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Purpose: The rapid spread of the COVID-19 omicron variant virus has resulted in an overload 
of hospitals around the globe. As a result, many patients are deprived of hospital facilities, 
increasing mortality rates. Therefore, mortality rates can be reduced by efficiently assigning 
facilities to higher-risk patients. Therefore, it is crucial to estimate patients’ survival probability 
based on their conditions at the time of admission so that the minimum required facilities can 
be provided, allowing more opportunities to be available for those who need them. Although 
radiologic findings in chest computerized tomography scans show various patterns, considering 
the individual risk factors and other underlying diseases, it is difficult to predict patient prognosis 
through routine clinical or statistical analysis.
Method: In this study, a deep neural network model is proposed for predicting survival based on 
simple clinical features, blood tests, axial computerized tomography scan images of lungs, and the 
patients’ planned treatment. The model’s architecture combines a Convolutional Neural Network 
and a Long Short Term Memory network. The model was trained using 390 survivors and 108 
deceased patients from the Rasoul Akram Hospital and evaluated 109 surviving and 36 deceased 
patients infected by the omicron variant.
Results: The proposed model reached an accuracy of 87.5% on the test data, indicating survival 
prediction possibility. The accuracy was significantly higher than the accuracy achieved by 
classical machine learning methods without considering computerized tomography scan images 
(p-value <= 4E-5). The images were also replaced with hand-crafted features related to the ratio 
of infected lung lobes used in classical machine-learning models. The highest-performing model 
reached an accuracy of 84.5%, which was considerably higher than the models trained on mere 
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clinical information (p-value <= 0.006). However, the performance was still significantly less 
than the deep model (p-value <= 0.016).
Conclusion: The proposed deep model achieved a higher accuracy than classical machine 
learning methods trained on features other than computerized tomography scan images. This 
proves the images contain extra information. Meanwhile, Artificial Intelligence methods with 
multimodal inputs can be more reliable and accurate than computerized tomography severity 
scores.

1. Introduction

In late 2021, the Omicron variant of Coronavirus emerged in South Africa, leading to the spread of the disease to a wide 
range of countries. This unknown virus affected a significant population, overwhelming hospitals that lacked sufficient capacity to 
accommodate the high number of patients. Consequently, individuals at higher risk were unable to access hospital beds, Intensive 
Care Unit (ICU) rooms, or ventilator support, increasing mortality rates. However, due to vaccination efforts, many individuals are 
now considered outpatients and do not require hospitalization for treatment. Hospitals need a reliable method to determine which 
patients need hospitalization to optimize resources and reduce the mortality rate.

COVID-19 is not just a pulmonary infection. It can affect multiple organs, including the central or peripheral nervous system [1,2], 
cardiovascular system [3], and cutaneous manifestation [4]. There are various symptoms reported, including fever in 85.6%-88.7% 
of patients [5,6] to rare ones like viral myositis [7]. Also, radiologic findings and lung computerized tomography (CT) scan patterns 
vary from case to case, ranging from ground-glass opacity with the highest prevalence [5,8,9] to the rare ones like pneumothorax, 
or pneumomediastinum [10]. The ultimate outcome of COVID-19 is influenced by several factors, including individual risk factors, 
and underlying medical conditions.

COVID-19 patients demonstrate divergent clinical trajectories, characterized by a spectrum of severity in their prognostic outlooks. 
There is no single clinical, laboratory, imaging, or routine statistical analysis that can provide a reliable assessment of a patient’s 
prognosis. The complex network interactions between these factors can cause clinicians to allocate resources in an inappropriate 
manner. Higher-risk patients can receive more intensive care if a fast and efficient method for this prediction is developed, while 
lower-risk patients may be managed outpatient or with minimal inpatient care. As a result of this method, hospital and health 
resource utilization will be maximized, and the number of mortalities resulting from the lack of required facilities will be reduced.

Artificial intelligence (AI) has made tremendous progress in recent years. AI-based systems have excelled over humans in many 
fields, such as games, and achieved competitive performance in others. Consequently, AI-based techniques have been used in a 
variety of real-life applications, such as autonomous vehicles and medical analysis. The machines are fast, fatigue-free, and produce 
consistent results regardless of the time of the day. In pandemics, they may provide assistance in reducing the load and managing 
the conditions [11–13]. Many studies have concentrated on utilizing AI-driven systems during the pandemic for different objectives. 
Several studies have focused on distinguishing COVID-19 patients from patients with other pulmonary diseases and healthy people 
from computerized tomography (CT) scan images of the chest [14–16,13,17–19]. Some of the introduced models can also calculate 
the percentage of infected regions of the lungs [13]. Another group of studies has focused on diagnosing COVID-19 from chest X-
ray images to be utilized as a screening stage [10,20–29]. Other than single-person-based analysis, some studies have focused on 
large-scale predictions using the time series to help in large-scale management decisions, e.g., the number of COVID-19 cases and 
the mortality rate of COVID-19 [30–33]. AI was also used in other applications, such as vaccine development and drug discovery for 
COVID-19 disease [34].

Recent studies have used AI to predict patients’ outcomes using different features. In [35], they tried to predict short-term 
outcomes (favorable or adverse) from clinical information, including sex, age, WBC, Lymph, etc., into the volume of infected lungs 
of patients from their CT scans. They achieved 88% accuracy, 90% sensitivity, and 87% specificity by applying a support vector 
machine (SVM) algorithm on 106 patients. In [36], Li and his colleagues tried to predict COVID-19 patient mortality using clinical 
symptoms and CT scan images of 98 older patients. They achieved 87.5% sensitivity and 70.6% specificity. Furthermore, CT scans and 
their extracted features, clinical information, serology, and hematology tests of patients demonstrated promising results in predicting 
adverse outcomes in COVID-19 patients [37–39]. In previous studies, various methods have been used to predict mortality and 
hospitalization of patients, including the CT-Severity Index [40–42]. One of the drawbacks of this model is the unequal volume of 
the pulmonary lobes despite the equal pulmonary involvement score. Another problem in these studies is the prominent role of the 
interpreter. The radiologists’ experience and accuracy are essential in determining the score. These factors may explain why these 
scoring and predictive systems are less commonly used in clinical practice.

Previous studies have addressed the question of predicting survival, however no studies have predicted survival in a particular 
condition. In this study, we attempted to predict outcomes based on patient health conditions at the time of hospitalization and 
specific treatment conditions (number of hospitalization days, number of ICU days, and number of ventilator days). Thus, it is 
possible to identify the minimum needed facilities for the patient to recover, or if even the best facilities are not sufficient to ensure 
survival. Axial CT scan images of the patient’s lung were used along with clinical characteristics, including age and sex, and simple 
blood tests containing WBC, Hb, Plt, X.Neut, and X.Lymph. Using the above features, a deep network model was developed to predict 
the probability of survival. We also compared the results of the proposed method with simple machine learning methods trained on 
2

all the features of CT scan images to demonstrate their added value.
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Fig. 1. Two middle slices from the CT scan of lung of (a) a survivor infected with the Omicron variant (b) a patient who passed away after 4 days.

