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Abstract
Scores on intelligence tests are strongly predictive of various important life outcomes. However, the gender discrepancy on
intelligence quotient (IQ) prediction using brain imaging variables has not been studied. To this aim, we predicted individual
IQ scores for males and females separately using whole-brain functional connectivity (FC). Robust predictions of intellectual
capabilities were achieved across three independent data sets (680 subjects) and two intelligence measurements (IQ and
fluid intelligence) using the same model within each gender. Interestingly, we found that intelligence of males and females
were underpinned by different neurobiological correlates, which are consistent with their respective superiority in
cognitive domains (visuospatial vs verbal ability). In addition, the identified FC patterns are uniquely predictive on IQ and
its sub-domain scores only within the same gender but neither for the opposite gender nor on the IQ-irrelevant measures
such as temperament traits. Moreover, females exhibit significantly higher IQ predictability than males in the discovery
cohort. This findings facilitate our understanding of the biological basis of intelligence by demonstrating that intelligence is
underpinned by a variety of complex neural mechanisms that engage an interacting network of regions—particularly
prefrontal–parietal and basal ganglia—whereas the network pattern differs between genders.
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Introduction

Individual differences in general cognitive ability can be mea-
sured by the intelligence quotient (IQ), which assesses abilities
including planning, reasoning, comprehension, abstraction and
learning (Deary 2013). Compared with fluid intelligence (gF), IQ
is a more generalizable and complex construct, which is also
strongly predictive of various important life outcomes includ-
ing educational achievement, occupational attainment, social
mobility and job performance (Deary et al. 2007).

With the advent of magnetic resonance imaging (MRI),
substantial progress has been made in understanding the neuro-
biological basis of intelligence. The associations between intel-
lectual abilities and neuroimaging measures have been widely
reported in gray matter (Ohtani et al. 2014), white matter (Genc
et al. 2018), cortical thickness (Narr et al. 2007), and functional
connectivity (FC) (Pamplona et al. 2015). Recent work also sug-
gested that, as a complex construct, IQ is underpinned by com-
munications among widespread brain regions (Glascher et al.
2010), including but not limited to the prefrontal and parietal
areas, especially the interactions between dorsal attention,
fronto-parietal, and default model networks (Hearne et al. 2016;
Santarnecchi et al. 2017). A systematic review suggested that
from the perspective of Network Neuroscience Theory, the
general intelligence originates from the system-wide small-
world topology and network dynamic of the human brain,
which can enable more flexibility and adaptation in information
exchange and processing (Barbey 2018). Currently, there are
increasing interests in determining imaging biomarkers that can
be used to predict personalized cognitive or health outcomes
at the level of an individual (Abi-Dargham and Horga 2016).
Particularly, studies have demonstrated that connectome-based
predictive models are predictive of various cognitive abilities
including sustained attention, personality traits, and divergent
thinking (Rosenberg et al. 2016; Yoo et al. 2017; Beaty et al. 2018;
Hsu et al. 2018; Jiang, et al. 2018b), owing to the advantage of
FC in depicting the interactions between different brain regions
(He et al. 2016).

However, only a limited number of studies have attempted
to perform quantitative predictions of intelligence scores at
the individual level. Specifically, Finn et al. (2015) successfully
established the relevance of connectivity profiles to gF by
demonstrating its predictability within a fully cross-validated
machine-learning analysis, providing a critical foundation for
future work to reveal brain–behavior relationships. Besides,
a recent study using a cross-validated predictive framework
also demonstrated that FCs in a distributed brain network
predicted 20% of the variance in general intelligence, which
is constructed by factor analysis of the scores on 10 cognitive
tasks (Dubois et al. 2018). Moreover, another study applied a
similar method to construct a general intelligence factor and
showed that the whole-brain task activation maps can serve
as a highly effective basis for intelligence prediction (Sripada
et al. 2018). Despite such inspiring progress, the field still lacks
more evidence demonstrating the predictability of IQ scores
using brain imaging measures, and more importantly, clarify
on whether the identified intelligence imaging markers can be
generalized to new individuals, since most IQ investigations
either used limited sample sizes (Arbabshirani et al. 2016) or
lack of replication in independent cohorts. By contrast, an
effective prediction model for translational neuroscience should
be generalizable across contexts and populations, as pointed by
a systematical review (Woo et al. 2017). Namely, the trained

