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Mitochondria are the powerhouses of the cell as well as the primary site of hematopoiesis, 
which also occurs in the cytoplasm. Hematopoietic stem cells (HSCs) are characterized 
by a very high turnover rate, and are thus considered to be relatively free from the age-re-
lated insults generated by mitochondria. However, HSCs are also subject to these age-re-
lated insults, including the incidence of myeloid proliferative diseases, marrow failure, he-
matopoietic neoplasms, and deterioration of the adaptive human immune system. Re-
cently, NAD+ dietary supplements, known as niacin or vitamin B3, including tryptophan, 
nicotinic acid, nicotinamide, and the newly identified NAD+ precursor nicotinamide ribo-
side, have been shown to play a role in restoring adult stem cell function through the 
amelioration of mitochondrial dysfunction. This insight motivated a study that focused on 
reversing aging-related cellular dysfunction in adult mouse muscle stem cells by supple-
menting their diet with nicotinamide riboside. The remedial effect of nicotinamide riboside 
enhanced mitochondrial function in these muscle stem cells in a SIRT1-dependent man-
ner, affecting cellular respiration, membrane potential, and production of ATP. Accord-
ingly, numerous studies have demonstrated that sirtuins, under nuclear/mitochondrial 
control, have age-specific effects in determining HSC phenotypes. Based on the evidence 
accumulated thus far, we propose a clinical intervention for the restoration of aged HSC 
function by improving mitochondrial function through NAD+ precursor supplementation.
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INTRODUCTION

Mitochondria are generally characterized as the powerhouse of 

the cell, since this is the site where energy is produced from 

ATP. In addition to energy production, mitochondria play a key 

role in several important cellular processes, including growth, 

signaling, differentiation, reactive oxygen species (ROS) produc-

tion, apoptosis, and cell cycle control. Interestingly, unlike other 

cellular organelles, mitochondria have their own DNA, mito-

chondrial DNA (mtDNA), and several studies have indicated an 

association between the accumulation of mtDNA mutations and 

mammalian aging [1-3].

Historically, mitochondria have not been considered important 

in restoring the functions of aged hematopoietic stem cells (HSCs); 

however, emerging studies on rejuvenating HSCs suggest an as-

sociation between sirtuins (SIRTs) and mitochondrial activities 

[4, 5]. In addition, a study on the deregulation of the mitochon-

drial stress-mediated metabolic system demonstrated that 
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SIRT7 strongly influences the regenerative capacity of HSCs [6]. 

Although the functions of musculoskeletal stem cells (MuSCs) 

and HSCs are distinct, alteration of the SIRT1-associated nu-

clear/mitochondrial axis appears to be a common hallmark of 

aging in both cell types [7, 8].

Recent research suggests the possibility of restoring the mito-

chondrial functions of aged stem cells, including MuSCs, nerve 

tissue stem cells (NSCs), and melanocyte stem cells (McSCs), 

by NAD+ supplementation without genetic manipulation [8, 9]. 

The remedial effect of the NAD+ precursor nicotinamide riboside 

(NR) enhances mitochondrial functions in stem cells, including 

respiration, membrane potential, ATP production, and the mito-

chondrial unfolded protein response (UPR); however, these ef-

fects are not observed in stem cells with a SIRT1 deficit. More-

over, NR was found to suppress the process of senescence in 

adult NSCs and McSCs [8].

These findings have reinforced the notion that NAD+ precursors 

can function as a pharmacological tool to enhance SIRT activities. 

This, in turn, paves the way for clinical translation of NAD+ precur-

sor treatment through further investigations of hematopoietic tis-

sues. We review evidence relating mitochondrial dysfunction to 

HSC aging, and propose a strategy for mitochondrial-targeted re-

covery as a potentially safe, effective, and non-invasive method for 

the control or prevention of aging-related hematopoietic diseases.

ROLE OF THE MITOCHONDRIA IN HUMAN 
HEMATOPOIESIS

Mitochondria are central to the heme biosynthetic pathway, part 

of which occurs in the cytoplasm, eventually returning to the 

mitochondrion. Enzyme defects in the heme biosynthetic path-

way cause sideroblastic anemia, leading to a deficiency of heme 

precursors and mitochondria that cannot fully utilize iron. In 

erythroid precursors, most of the iron initially gains access to the 

cell through transferring receptors, subsequently entering the 

mitochondria where it combines with protoporphyrin IX to pro-

duce heme. The heme produced leaves the mitochondria to 

merge with globin chains and synthesize cytoplasmic ribosomes 

[10]. Thus, when protoporphyrin synthesis is highly impaired, 

the imported iron instead accumulates in the mitochondria due 

to reactant deficiency (Fig. 1).