2. Materials and method

2.1. Dataset

A total of 640 patients (506 survived and 134 died) were studied at the Rasoul Akram Hospital in Tehran. We used 430 samples 
(336 survivors) for training, 68 samples (54 survivors) for validation, and 142 samples (116 survivors) for testing. Fig. 1a and Fig. 1b 
show CT scan images of two patients from this dataset. In addition to CT scan images of the patients, clinical information including 
age, sex, WBC, Hb, Plt, X.Neut, and X.Lymph, as well as treatment conditions including the number of hospitalization days, the 
number of days in the intensive care unit, and receiving ventilator support, were gathered from the medical records. The following 
data was collected for all patients: age, sex, WBC, Hb, Plt, and treatment conditions (X.Neut and X.Lymph were not recorded for less 
than 150 patients). A linear regression model was trained on fully known data in order to predict missing information. Training was 
conducted using the completed information.

2.2. Workflow

By analyzing clinical data such as age and gender of patients, blood test results such as WBC, Hb, Plt, X.Neut, and X.LYmph, 
as well as axial lung CT scan images, the deep learning pipeline in Fig. 2 was used to predict the mortality status of COVID-19 
patients upon arrival at the hospital. The model takes into account the conditions under which the patient is to be treated and 
predicts their mortality status. The number of hospitalization days, the number of days in the ICU, and the number of days receiving 
ventilator support are among these conditions. In the first step of the pipeline, CT scan images are preprocessed, and lobes are 
detected and extracted from images of slices using the method described in [13]. In order to obtain a general understanding of the 
condition of the lungs, a fixed number of slices is selected along with a sample height to cover different lung sizes with nearly equal 
distances. To extract features for each of the slices, images of the left and right lobes are fed independently into a deep convolutional 
neural network. In order to predict the patient’s mortality, the extracted features, clinical features, blood test results, and treatment 
conditions are fed into another deep model. Finally, the results of different packs of slices are aggregated, and the highest probability 
of mortality in each group is assigned to the entire sample. In the preceding subsections, each part of the pipeline is described in 
detail.

2.3. Choosing pack of slices for each sample

This step involves selecting a fixed number of evenly spaced slices along the lung’s height for each sample. As a result of this 
sampling, GPU RAM is used less during training, allowing for larger batches to be used. Additionally, it ensures that the conditions 
for samples with different numbers of slices are equal, since the subsequent slices in the batch will have a nearly equal distance from 
one another. The use of different slices for each sample also prevents overfitting due to the same observations being made for each 
3

sample.
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Fig. 2. Flowchart of the pipeline for predicting survival of COVID-19 patients. The pipeline uses clinical information (age, sex), blood test results, and axial lung 
computerized tomography scan images as inputs. It also considers additional conditions such as hospitalization days, ICU days, and ventilator support. Computerized 
tomography scan images are preprocessed, and lobes are extracted. A fixed number of slices is chosen to cover different lung sizes. Deep convolutional neural networks 
are used to extract features from the left and right lobes of the chosen slices. Another deep model is then used to predict patient mortality using these features, clinical 
information, and treatment conditions. The results from different packs of slices are aggregated, and the maximum probability of mortality in the groups is assigned 
to the entire sample.

Some CT-scan images may contain fewer slices than the number selected. The problem is fixed by repeating some sample slices 
until they become equal to the selected number. By choosing this method over interpolating, artificial effects were avoided. Using 
the collection of points calculated by Equation (1), all slices are divided into partitions of nearly equal length. In this equation, 
𝑛_𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑙𝑖𝑐𝑒𝑠 refers to the number of slices of the sample, 𝑛_𝑐ℎ𝑜𝑠𝑒𝑛_𝑠𝑙𝑖𝑐𝑒𝑠 refers to the fixed number of slices chosen, and 𝑠𝑒𝑞
represents the sequence of numbers from the beginning to the end.

𝑃𝑜𝑖𝑛𝑡𝑠 =𝑅𝑜𝑢𝑛𝑑𝑒𝑑{ 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑙𝑖𝑐𝑒𝑠
𝑛_𝑐ℎ𝑜𝑠𝑒𝑛_𝑠𝑙𝑖𝑐𝑒𝑠

× 𝑠𝑒𝑞(𝑠𝑡𝑎𝑟𝑡 = 0, 𝑒𝑛𝑑 = 𝑛_𝑐ℎ𝑜𝑠𝑒𝑛_𝑠𝑙𝑖𝑐𝑒𝑠)} (1)

Each pack of slices is selected by adding an offset to the reference set of points. The offset can range from zero to the maximum 
partition length, which is the maximum difference between two consecutive points. The offset is selected at random during the 
training phase. During the test phase, all possible offsets are used to make the packs, and the mortality probability assigned by the 
network to the packs will be applied to the entire sample.

2.4. Extracting features for images of lobes

Fig. 3 illustrates the network structure used to extract features from lobe images. It is a part of the architecture employed in 
[13] for predicting diseased lung CT-scan images. Three consecutive slices of images related to one lobe are received by the network 
as a 256 x 256 x 3 array. The middle slice is used to calculate the features. Images related to the previous and next slices provide 
additional information regarding the continuity of the white material in the middle slice. The inputs are fed into a convolutional 
subnetwork (Table 1) with an output size of 32 x 32 x 256, corresponding to a 32 x 32 mesh of neurons with 256 features for each. 
In this network, each neuron’s receptive field corresponds to a 36 x 36 patch in the input image, so the extracted features for each 
neuron are related to the 36 x 36 patch in the input image that the neuron is viewing. To add additional information from the 
vicinity of each patch, the output of the previous subnetwork is fed into a U-Net-style encoder-decoder (Table 1), in which features 
are extracted from a larger receptive field in the encoder part and the decoder part can increase the resolution to the input size. 
The distance between each patch and the lung peripheral is calculated as the minimum Manhattan distance between each pixel in 
the patch and the nearest peripheral pixel using the Breadth-First Search (BFS) algorithm. In order to determine the final features 
for each patch, we concatenate the features extracted for each patch, those extracted from its vicinity, and the minimum distance 
of each patch from the lung peripheral. The features for each patch are then fed into a fully connected subnetwork (Table 1) to 
calculate a bounded attention weight between 0 and 1 for that patch. Based on the computed weights, the final features for the lobe 
are calculated by using the weighted average of the patches in the lobe. Considering that this network operates only on patches, the 
final decision can easily be mapped to the responsible patches, and the logic can be readily understood. The network is trained in 
conjunction with the model for predicting mortality described in section 2.5. Section 2.6 discusses the training procedure in detail.

