
error. Notations: ap < 0.05, bp < 0.01, cp < 0.001.
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Polygenic score analysis
Partitioned polygenic scores for CPD were derived using

the GWAS summary statistics from the full UKB sample
and predicted CPD in Add Health (see Supplementary
Table 3). Restricting polygenic scores to genomic regions
of the nicotine genes resulted in significant prediction of
cigarettes per day in an independent sample (within the
protein coding regions, but not in the 10 kb surrounding

regions of these genes). These results further highlight the
utility of incorporating model organism data in human
genetic studies of substance use.

Discussion
We found support for all three of our hypotheses.

The genes associated with nicotine use in the brains of
mice, fish, and rats (1) substantially contributed to the

Fig. 2 Plot of gene-based test results. Manhattan plot shows results of all three gene-based tests: MAGMA, H-MAGMA (neuron and astrocyte cell
types; fetal and adult brain tissues), and S-MultiXcan (13 GTEx brain tissues) for human cigarettes per day. The labeled genes are those identified from
our nicotine gene list derived from model organisms.

Fig. 3 Potential functions of genes associated with nicotine consumption. This figure shows a schematic representation for interpreting our
cross-species genetic associations with A Human tobacco consumption, B Model organism nicotine exposure and inferring their effects in the
C Human brain. Note: Nic means nicotine; Self-Admin refers to self-administration.
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heritability of human tobacco consumption, (2) sig-
nificantly overlapped with individual genes associated
with this genetic predisposition, and (3) aided in polygenic
score prediction of tobacco consumption in an indepen-
dent sample. Our study applies a novel integrative fra-
mework for filling the translational space between human
and animal genetics research. This line of research may
enhance genomic discoveries, help interpret genetic
associations with human traits and illuminate what, tissue,
cell type and animal paradigm are best suited for genomic
follow-up investigation.
Similar to previous research29, we found that up to a

third of the heritability for the frequency of human
tobacco use can be attributed to genomic regions stem-
ming from RNA associations of specific nicotine beha-
viors in the brain (of model organisms). Our results
suggest that the genetic proclivity to human tobacco use is
mediated—in part—by RNA associations with voluntary
nicotine use, nicotine preference and nicotine’s neuro-
pharmacological properties (mostly) in the brain’s reward
circuitry. Similarly, recent genome-wide research identi-
fied genome-wide significant loci in neurotransmission
and reward learning genes for tobacco use and prioritized
non-synonymous protein-coding variants7. By using
approximately half of the sample size from Liu et al.,
(2019) our findings corroborated the importance of neu-
rotransmission and reward-related genes underlying
genetic susceptibility of tobacco consumption. Most
cross-species findings appeared to be buried under the
genomic significance threshold—demonstrating the
strength of our partitioned heritability approach, which
captures genes with small effect sizes peppered across the
genome. Incorporating model systems allows for studies
with small samples to be informative due to larger effect
sizes and tighter experimental control and can be used to
complement and contextualize human genetic findings.
Our study adds nuance to the genetic mechanisms

underlying human tobacco consumption (see Fig. 3). We
found cross-species associations with nicotine consumption
with established nicotinic acetylcholine receptor genes
(CHRNA4/B4/A5), as well as unconventional proteasome
(PSMC3), heat-shock protein (DNAJA4), synaptic plasticity,
and enzymatic genes (ADAR, CTSH, CTSL, NAA20,
RAB4B). Most of these genes were contributing to mole-
cular brain mechanisms of nicotine self-administration in
C3H/HeJ and C57BL/6 J mice28, but Adar was associated
with acute nicotine use in rats30 and naa20 was linked with
nicotine preference in fish31. As a whole, genes from animal
behavioral paradigms that best aligned with the human trait
demonstrated the strongest gene-based effect sizes in
humans. Our analyses suggest that humans at high genetic
risk for frequent cigarette smoking had increased RNA
expression of CTSH and CTSL in cortical and limbic
regions, respectively (see Supplementary File 1).