CONTRIBUTION OF MITOCHONDRIAL 
DYSFUNCTION AND GENOME ALTERATIONS 
TO HSC AGING 

HSCs are generally dormant but have the potential to become 

highly active to restore blood on demand. Sustenance of HSC 

dormancy requires supply of low metabolic activity by glycolytic 

metabolites [11, 12]. Thus, unlike MuSCs, NSCs, and McSCs, 

Fig. 1. The heme biosynthetic pathway in the mitochondria and cytoplasm. Heme synthesis starts in the mitochondria and then returns to 
the mitochondria through several cytoplasmic steps. 
Abbreviation: ALA, aminolevulinic acid.
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which highly depend on mitochondrial ATP generation, the role 

of mitochondria in HSC homeostasis has traditionally not been 

emphasized.

During ATP production through oxidative phosphorylation, 

ROS are produced as the by-product of mitochondrial respira-

tion [13]. Owing to their low metabolic activity, dormant HSCs 

exhibit very low levels of ROS that are closely associated with 

cellular metabolic activity [12, 14]. Accordingly, this unbalanced 

accumulation of ROS mediates HSC dysfunction [15-17], and 

recent evidence implies that mitochondria play crucial roles in 

the maintenance of HSC quiescence and their capacity to 

switch from dormancy to a metabolically active state [18-21].

From a clinical perspective, HSCs are characterized by a very 

high turnover rate; however, they are not exempt from age-re-

lated insults. Aged HSCs are associated with increased inci-

dence of myeloid proliferative diseases, such as marrow failure 

and hematopoietic neoplasms, and deterioration of the adaptive 

human immune system [22]. Because HSCs play a crucial role 

in maintaining the circulation, functional deterioration of HSCs 

may be highly responsible for age-related damage. Although 

HSCs maintain hematopoiesis for multiple processes, they are 

subject to drastic phenotypic and functional changes during ag-

ing, as confirmed by serial transplantation studies in mice [22]. 

The most notable of these changes is failure of the adaptive im-

mune system, resulting in the weakened lymphoid function that 

is common in the elderly. In addition, aging often leads to the 

overproduction of myeloid cells, which fosters a pro-inflamma-

tory hematopoietic environment [22, 23].

Aging leads to several clinical conditions related to the hema-

topoietic system, including decreased functionality of the adap-

tive immune system, elevated incidences of certain autoim-

mune diseases, age-associated anemia, and hematological ma-

lignancies [22]. Similar to other human tissues, the aged hema-

topoietic system experiences a decline in regenerative capacity 

for normal homeostasis after stress or damage [22]. Several 

pathways are involved in the aging mechanisms of the hemato-

poietic system, and both intrinsic and extrinsic factors are re-

lated to the aging environment (Fig. 2). However, recent studies 

suggest that age-dependent cellular and mitochondrial damage 

within the most primitive HSCs may play a crucial role in hema-

topoietic deterioration during aging [24, 25].

Fig. 2. Proposed molecular mechanisms of hematopoietic stem cell (HSC) aging and related disease phenotypes. HSC aging is caused by 
the alteration of nuclear and mitochondrial genomes, as well as transcriptome and epigenetic changes, resulting in the occurrence of ag-
ing-related hematopoietic diseases. 
Abbreviations: mtDNA, mitochondrial DNA; ROS, reactive oxygen species.
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REJUVENATING AGED HSCS THROUGH 
RESTORING MITOCHONDRIAL DYSFUNCTION

One possible explanation for mammalian mitochondrial dys-

function during aging is the accumulation of altered nuclear and 

mitochondrial genetic materials, although environmental factors 

are clearly at play as well. 

NAD was discovered over a century ago, and its role as a re-

dox agent in metabolism has subsequently been established 

[26]. More recently, the oxidized form, NAD+, was revealed to 

be a key factor in mitochondrial function, and NAD+ supple-

mentation has been shown to restore the normal phenotype 

[26]. Recent studies have clearly shown the role of NAD+ dietary 

supplements, commonly referred to as niacin or vitamin B3, in 

mitochondrial function, including tryptophan (Trp), nicotinic 

acid (Na), nicotinamide (Nam), and the newly identified NAD+ 

precursor NR [27-30].

More importantly, aging is related to SIRT deficiency and de-

creased mitochondrial function, and the NAD+/SIRT pathway is 

a pivotal factor in sustaining health and forestalling age-related 

diseases [31]. Indeed, SIRTs influence a broad range of cellular 

activities such as aging, transcription, apoptosis, and inflamma-

tion [32]. One study, using engineered mice expressing excess 

SIRT1, demonstrated that the level of cellular NAD+ gradually 

drops during normal aging [33]. Furthermore, NR was shown to 

enhance oxidative metabolism by increasing the NAD+ level and 

activating SIRT1 and SIRT3, suggesting the potential of NR as a 

pharmacological supplement to recover the metabolic and age-

related disorders characterized by mitochondrial dysfunction 

[34].