2.5. Predicting mortality

At this point, the features of the chosen slices’ lobes have been calculated. As illustrated in Fig. 4, the left and right lobes of 
each slice are concatenated to the relative position of the slice in the lung’s height, the clinical characteristics, the blood test results, 
and the conditions of interest for the patient’s treatment. The expanded features of slices are fed sequentially to a slice iterator 
subnetwork (Table 2). According to the history of the observed slices, this subnetwork calculates the updated features based on the 
characteristics of subsequent slices. The updated features of the last slice are then fed into a fully connected subnetwork (Table 2) to 
4

determine the probability of the patient’s mortality.
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Fig. 3. The network structure used for extracting features from lobe images. The network calculates features for the middle slice after receiving images of one lobe in 
three consecutive slices. In order to extract features from a larger receptive field, a convolutional subnetwork and a U-Net encoder-decoder are applied. Additionally, 
the minimum distance between each patch and the lung peripheral is calculated. Final features are formed by concatenating the features from each patch, the 
surrounding vicinity, and the minimum distance. A bounded attention weight is then calculated for each patch based on these features. By taking the weighted 
average of the patch features, we determine the final features for the lobe. The network is trained in conjunction with a model for predicting mortality.

Table 1

Layer specifications used in each subnetwork of the model for extracting features from lobe images.

Subnetworks Layers

Patch feature extractor conv(64x3x3,s=1), relu, conv(64x3x3,s=1), relu, MaxPool(2x2,s=2), [Name of the output: PFE1]; 
conv(128x3x3,s=1), relu, conv(128x3x3,s=1), relu, MaxPool(2x2,s=2) [Name of the output: 
PFE2]; conv(256x3x3,s=1), relu, conv(256x3x3,s=1), relu, MaxPool(2x2,s=2)

Vicinity feature extractor (Encoder) conv(64x1x1,s=1) [Name of the output: VFE1]; conv(64x3x3,s=2), conv(64x3x3,s=1), relu [Name 
of the output: VFE2]; conv(64x3x3,s=2), conv(64x3x3,s=1), relu

Vicinity feature extractor (Decoder) TransposeConv(64x2x2,s=2), conv(64x3x3,s=1), relu; UNet concatenation with VFE2; Trans-
poseConv(64x2x2,s=2), conv(64x3x3,s=1), relu; UNet concatenation with VFE1

Bounded attention weights calculator Conv(64x1x1,s=1), relu, Dropout(0.5), Conv(2x1x1,s=1), Softmax

Table 2

Layer specifications for each subnetwork in the mortality prediction model.

Subnetworks Layers

Slice Iterator LSTM(hidden=512, layers=5, (with learnable initial hidden and memory), Dropout(0.5) after each 
layer), BatchNorm1d(512), elu, Dropout(0.5)

Mortality decider Linear(256), BatchNorm1d(256), elu, Dropout(0.5), Linear(64), Linear(2), Softmax

For iterating over slices, this submodule uses a Long Short Term Memory (LSTM) model rather than a fully connected layer 
connecting all the slices’ features. Fully connected layers would have had many more parameters, resulting in overfitting.

2.6. Training model

2.6.1. The loss function

Cross-entropy loss is commonly used for classification problems. Based on the predicted probability of mortality for each patient 
and the ground truth about the patient’s status, the same loss was used as the primary loss. Deep networks have a known gradient 
5

flow problem, which increases with the depth of the network, and an LSTM network is considered a deep network because its depth 
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Fig. 4. The model used for predicting mortality for a specific treatment condition. The features extracted from the left and right lobes of the model along with clinical 
characteristics, blood test results, and treatment conditions are passed to a Long Short Term Memory (LSTM) network. Each time the LSTM network receives a slice 
from a computerized tomography scan image, it updates the features extracted from the image. To calculate the probability of mortality, the extracted features are 
passed to a multi-layer, fully connected neural network. The final decision is made after observing all slices.

affects the length of the sequence it receives. To solve the problem, an auxiliary loss was used to inject a gradient through the LSTM 
model’s steps. Each slice’s updated features were fed independently into the same decider network that was used for the last slice’s 
features for calculating the auxiliary loss. For each of them, a mortality probability was calculated. The cross-entropy loss was then 
calculated using the ground truth label. We considered the auxiliary loss as the estimated likelihood for each slice and the average 
of each slice’s losses. The LSTM model was also made to predict the mortality as soon as possible, not only based on all slices, which 
would result in a more robust prediction.

The loss calculated for the 𝑖th slice of the 𝑗th sample is illustrated in Equation (2). In this equation, 𝐿𝑜𝑠𝑠𝑗
𝑖

is the cross-entropy loss 
estimated based on the ground truth of the 𝑗th sample, 𝐺𝑇 𝑗 and the probability of mortality determined by the network based on the 
sequence of the slices from the beginning till observing the 𝑖th slice, 𝑃 𝑗

𝑖
. 𝐺𝑇 𝑗 was considered 1 for mortality and 0 otherwise. The 

auxiliary loss, 𝐴𝑢𝑥_𝐿𝑜𝑠𝑠𝑗 , was determined by averaging the cross-entropy losses of all the slices as in Equation (3). In this equation, 
𝑛_𝑐ℎ𝑜𝑠𝑒𝑛_𝑠𝑙𝑖𝑐𝑒𝑠 stands for each batch sample’s fixed number of slices. The primary loss was considered the cross-entropy loss of the 
last slice. The weighted sum of two loss terms calculated the total loss as in Equation (4). These factors were selected based on 
multiple trials. The total loss for each batch was calculated as the average loss of the samples in the batch.

𝐿𝑜𝑠𝑠
𝑗

𝑖
= −1 × ((1 −𝐺𝑇 𝑗 ) × ln(1 − 𝑃

𝑗

𝑖
) +𝐺𝑇 𝑗 × ln(𝑃 𝑗

𝑖
)) (2)

𝐴𝑢𝑥_𝐿𝑜𝑠𝑠𝑗 = 1
𝑛_𝑐ℎ𝑜𝑠𝑒𝑛_𝑠𝑙𝑖𝑐𝑒𝑠

Σ𝑛_𝑐ℎ𝑜𝑠𝑒𝑛_𝑠𝑙𝑖𝑐𝑒𝑠
𝑖=1 𝐿𝑜𝑠𝑠

𝑗

𝑖
(3)

𝐿𝑜𝑠𝑠𝑗 =𝑀𝑎𝑖𝑛_𝐿𝑜𝑠𝑠𝑗 + 0.1 ×𝐴𝑢𝑥_𝐿𝑜𝑠𝑠𝑗 (4)

2.6.2. Hyperparameters of training

In order to evaluate the model, a part of the dataset was separated as the test set. To help select hyperparameters and choose 
models, the remaining samples were also severed as the validation set. We trained the model using the remaining samples. The 
weights of the final model trained in [13] were utilized to initialize the model for extracting lobe features. During the training, the 
parameters of the model were frozen from the attention segment to prevent overfitting. In addition, the remaining parts of the model 
as well as the model used to calculate the probability of mortality were trained using the Adam optimization algorithm [43] with 
default parameters and an initial learning rate of 1e-4. To prevent the model from becoming biased toward the class with more 
samples, batches of size 8 with four positive and four negative samples were used to train the model. For each sample, forty slices 
were selected. A number of trials have been conducted in order to determine this number. The model was trained for 500 epochs, 
and the epoch model with the highest accuracy for the validation data was selected as the final model.