Corroborating this, nicotine-consuming mice had increased
RNA expression of Ctsh and Ctsl in the pre-frontal cortex
and limbic reward regions (NAc and hippocampus),
respectively. Similarly, elevated pre-frontal cortex Psmc3
expression was associated with chronic nicotine exposure in
mice28 and rats32 and was associated with human tobacco
consumption via regulatory DNA variants in adult brain
tissues and neuronal cell-types (see Supplementary File 2).
The association of DNAJA4 with human tobacco con-
sumption was mediated via long-distance gene regulation in
neuronal cell-types and demonstrated increased expression
in the VTA28 and cortical neurons33 of nicotine-exposed
mice. Therefore, our integrative approach contextualizes
otherwise puzzling genetic associations with human
traits and characterizes potential mechanisms in relation to
specific behaviors, tissues, developmental epochs, and
cell-types.
Cross-species polygenic prediction illustrated a novel

application for model organism data to be integrated with
human GWAS data. In contrast to our partitioned herit-
ability approach, we found significant prediction within
protein-coding regions of the model organism genes—
instead of the surrounding (potentially regulatory) regions
of these genes. This approach furthers the line of research
incorporating biologically relevant information for poly-
genic score approaches34,35. While novel, these were far
from becoming clinically relevant and were limited in
their predictive capacity, but this approach offered a way
to replicate a priori gene lists in an independent sample.
We urge the reader to interpret the current findings

with caution. Human and animal data are very different—
ranging from their environments, genetic backgrounds,
developmental stages, routes-of-administration, and data
types (e.g., DNA versus RNA associations). The animal
data was limited to microarray studies and a restricted
pallet of behaviors, one tissue type (brain tissue), few
samples, and three species. We sought to overcome these
limitations by integrating across brain regions, behaviors,
and model organisms, but future studies are needed to
determine whether these effects are invariant and to
determine what paradigms are most relevant to what
human traits—especially as the volume of literature
increases. The majority of human gene-based associations
were not in our model organism nicotine exposure gen-
eset potentially suggesting limited availability of targets
for experimental follow-up. But we showed the specificity
of this overlap (via our negative control) and also high-
lighted certain brain regions, behavioral paradigms, and
species to follow-up individual genes that were anchored
in human biology. Our analyses did not evaluate an
exhaustive list of ‘omics data types (methylomics, pro-
teomics, metabolomics, CHiP-seq, ATAC-seq, etc.) and
focused on effects in the brain without considering other
relevant tissue types or cell types.
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Future research is warranted to determine whether our
integrative framework generalizes across complex human
traits. Traits with different genetic architectures, epigenetic
landscapes, and animal models may yield disparate find-
ings. We found that the bulk of our cross-species signal
stemmed from mouse models of nicotine use, but it will be
important for future research to be conducted across
multiple smoking phenotypes and include additional spe-
cies and studies, as well as incorporate findings from
human tissues to benchmark findings with other model
organisms. Ideally, integrative genomics comparisons
would leverage equitable and minimally error-prone out-
comes or endophenotypes across studies. Given the array
of animal models for human traits, an inviting avenue of
research should clarify the utility of specific tissues, cell
types, and animal models in human genetics. With a large
enough literature base, we may be able to better refine what
tissues and specific mechanisms human genomic signals
stem from and ultimately may better characterize the
genetic make-up for complex traits. Future studies lever-
aging these approaches should consider strategies for
examining heterogeneity across tissues and cell types, as
well as whether the observed effects generalize across
human populations (e.g., European, African, Asian, etc).
Cross-species genetic research is a fertile territory for
methodological innovations. This field is still in its infancy
and thus is a ripe area for future research applications.

Conclusions
In sum, our study identifies biological overlap of nico-

tine use between human and animal research using inte-
grative genomic models. Our study provides a proof-of-
principle that model organism data can be used among
standard methods used in human genetics research.
Human researchers can take advantage of a rich array of
model organism data to aid their interpretations with
complex traits—even in small(er) GWASs—and animal
researchers can assess the relevance of their findings to
corresponding human traits. This study takes a step for-
ward in cross-species research by incorporating a priori
information into human genetics analyses and adds to the
conversation regarding enhancing the utility of smaller
GWASs. Our study suggests that cross-species genetics
research is a worthwhile empirical avenue and that the
intersection of human and animal biology can help
unravel the genetic basis of complex traits.