Many studies have provided evidence indicating that SIRTs of 

the nucleus/mitochondrial control axis have age-specific effects 

in mediating the phenotypes of HSCs. Differentiation of SIRT1-

deleted HSCs exhibited the typical characteristics of aged HSCs, 

such as a decline in the lymphoid compartment, anemia, and 

altered expression of related genes, indicating an essential role 

of SIRT1 in HSC homeostasis [7]. SIRT3 regulates the global 

acetylation of mitochondrial proteins and a stress response. 

Brown et al [4] showed that SIRT3 expression was suppressed 

with aging, and upregulation of SIRT3 enhanced the regenera-

tive capacity of aged HSCs. When SIRT7, which controls the de-

acetylation promoter, was inactivated in HSCs, quiescence was 

reduced and the mitochondrial protein folding stress (PFSmt) oc-

curred, ultimately resulting in compromised regenerative capac-

ity. By contrast, SIRT7 up-regulation enhanced the regenerative 

capacity of aged HSCs [6]. Another recent study also showed 

that SIRT6-deficient HSCs exhibited impaired self-renewal ca-

pacity [27].

POSSIBLE APPROACH FOR CORRECTING 
AGING-RELATED HSC DYSFUNCTION 

Based on the studies described above, we propose a mitochon-

dria-targeted strategy for controlling the HSC aging mechanism 

and associated regulatory factors toward restoration of aged 

HSC function through improving mitochondrial function (Fig. 3).

The aging process of HSCs is potentially linked with poly ADP-

ribose polymerase (PARP) activation, NAD+ deficiency, SIRT in-

activation, mitochondrial dysfunction, and cell and tissue dam-

age, reflecting a generalized aging syndrome, which may be 

corrected by supplementation with NAD+ precursors (Fig. 4). In 

particular, recent studies have indicated that NR supplementa-

Fig. 3. Schematic representation of the research objectives and hypothesis: restoration of aged hematopoietic stem cell (HSC) function 
through improving mitochondrial function.
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tion could rejuvenate aged stem cells such as MuSCs, NSCs, 

and McSCs, enhance lifespan, and improve muscle function in 

muscular dystrophy models [8, 9]. Moreover, the association of 

SIRT1 with the aging-like phenotypes of both MuSCs and HSCs 

Fig. 4. Aging syndrome of a hematopoietic stem cell (HSC) and proposed restoration strategy. In old animals, aging may cause an NAD+ 
deficit by activating poly (ADP-ribose) polymerases (PARPs). The NAD+ shortage then decreases the activity of sirtuins, which are anti-ag-
ing proteins, thereby promoting the aging cycle. Nicotinamide riboside (NR) replenishes NAD+ and corrects the cycle to enhance stem cell 
maintenance, tissue function, and the unfolded protein response (UPR).
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suggests a plausible pharmacological approach by targeting the 

interplay of SIRTs and the nuclear/mitochondrial control axis in 

HSCs [4, 5, 7, 8].

An important consideration is to examine the feasibility of ac-

tivating SIRT3, SIRT6, and SIRT7, which have specific rejuvena-

tion effects on HSCs [4-6]. For example, experiments with 

SIRT1-deficient mice provided NR supplementation in tablet 

form showed improvement of muscular dystrophy through en-

hancing mitochondrial function [8, 9]. This implies that NR 

would easily access human hematopoietic tissues to exert the 

expected rejuvenation effect of aged HSCs. 

Moreover, NR supplementation in mammalian cells increases 

NAD+ levels and activates SIRT1 and SIRT3, leading to amelio-

ration of the metabolic and age-related degeneration character-

ized by mitochondrial dysfunction [34]. Therefore, more de-

tailed studies on the effects of NR, the NAD+ precursor, on 

SIRTs to improve the mitochondrial activities of HSCs may lead 

to the development of optimal strategies for reversing age-de-

pendent degeneration with an accessible approach. 

Thus, NAD+ precursors could improve mitochondrial function 

to recover aged HSC function through the hypothetical pathway 

shown in Fig. 5 [35, 36].

	

CONCLUSION

Although further research on the effects of NAD+ replenishment 

in human health maintenance is required, the studies we re-

viewed clearly demonstrate that the level of NAD+ drops during 

the aging process [37]. In addition, the relevant pathways of 

NAD+ synthesis, SIRTs, and PARPs suggest that NAD+ replen-

ishment may be beneficial in rejuvenating aged HSCs.

The ability to rejuvenate stem cells without relying on genetic 

manipulation is the safest way to achieve optimal clinical out-

comes. Regulation of aging through enhancing mitochondrial 

function is a potentially effective, low-cost, and stable treatment 

method.
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