To expand the network’s data for training, the treatment conditions were randomized in each batch. Considering the availability 
of more facilities, the randomized treatment conditions were superior to the original treatment. If a patient survives at a specific 
level of illness, he will also survive at a higher level. Nevertheless, due to the limited number of facilities, the randomized conditions 
were worse than the original treatment, meaning the patient had died due to receiving the worst treatment possible.

2.7. Evaluation metrics

We used the most common metric to assess the performance of a binary classifier. The survival distribution is highly skewed 
towards the negative class in the problem of survival prediction. Models were evaluated using sensitivity (true positive rate) and 
6

specificity (true negative rate) to show error rates for each class. For the final model selection and comparison, accuracy was selected 
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Table 3

Results of evaluating different models on test data.

Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

ML-F1 72.9 61.5 75.0 74.55
ML-F2 84.5 26.9 97.4 69.83
Deep Model 87.5 53.8 94.8 82.42

Table 4

Machine learning methods and their hyperparameters.

Model Set of the hyperparameters (The unspecified parameters are the defaults used by 
scikit-learn)

SVM kernel: [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’]

MLP sizes of hidden layers: [(i, j) for i in range(1, 202, 10) for j in range(2, 6)]
activation: [‘identity’, ‘logistic’, ‘tanh’, ‘relu’]
solver: [‘lbfgs’, ‘sgd’, ‘adam’]
learning rate: [‘constant’, ‘invscaling’, ‘adaptive’]

Random Forest max depth: range [1-24]
criterion: [‘gini’, ‘entropy’]
N estimators: [20, 40, 60, 80, 100]

Logistic regression C=[1.0, 3.6, 12.9, 46.4, 166.8, 599.5, 2154.3, 7742.6, 27825.6, 1.e05]
penalty=[‘l2’, ‘l1’]

as a metric for representing the error rate in the distribution. Furthermore, Receiver Operating Characteristic (ROC) curves were 
computed to demonstrate the models’ general performance.

3. Experimental results and discussion

According to previous reports, the predominant CT imaging pattern in COVID-19 was GGO with occasional consolidation. The 
majority of patients in the gathered dataset exhibit the same pattern [44]. Bilateral lung involvement, mainly in the lower lobes, 
has been reported in all studies. In this study, right lung involvement was slightly more prevalent than left lung involvement, which 
contradicts some other studies. Pleural effusion was also significantly higher in cases with a severe form of the disease [45,44].

3.1. Evaluations

The results of the trained model are presented in Table 3. A test accuracy of 87.5% (sensitivity of 53.8% and specificity of 95.8%) 
indicates that survival can be predicted from CT scan images and simple blood tests. In order to assess the added value of CT scan 
images, the proposed model’s results were compared with classical machine learning classifiers trained over all features except CT 
scan images (ML-F1). As extra information, the percentage of the infected volume of the whole lung and the left and the right lobes, 
the volume of the entire lung and the left and the right lobes, and the average percentage of infected volume in the top 20% and also 
in the top 4 lobes were calculated by the infection mask and the lung mask of the model trained in [13] and added to the clinical 
feature set (ML-F2). With these features, machine learning models such as SVM, perceptron, random forest, and logistic regression 
classifiers were trained. A 5-fold cross-validation was performed over both the training and validation sets in order to choose the 
hyperparameters for these models. In this study, scikit-learn [46] was utilized to implement models and set hyperparameters. The 
hyperparameters for these models are presented in Table 4. Within the first feature set (ML-F1), the perceptron model performed 
best in terms of accuracy (accuracy of 72.5%, sensitivity of 61.5%, and specificity of 75%). Among the models trained using the 
2nd feature set (ML-F2), Random Forest had the highest test accuracy (84.5%), sensitivity (24.9%), and specificity (97.3%). The 
significance of the differences in error ratios between the proposed deep pipeline and each of the other models was calculated using 
McNemar’s test [47], which is the only test with acceptable Type I error for algorithms that can only be executed once, like deep 
models [48]. The proposed deep framework had a significantly lower error ratio than the other models (p-value of 0.00004 for the 
ML-F1 model and p-value of 0.0156 for the ML-F2 model). The difference between the ML-F1 model and the ML-F2 model was also 
significant (p-value = 0.006). Significant improvements in accuracy can be attributed to information related to lung volume and 
infection percentage. Furthermore, the proposed deep pipeline reaches a higher accuracy than both models, suggesting that CT scan 
images may provide more information about mortality. The comparison results are shown in Table 6.

In order to demonstrate the validity of the model under the treatment conditions, the survivors should also survive under better 
treatment conditions, and the dead patients should die under worse treatments. The percentage of 4 random possible better conditions 
for the true negative patients that are also predicted as negative, as well as the percentage of 4 random possible worse conditions for 
the true positive patients which are also predicted as positive, is calculated for training, validation, and test sets, within the range of 
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0-60 days of hospitalization. This model almost always works correctly, except in some exceptional cases, as shown in Table 5.
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Table 5

Percentage of valid augmentations in true positive and true negative samples.

Percentage of better conditions for true 
negative samples predicted as negative

Percentage of worse conditions for true 
positive samples predicted as positive

Train 100% 100%
Validation 100% 100%
Test 100% 99.03%

Table 6

Comparison of current and previous studies.

Study Size of Dataset Accuracy AUC

[49] 181 83.3% 0.756
[50] 5,766 84.4% 0.844
[51] 2,670,000 89.98% 0.93
[52] 383 87.1% 0.887
Current Study 640 87.5% 0.824

4. Limitations of the study

This study has the following limitations:

• This study could benefit from more positive cases (the unsurvived patients). A larger dataset would have provided more infor-
mation regarding the patterns that contribute to mortality. Because of the low mortality rate associated with COVID-19 disease 
in this study, collecting the dataset required more resources than were available.

• More details from the treatment process, such as the medicines used during hospitalization, in addition to the clinical histories of 
the patients, such as previous diseases and medicines taken for other ailments, would have resulted in a more accurate mortality 
prediction model. However, this study demonstrated that there were common patterns resulting in mortality within the set of 
data used.