Acknowledgements
We acknowledge the National Institute on Drug Abuse award DP1DA042103
(to RHCP) and the National Institute on Alcohol Abuse and Alcohol
(R01AA018776) (to EJC). We acknowledge the Wellcome Trust medical charity,
Medical Research Council, Department of Health, Scottish Government,
Northwest Regional Development Agency, Welsh Government, British Heart
Foundation, Cancer Research UK and Diabetes UK, and the National Health
Service (NHS) for their part in supporting the UK Biobank without which this
study would not have been possible. The contents of this paper do not

represent the views of the U.S. Department of Veterans Affairs or the United
States Government. This research uses data from Add Health, a program
project directed by Kathleen Mullan Harris and designed by J. Richard Udry,
Peter S. Bearman, and Kathleen Mullan Harris at the University of North
Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice
Kennedy Shriver National Institute of Child Health and Human Development,
with cooperative funding from 23 other federal agencies and foundations.
Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for
assistance in the original design. Information on how to obtain the Add Health
data files is available on the Add Health website. No direct support was
received from grant P01-HD31921 for this analysis. Note that Figure 3 was
created using BioRender.com

Author details
1Behavioral Genetics of Addiction Laboratory, Department of Psychology,
Emory University, Atlanta, GA, USA. 2The Jackson Laboratory, Bar Harbor, ME,
USA. 3Department of Psychiatry and Human Behavior, Brown University,
Providence, RI, USA. 4Providence Veterans Affairs Medical Center, Providence,
RI, USA. 5Department of Human Genetics, Emory University School of
Medicine, Atlanta, GA, USA. 6Institute for Molecular Bioscience, The University
of Queensland, Brisbane, QLD, Australia. 7Department of Human Development
and Family Studies, Purdue University, West Lafayette, IN, USA

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41398-021-01231-y.

Received: 16 February 2020 Revised: 15 December 2020 Accepted: 17
December 2020

References
1. Maurano, M. T. et al. Systematic localization of common disease-associated

variation in regulatory DNA. Science 337, 1190–1195 (2012).
2. Wu, Y. et al. Integrative analysis of omics summary data reveals putative

mechanisms underlying complex traits. Nat. Commun. 9, 918 (2018).
3. Vandiedonck, C. Genetic association of molecular traits: a help to identify

causative variants in complex diseases. Clin. Genet. 93, 520–532 (2018).
4. Changeux, J.-P., Edelstein, S. & Edelstein, S. J. Nicotinic Acetylcholine Recep-

tors: From Molecular Biology To Cognition (Odile Jacob Publishing Corp.,
2005).

5. Besson, M. et al. Long-term effects of chronic nicotine exposure on brain
nicotinic receptors. Proc. Natl Acad. Sci. 104, 8155–8160 (2007).

6. Grenhoff, J., Aston-Jones, G. & Svensson, T. H. Nicotinic effects on the firing
pattern of midbrain dopamine neurons. Acta Physiol. Scand. 128, 351–358
(1986).

7. Liu, M. et al. Association studies of up to 1.2 million individuals yield new
insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51,
237–244 (2019).

8. Baker, E., Bubier, J. A., Reynolds, T., Langston, M. A. & Chesler, E. J. GeneWeaver:
data driven alignment of cross-species genomics in biology and disease.
Nucleic Acids Res. 44, D555–D559 (2016).

9. Baker, E. J., Jay, J. J., Bubier, J. A., Langston, M. A. & Chesler, E. J. GeneWeaver: a
web-based system for integrative functional genomics. Nucleic Acids Res. 40
(Database issue), D1067–D1076 (2012).

10. Baker, E. J. et al. Ontological discovery environment: A system for integrating
gene-phenotype associations. Genomics 94, 377–387 (2009).

11. Sudlow, C. et al. UK biobank: an open access resource for identifying the
causes of a wide range of complex diseases of middle and old age. PLoS Med.
12, e1001779 (2015).

12. Harris K. M., Udry J. R. National Longitudinal Study of Adolescent to Adult Health
(Add Health), 1994-2008 [Public Use] (Carolina Population Center, University of

Palmer et al. Translational Psychiatry           (2021) 11:98 Page 9 of 10

https://doi.org/10.1038/s41398-021-01231-y


North Carolina-Chapel Hill [distributor], Inter-university Consortium for Political
and Social Research [distributor], 2018).

13. 1000 Genomes Project Consortium. A global reference for human genetic
variation. Nature 526, 68–74 (2015). et al.

14. Brick, L. A., Keller, M. C., Knopik, V. S., McGeary, J. E. & Palmer, R. H. C. Shared
additive genetic variation for alcohol dependence among subjects of African
and European ancestry. Addict. Biol. 24, 132–144 (2019).

15. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger
and richer datasets. Gigascience 4, 7 (2015).

16. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-
wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

17. Visscher, P. M. et al. Statistical power to detect genetic (co)variance of complex
traits using SNP data in unrelated samples. PLoS Genet. 10, e1004269 (2014).

18. Brick, L. A., Micalizzi, L., Knopik, V. S. & Palmer, R. H. C. Characterization of DSM-
IV opioid dependence among individuals of European ancestry. J. Stud.
Alcohol Drugs 80, 319–330 (2019).

19. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional
mapping and annotation of genetic associations with FUMA. Nat. Commun. 8,
1826 (2017).

20. Sey, N. Y. A. et al. A computational tool (H-MAGMA) for improved prediction of
brain-disorder risk genes by incorporating brain chromatin interaction profiles.
Nat. Neurosci. 23, 583–593 (2020).

21. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific
gene expression variation inferred from GWAS summary statistics. Nat.Com-
mun. 9, 1825 (2018).

22. GTEx Consortium. Human genomics.The Genotype-Tissue Expression (GTEx)
pilot analysis: multitissue gene regulation in humans. Science 348, 648–660
(2015).

23. Philip, V. M. et al. High-throughput behavioral phenotyping in the expanded
panel of BXD recombinant inbred strains. Genes Brain Behav. 9, 129–159
(2010).

24. Rodd, Z. A. et al. Differential gene expression in the nucleus accumbens with
ethanol self-administration in inbred alcohol-preferring rats. Pharmacol. Bio-
chem. Behav. 89, 481–498 (2008).

25. Robinson, M. R. et al. Genetic evidence of assortative mating in humans. Nat.
Hum. Behav. 1, 0016 (2017).

26. Mignogna, K. M., Bacanu, S. A., Riley, B. P., Wolen, A. R. & Miles, M. F. Cross-
species alcohol dependence-associated gene networks: co-analysis of mouse
brain gene expression and human genome-wide association data. PLoS ONE
14, e0202063 (2019).

27. Kranzler, H. R. et al. Genome-wide association study of alcohol consumption
and use disorder in 274,424 individuals from multiple populations. Nat.
Commun. 10, 1499 (2019).

28. Wang, J. et al. Strain- and region-specific gene expression profiles in mouse
brain in response to chronic nicotine treatment. Genes Brain Behav. 7, 78–87
(2008).

29. Evans, L. M. et al. The Role of A Priori-Identified Addiction and Smoking Gene
Sets in Smoking Behaviors. Nicotine Tob. Res. 22, 1310–1315 (2020).

30. Polesskaya, O. O. et al. Nicotine causes age-dependent changes in gene
expression in the adolescent female rat brain. Neurotoxicol. Teratol. 29,
126–140 (2007).

31. Kily, L. J. et al. Gene expression changes in a zebrafish model of drug
dependency suggest conservation of neuro-adaptation pathways. J. Exp. Biol.
211, 1623–1634 (2008).

32. Kane, J. K., Konu, O., Ma, J. Z. & Li, M. D. Nicotine coregulates multiple pathways
involved in protein modification/degradation in rat brain. Brain Res. Mol. Brain
Res. 132, 181–191 (2004).

33. Wang, J. et al. Regulation of platelet-derived growth factor signaling pathway
by ethanol, nicotine, or both in mouse cortical neurons. Alcohol. Clin. Exp. Res.
31, 357–375 (2007).

34. Neuner, S. M., Heuer, S. E., Huentelman, M. J., O’Connell, K. M. S. & Kaczorowski,
C. C. Harnessing genetic complexity to enhance translatability of Alzheimer’s
disease mouse models: a path toward precision medicine. Neuron 101,
399–411.e395 (2019).

35. Hari Dass, S. A. et al. A biologically-informed polygenic score identifies
endophenotypes and clinical conditions associated with the insulin
receptor function on specific brain regions. EBioMedicine 42, 188–202
(2019).

Palmer et al. Translational Psychiatry           (2021) 11:98 Page 10 of 10


	Multi-omic and multi-species meta-analyses of nicotine consumption
	Introduction
	Materials and methods
	Samples and phenotypes
	Genotype quality control
	Partitioned heritability of cigarettes per�day using nicotine genesets
	Gene-based associations
	Polygenic prediction of CPD

	Results
	Model organism nicotine genes
	Partitioned heritability—human tobacco consumption
	Nicotine/tobacco gene overlap across species
	Polygenic score analysis

	Discussion
	Conclusions
	Acknowledgements