• The results of this study would be enhanced by using a multi-center dataset, as this would ensure that they are not biased by 
the specific conditions at each site. Nevertheless, obtaining acceptable results from one center is a crucial step before investing 
resources in a larger multi-center study.

5. Conclusion

Based on the conditions at the time of the patient’s admission to the hospital, this study proposed a deep learning model to predict 
the survival and severity of COVID-19 patients in order to guide treatment options ranging from outpatient care to ICU admission 
and ventilator support. Based on age, sex, and simple blood tests of WBC, Plt, Hb, X.Neut, and X.Lymph with axial CT scans of the 
lung, the proposed model achieved an accuracy of 87.3%. This model had a specificity of 94.8%, which is more significant than 
sensitivity, which means that the patients who survived were correctly predicted. Thus, each patient’s survival probability can be 
predicted based on all the possible conditions, and the minimum facilities required for survival can be determined. As a result, 
limited facilities will be used more efficiently, and fewer patients will die as a result of a lack of resources. In previous studies, 
machine learning models such as support vector machines and deep neural networks have been used to predict mortality using 
clinical signs such as fever and cough severity. When hospitals are overloaded with patients, predicting mortality is useful. As part 
of this study, we also included treatment conditions in order to predict mortality based on the planned treatment. By using the 
proposed model, hospitals can manage their facilities and use them for patients whose survival depends on them. The proposed 
model was also compared with classical machine learning models trained over all the features, CT scan images and even the classical 
models trained over all the mentioned features were compared, as well as some features related to lung volume and the percentage 
of infected volume calculated with another deep model from CT scan images. Although the classical models that used the features 
extracted from CT scan images as input reached a higher accuracy than the first group, indicating that the percentage of infection 
and the size of the lung lobes affect survival. As a result of the proposed deep model’s higher accuracy, it is evident that lung CT 
scan images contain more information about survival. It is crucial to study CT scan images of lungs better, as there may be signs 
in the lungs of the patients that prevent them from receiving more intense treatment, which may result in a better treatment for 
COVID-19 patients. Although CT severity scores are used to predict a patient’s condition, they are not accurate or sufficient to assess 
the patient’s condition. Therefore, AI can improve the accuracy and reliability of mortality assessment methods when combined with 
other clinical inputs. Artificial intelligence systems would perform better, be more reliable, and be more generalizable if they used a 
larger dataset with vast diversity, included the patient’s history of diseases, and performed extra clinical tests.

Ethical approval

The study has been approved by the Iran University of Medical Sciences (IUMS) and the Ethical Code IR.IUMS.REC.1399.008 
authorized the use of CT-scan images. The patients consented to have their internal scans (e.g. x-rays, MRIs, CTs, ultrasound) images 
8

published.



Heliyon 9 (2023) e21965M. Ghafoori, M. Hamidi, R.G. Modegh et al.

Abbreviations

Computerized tomography (CT) Long Short Term Memory (LSTM) Intensive Care Unit (ICU) Artificial Intelligence (AI) Area 
Under the Curve (AUC) Long Short Term Memory (LSTM) Support Vector Machine (SVM) Multi-Layer Perceptron (MLP)

CRediT authorship contribution statement

Mahyar Ghafoori: Conceptualization, Data curation, Formal analysis, Methodology, Supervision. Mehrab Hamidi: Methodol-
ogy, Validation, Writing – original draft. Rassa Ghavami Modegh: Formal analysis, Methodology, Validation, Writing – original 
draft. Alireza Aziz-Ahari: Data curation, Supervision. Neda Heydari: Data curation, Resources. Zeynab Tavafizadeh: Data cura-
tion, Resources. Omid Pournik: Conceptualization, Methodology, Supervision. Sasan Emdadi: Data curation. Saeed Samimi: Data 
curation. Amir Mohseni: Data curation. Mohammadreza Khaleghi: Data curation, Resources. Hamed Dashti: Conceptualization, 
Methodology, Writing – original draft. Hamid R. Rabiee: Conceptualization, Formal analysis, Methodology, Supervision, Writing – 
review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests:

Hamid R. Rabiee reports financial support was provided by Iran National Science Foundation. If there are other authors, they 
declare that they have no known competing financial interests or personal relationships that could have appeared to influence the 
work reported in this paper.

Data availability

The datasets associated with this study have not been deposited into a publicly available repository. However, these datasets are 
available from the corresponding authors upon reasonable request.

Acknowledgements

This study was partially funded by IR National Science Foundation (INSF) Grant No. 96006077 and ISTI grant number 11/41701 
(Hamid R. Rabiee was the recipient of both grants).

References

[1] L. Mao, M. Wang, S. Chen, Q. He, J. Chang, C. Hong, Y. Zhou, D. Wang, Y. Li, H. Jin, B. Hu, Neurological manifestations of hospitalized patients with COVID-19 
in Wuhan, China: a retrospective case series study, 2020.

[2] Y. Wu, X. Xu, Z. Chen, J. Duan, K. Hashimoto, L. Yang, C. Liu, C. Yang, Nervous system involvement after infection with Covid-19 and other coronaviruses, 
Brain Behav. Immun. 87 (2020) 18–22.

[3] Y.-Y. Zheng, Y.-T. Ma, J.-Y. Zhang, X. Xie, Covid-19 and the cardiovascular system, Nat. Rev. Cardiol. 17 (2020) 259–260.
[4] G. Casas, A. Català, G.C. Hernández, P. Rodríguez-Jiménez, D. Fernández-Nieto, A.R.-V. Lario, I.N. Fernández, R. Ruiz-Villaverde, D. Falkenhain-López, M.L. 

Velasco, J. García-Gavín, O. Baniandrés, C. González-Cruz, V. Morillas-Lahuerta, X. Cubiró, I.F. Nart, G. Selda-Enriquez, J. Romaní, X. Fustà-Novell, A. Melian-
Olivera, M.R. Riesco, P. Burgos-Blasco, J.S. Ortigosa, M.F. Rodriguez, I. García-Doval, Classification of the cutaneous manifestations of COVID -19: a rapid 
prospective nationwide consensus study in Spain with 375 cases, Br. J. Dermatol. 183 (2020) 71–77.

[5] A. Lovato, C. De Filippis, Clinical presentation of Covid-19: a systematic review focusing on upper airway symptoms, Ear, Nose, Throat J. 99 (2020) 569–576.
[6] A.J. Rodriguez-Morales, J.A. Cardona-Ospina, E. Gutiérrez-Ocampo, R. Villamizar-Peña, Y. Holguin-Rivera, J.P. Escalera-Antezana, L.E. Alvarado-Arnez, D.K. 

Bonilla-Aldana, C. Franco-Paredes, A.F. Henao-Martinez, A. Paniz-Mondolfi, G.J. Lagos-Grisales, E. Ramírez-Vallejo, J.A. Suárez, L.I. Zambrano, W.E. Villamil-
Gómez, G.J. Balbin-Ramon, A.A. Rabaan, H. Harapan, K. Dhama, H. Nishiura, H. Kataoka, T. Ahmad, R. Sah, Clinical, laboratory and imaging features of 
COVID-19: a systematic review and meta-analysis, Trav. Med. Infect. Dis. 34 (2020) 101623.

[7] Q. Zhang, K.S. Shan, A. Minalyan, C. O’Sullivan, T. Nace, A rare presentation of coronavirus disease 2019 (Covid-19) induced viral myositis with subsequent 
rhabdomyolysis, Cureus 12 (2020).

[8] S. Salehi, A. Abedi, S. Balakrishnan, A. Gholamrezanezhad, Coronavirus disease 2019 (Covid-19): a systematic review of imaging findings in 919 patients, Am. 
J. Roentgenol. 215 (2020) 87–93.

[9] D. Caruso, M. Zerunian, M. Polici, F. Pucciarelli, T. Polidori, C. Rucci, G. Guido, B. Bracci, C.D. Dominicis, A. Laghi, Chest CT features of COVID-19 in Rome, 
Italy, Radiology 296 (2020) E79–E85.

[10] W. Wang, R. Gao, Y. Zheng, L. Jiang, COVID-19 with spontaneous pneumothorax, pneumomediastinum and subcutaneous emphysema, J. Travel Med. 27 (2020).
[11] S.K. Zhou, H. Greenspan, C. Davatzikos, J.S. Duncan, B. Van Ginneken, A. Madabhushi, J.L. Prince, D. Rueckert, R.M. Summers, A review of deep learning in 

medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises, Proc. IEEE 109 (2021) 820–838.
[12] R.G. Modegh, A. Salimi, S. Ilami, A.H. Dehqan, H. Dashti, S.H. Javanmard, H. Ghanaati, H.R. Rabiee, Covid-19 diagnosis with artificial intelligence, in: The 

Science Behind the COVID Pandemic and Healthcare Technology Solutions, Springer, 2022, pp. 353–378.
[13] R.G. Modegh, M. Hamidi, S. Masoudian, A. Mohseni, H. Lotfalinezhad, M.A. Kazemi, B. Moradi, M. Ghafoori, O. Motamedi, O. Pournik, K. Rezaei-Kalantari, 

A. Manteghinezhad, S.H. Javanmard, F.A. Nezhad, A. Enhesari, M.S. Kheyrkhah, R. Eghtesadi, J. Azadbakht, A. Aliasgharzadeh, M.R. Sharif, A. Khaleghi, A. 
Foroutan, H. Ghanaati, H. Dashti, H.R. Rabiee, Accurate and rapid diagnosis of Covid-19 pneumonia with batch effect removal of chest ct-scans and interpretable 
artificial intelligence, 2020.

[14] L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, et al., Using artificial intelligence to detect Covid-19 and community-acquired 
9

pneumonia based on pulmonary ct: evaluation of the diagnostic accuracy, Radiology 296 (2020) E65–E71.

http://refhub.elsevier.com/S2405-8440(23)09173-9/bib04F02D172D923C504851C7F6D34DB2E2s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib04F02D172D923C504851C7F6D34DB2E2s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib2E5C8FF22E671EDE54910C34B3F6861Fs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib2E5C8FF22E671EDE54910C34B3F6861Fs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib71A71F9925EDED34B9CEB8579EC3AEF1s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib134CB8DB5E4CDEF8D56BE649DB914916s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib134CB8DB5E4CDEF8D56BE649DB914916s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib134CB8DB5E4CDEF8D56BE649DB914916s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib134CB8DB5E4CDEF8D56BE649DB914916s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibA514BDDBB901B241ABBB719782E4F30Bs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibE8439E2B1F273884CAEC2076A19746D6s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibE8439E2B1F273884CAEC2076A19746D6s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibE8439E2B1F273884CAEC2076A19746D6s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibE8439E2B1F273884CAEC2076A19746D6s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib2FCB453A4871FF4CC17CC95B3E7188B4s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib2FCB453A4871FF4CC17CC95B3E7188B4s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib11E1902981BFFF8D5EF0BF41C93B7204s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib11E1902981BFFF8D5EF0BF41C93B7204s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib584B3680C3C38396258EE928AF36E27Ds1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib584B3680C3C38396258EE928AF36E27Ds1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib39277DE7B72B4664C32E0CB75F9A6FF7s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib3D8C5829145FE54BC59144D9BB22ECB9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib3D8C5829145FE54BC59144D9BB22ECB9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib20F6319BBC319477F8FDA1B74CB557B9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib20F6319BBC319477F8FDA1B74CB557B9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib0A2ED8255078409BFC9819E511E50CA3s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib0A2ED8255078409BFC9819E511E50CA3s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib0A2ED8255078409BFC9819E511E50CA3s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib0A2ED8255078409BFC9819E511E50CA3s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibDF2716089FCE12963E6F56EB430B76BCs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibDF2716089FCE12963E6F56EB430B76BCs1


Heliyon 9 (2023) e21965M. Ghafoori, M. Hamidi, R.G. Modegh et al.

[15] H. Gunraj, A. Sabri, D. Koff, A. Wong, COVID-net ct-2: enhanced deep neural networks for detection of Covid-19 from chest ct images through bigger, more 
diverse learning, Front. Med. 8 (2022) 3126.

[16] S.A. Harmon, T.H. Sanford, S. Xu, E.B. Turkbey, H. Roth, Z. Xu, D. Yang, A. Myronenko, V. Anderson, A. Amalou, et al., Artificial intelligence for the detection 
of Covid-19 pneumonia on chest ct using multinational datasets, Nat. Commun. 11 (2020) 4080.

[17] X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, C. Zheng, A weakly-supervised framework for Covid-19 classification and lesion localization from 
chest ct, IEEE Trans. Med. Imaging 39 (2020) 2615–2625.

[18] H. Gunraj, L. Wang, A. Wong, Covidnet-ct: a tailored deep convolutional neural network design for detection of Covid-19 cases from chest ct images, Front. Med. 
7 (2020) 608525.

[19] C. Jin, W. Chen, Y. Cao, Z. Xu, Z. Tan, X. Zhang, L. Deng, C. Zheng, J. Zhou, H. Shi, et al., Development and evaluation of an artificial intelligence system for 
Covid-19 diagnosis, Nat. Commun. 11 (2020) 5088.

[20] D. Das, K. Santosh, U. Pal, Truncated inception net: Covid-19 outbreak screening using chest x-rays, Phys. Eng. Sci. Med. 43 (2020) 915–925.
[21] S. Basu, S. Mitra, N. Saha, Deep learning for screening covid-19 using chest x-ray images, in: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 

IEEE, 2020, pp. 2521–2527.
[22] X. Li, C. Li, D. Zhu, COVID-mobilexpert: on-device Covid-19 screening using snapshots of chest x-ray, 2020.
[23] I. Castiglioni, D. Ippolito, M. Interlenghi, C.B. Monti, C. Salvatore, S. Schiaffino, A. Polidori, D. Gandola, C. Messa, F. Sardanelli, Artificial intelligence applied 

on chest x-ray can aid in the diagnosis of Covid-19 infection: a first experience from lombardy, Italy, MedRxiv 2020 (2020-04).
[24] T. Hu, M. Khishe, M. Mohammadi, G.-R. Parvizi, S.H.T. Karim, T.A. Rashid, Real-time Covid-19 diagnosis from x-ray images using deep cnn and extreme learning 

machines stabilized by chimp optimization algorithm, Biomed. Signal Process. Control 68 (2021) 102764.
[25] C. Wu, M. Khishe, M. Mohammadi, S.H. Taher Karim, T.A. Rashid, Evolving deep convolutional neutral network by hybrid sine–cosine and extreme learning 

machine for real-time Covid19 diagnosis from x-ray images, Soft Comput. (2021) 1–20.
[26] K. Shankar, S.N. Mohanty, K. Yadav, T. Gopalakrishnan, A.M. Elmisery, Automated Covid-19 diagnosis and classification using convolutional neural network 

with fusion based feature extraction model, Cogn. Neurodyn. (2021) 1–14.
[27] D. Shome, T. Kar, S.N. Mohanty, P. Tiwari, K. Muhammad, A. AlTameem, Y. Zhang, A.K.J. Saudagar, Covid-transformer: interpretable Covid-19 detection using 

vision transformer for healthcare, Int. J. Environ. Res. Public Health 18 (2021) 11086.
[28] A. Saffari, M. Khishe, M. Mohammadi, A. Hussein Mohammed, S. Rashidi, Dcnn-fuzzywoa: artificial intelligence solution for automatic detection of Covid-19 

using x-ray images, Comput. Intell. Neurosci. (2022).
[29] C. Cai, B. Gou, M. Khishe, M. Mohammadi, S. Rashidi, R. Moradpour, S. Mirjalili, Improved deep convolutional neural networks using chimp optimization 

algorithm for Covid19 diagnosis from the x-ray images, Expert Syst. Appl. 213 (2023) 119206.
[30] S. Sah, B. Surendiran, R. Dhanalakshmi, S.N. Mohanty, F. Alenezi, K. Polat, Forecasting Covid-19 pandemic using prophet, arima, and hybrid stacked lstm-gru 

models in India, Comput. Math. Methods Med. 2022 (2022).
[31] N. Sharma, S. Yadav, M. Mangla, A. Mohanty, S. Satpathy, S.N. Mohanty, T. Choudhury, Geospatial multivariate analysis of Covid-19: a global perspective, 

GeoJournal (2021) 1–15.
[32] S. Dash, S. Chakravarty, S.N. Mohanty, C.R. Pattanaik, S. Jain, A deep learning method to forecast Covid-19 outbreak, New Gener. Comput. 39 (2021) 515–539.
[33] S. Satpathy, M. Mangla, N. Sharma, H. Deshmukh, S. Mohanty, Predicting mortality rate and associated risks in Covid-19 patients, Spat. Inf. Res. 29 (2021) 

455–464.
[34] W. Hwang, W. Lei, N.M. Katritsis, M. MacMahon, K. Chapman, N. Han, Current and prospective computational approaches and challenges for developing 

Covid-19 vaccines, Adv. Drug Deliv. Rev. 172 (2021) 249–274.
[35] J. Matos, F. Paparo, I. Mussetto, L. Bacigalupo, A. Veneziano, S.P. Bernardi, E. Biscaldi, E. Melani, G. Antonucci, P. Cremonesi, M. Lattuada, A. Pilotto, E. Pontali, 

G.A. Rollandi, Evaluation of novel coronavirus disease (Covid-19) using quantitative lung CT and clinical data: prediction of short-term outcome, Eur. Radiol. 
Exp. 4 (2020).

[36] Y. Li, Z. Yang, T. Ai, S. Wu, L. Xia, Association of “initial CT” findings with mortality in older patients with coronavirus disease 2019 (Covid-19), Eur. Radiol. 
30 (2020) 6186–6193.

[37] R. Zhang, H. Ouyang, L. Fu, S. Wang, J. Han, K. Huang, M. Jia, Q. Song, Z. Fu, CT features of SARS-CoV-2 pneumonia according to clinical presentation: a 
retrospective analysis of 120 consecutive patients from Wuhan city, Eur. Radiol. 30 (2020) 4417–4426.

[38] M. Yuan, W. Yin, Z. Tao, W. Tan, Y. Hu, Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China, 
PLoS ONE 15 (2020) e0230548.

[39] D. Colombi, F.C. Bodini, M. Petrini, G. Maffi, N. Morelli, G. Milanese, M. Silva, N. Sverzellati, E. Michieletti, Well-aerated lung on admitting chest CT to predict 
adverse outcome in Covid-19 pneumonia, Radiology 296 (2020) E86–E96.

[40] M. Francone, F. Iafrate, G.M. Masci, S. Coco, F. Cilia, L. Manganaro, V. Panebianco, C. Andreoli, M.C. Colaiacomo, M.A. Zingaropoli, et al., Chest ct score in 
Covid-19 patients: correlation with disease severity and short-term prognosis, Eur. Radiol. 30 (2020) 6808–6817.

[41] Z. Feng, Q. Yu, S. Yao, L. Luo, W. Zhou, X. Mao, J. Li, J. Duan, Z. Yan, M. Yang, et al., Early prediction of disease progression in Covid-19 pneumonia patients 
with chest ct and clinical characteristics, Nat. Commun. 11 (2020) 1–9.

[42] A. Aziz-Ahari, M. Keyhanian, S. Mamishi, S. Mahmoudi, E.E. Bastani, F. Asadi, M. Khaleghi, Chest ct severity score: assessment of Covid-19 severity and 
short-term prognosis in hospitalized Iranian patients, Wien. Med. Wochenschr. 172 (2022) 77–83.

[43] D.P. Kingma, J. Ba Adam, A method for stochastic optimization, arXiv preprint arXiv :1412 .6980, 2014.
[44] R. Yang, X. Li, H. Liu, Y. Zhen, X. Zhang, Q. Xiong, Y. Luo, C. Gao, W. Zeng, Chest CT severity score: an imaging tool for assessing severe Covid-19, Radiology 2 

(2020) e200047.
[45] D. Sun, H. Li, X.-X. Lu, H. Xiao, J. Ren, F.-R. Zhang, Z.-S. Liu, Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single 

center’s observational study, World J. Pediatr. 16 (2020) 251–259.
[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, A. Müller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, 

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, Édouard duchesnay, scikit-learn: machine learning in python, J. Mach. Learn. Res. 12 (2011) 
2825–2830.

[47] Q. McNemar, Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika 12 (1947) 153–157.
[48] T.G. Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms, Neural Comput. 10 (1998) 1895–1923.
[49] J.S. Zhu, P. Ge, C. Jiang, Y. Zhang, X. Li, Z. Zhao, L. Zhang, T.Q. Duong, Deep-learning artificial intelligence analysis of clinical variables predicts mortality in 

Covid-19 patients, J. Am. Coll. Emerg. Physicians Open 1 (2020) 1364–1373.
[50] X. Li, P. Ge, J. Zhu, H. Li, J. Graham, A. Singer, P.S. Richman, T.Q. Duong, Deep learning prediction of likelihood of icu admission and mortality in Covid-19 

patients using clinical variables, PeerJ 8 (2020) e10337.
[51] M. Pourhomayoun, M. Shakibi, Predicting mortality risk in patients with Covid-19 using machine learning to help medical decision-making, Smart Health 20 

(2021) 100178.
[52] J.J. Näppi, T. Uemura, C. Watari, T. Hironaka, T. Kamiya, H. Yoshida, U-survival for prognostic prediction of disease progression and mortality of patients with 
10

Covid-19, Sci. Rep. 11 (2021) 9263.

http://refhub.elsevier.com/S2405-8440(23)09173-9/bib55CBF8690D9B18D127821ADA2664FE54s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib55CBF8690D9B18D127821ADA2664FE54s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibF2BE5E724C5766EEEEB819E3AA5D59E9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibF2BE5E724C5766EEEEB819E3AA5D59E9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibACBD5647955092B86FADE4CF5FB245ECs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibACBD5647955092B86FADE4CF5FB245ECs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib34CE97ACD4C53DA17E00B28419A94DA0s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib34CE97ACD4C53DA17E00B28419A94DA0s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib47767DCFC9AEDD27544F5BD39D2F8463s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib47767DCFC9AEDD27544F5BD39D2F8463s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibBB2FA0DDFEA5442B8413BDA90F698EC6s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib1BA482B71C1A0736CFE12680AFCB6E11s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib1BA482B71C1A0736CFE12680AFCB6E11s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibA84CB434D1F36C91188D122EC0673AE1s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib6F602D3D70F9F0106AE0821EA23AB393s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib6F602D3D70F9F0106AE0821EA23AB393s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibAA94187BE95F7CF2DE16B319E78D7708s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibAA94187BE95F7CF2DE16B319E78D7708s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib93E6740F77B328768B67EAAF164E9135s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib93E6740F77B328768B67EAAF164E9135s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib3B567BBEF03E3980F272645A9BC30E17s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib3B567BBEF03E3980F272645A9BC30E17s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib34AC6272C14D690263677CF120735696s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib34AC6272C14D690263677CF120735696s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibDB37FDBE7844C71BBA260B5AD88A5C34s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibDB37FDBE7844C71BBA260B5AD88A5C34s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib92B3749833640512A5E2C917F2D967A7s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib92B3749833640512A5E2C917F2D967A7s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib0BF9A43921539C6C928CF7327749EB1Bs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib0BF9A43921539C6C928CF7327749EB1Bs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibA5F1894BDCBF9BD502B9A8B6FEDBE2D9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibA5F1894BDCBF9BD502B9A8B6FEDBE2D9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib23C4EBAA3C4DE49F83A689546BBD0638s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibEDB98CDEAD42B05788958E22F810682As1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibEDB98CDEAD42B05788958E22F810682As1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib04024F60B2FCC5F3E3E46983B0A2208Bs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib04024F60B2FCC5F3E3E46983B0A2208Bs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib7968D8335275E28B489A8252BB9E6142s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib7968D8335275E28B489A8252BB9E6142s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib7968D8335275E28B489A8252BB9E6142s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib6CD81565982B600AF0D1D06B43205034s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib6CD81565982B600AF0D1D06B43205034s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibE951CF18EAEDC7850E770B75F9AABAB1s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibE951CF18EAEDC7850E770B75F9AABAB1s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib7322A9322A69C5D6A608B5B78FD5FD86s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib7322A9322A69C5D6A608B5B78FD5FD86s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibC5881DBB82DD9CA4436D748418028684s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibC5881DBB82DD9CA4436D748418028684s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib38B8FDBEFDA0F69D3C90BB645E389F47s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib38B8FDBEFDA0F69D3C90BB645E389F47s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib2FCAF95A097582A3D7B32C4B700F2B31s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib2FCAF95A097582A3D7B32C4B700F2B31s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibD0FD4D1F77C90F458AD5B63C32845104s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibD0FD4D1F77C90F458AD5B63C32845104s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibEF734E6103A0B82A9670C34322D88CB1s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibEF734E6103A0B82A9670C34322D88CB1s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib2BA39ACE97C48DA1D09803D3CE060EC9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib2BA39ACE97C48DA1D09803D3CE060EC9s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib127F79D97DD5E4F9B9DCFB647C4643B8s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib21B408B562F2841B3F8A94B681701FC3s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib1A6109A7A28A81127F0E92E3CD285146s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib1A6109A7A28A81127F0E92E3CD285146s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibC35339B5FBA68D6E4CB2211633B8EB69s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibC35339B5FBA68D6E4CB2211633B8EB69s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib9E01DF520280FB3A2E04F04AF43FAC27s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bib9E01DF520280FB3A2E04F04AF43FAC27s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibFD5B83072EFDB4E25EAD9AB5FF71FBD0s1
http://refhub.elsevier.com/S2405-8440(23)09173-9/bibFD5B83072EFDB4E25EAD9AB5FF71FBD0s1

	Predicting survival of Iranian COVID-19 patients infected by various variants including omicron from CT Scan images and cli...
	1 Introduction
	2 Materials and method
	2.1 Dataset
	2.2 Workflow
	2.3 Choosing pack of slices for each sample
	2.4 Extracting features for images of lobes
	2.5 Predicting mortality
	2.6 Training model
	2.6.1 The loss function
	2.6.2 Hyperparameters of training

	2.7 Evaluation metrics

	3 Experimental results and discussion
	3.1 Evaluations

	4 Limitations of the study
	5 Conclusion
	Ethical approval
	Abbreviations
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