models and the identified signatures from discovery cohort
are preferably to be able to 1) generalize to independent new
individuals; 2) generalize across laboratories, scanners and
minor variants in testing conditions; 3) generalize to other
outcomes similar to the same target, which can verify specificity
of the predictor.

Accordingly, Rosenberg et al. (2016) accomplished robust
prediction of individuals’ sustained attention task performance
using connectome-based predictive modeling, and the iden-
tified prediction models successfully generalized to predict
a clinical attention metrics and separable components of
attention measured by distinct cognitive tasks in completely
independent cohorts (Jangraw et al. 2018; Rosenberg et al. 2018).
These studies pave the way for developing reliable, robust and
generalizable neuroimaging biomarkers of cognitive behaviors
that will allow the field to move forward to a translational
neuroscience era. The above points inspired us to identify IQ-
predictive neuroimaging markers and prediction models that
can be generalized across multiple cohorts and contexts with a
larger sample size.

On the other hand, sex discrepancy in general intelligence
has been a socially and scientifically important topic in cognitive
neuroscience because of its prominence in human behavior.
Generally, among all cognitive domains of intelligence, males
have superior motor and visuospatial abilities, whereas females
are supposed to be better at memory and social cognition
skills (Halpern et al. 2007; Gur et al. 2012). Moreover, gender
differences in the neurobiology of intelligence have also been
reported in numerous structural or functional MRI studies
(Deary et al. 2010). For example, Schmithorst and Holland
(2006, 2007) reported that female subjects have a greater
association of intelligence with FC than males, especially
connections linking the bilateral Wernicke’s areas and left
posterior superior temporal gyrus (STG). Narr et al. (2007)
indicated that cortical thickness in frontal regions correlates
more strongly with intelligence in females, whereas temporal–
occipital cortical thickness exhibits a stronger correlation
with intelligence in males. Moreover, males’ intelligence
showed stronger associations with overall white matter volume,
whereas females’ intelligence demonstrated greater local and
global efficiency (Yan et al. 2011; Ryman et al. 2016). In addition,
a structural connectome analysis demonstrated that male
brains exhibited greater within-hemisphere connectivity and
enhanced modularity, while female brains were optimized
for interhemispheric communication (Ingalhalikar et al. 2014).
These findings motivate our further investigation on gender
specificity of the IQ prediction at the individual level.

In the current study, we performed a systematic exploration
to determine the predictability of individual IQ scores and the
gender difference using whole-brain FCs. Figure 1 demonstrates
the analysis flowchart, which encompasses individualized IQ
prediction, identification of IQ-predictive FC patterns, as well
as evaluation of the gender specificity, intelligence specificity,
and generalizability of the identified FC patterns across cohorts.
Specifically, first, a fully cross-validated prediction framework
incorporating multivariate pattern analysis techniques was
applied to a data cohort including 360 college students. Next,
gender-specific IQ-predictive FC patterns were estimated for
both males and females. Results suggest the IQs of females
are more predictable than males when using whole-brain
FC, and the identified FC patterns consist of an interacting
network including both prefrontal–parietal network and basal
ganglia. Furthermore, the identified FC patterns are shown
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Figure 1. Flowchart of our individualized IQ prediction and validation analysis. In this study, we employed a cross-validated prediction framework to estimate

individual’s IQ scores using the whole-brain FC. Gender-specific IQ-predictive FC patterns were discovered for both males and females. Moreover, the gender specificity,
intelligence specificity, and generalizability of the identified FC patterns were investigated across three independent data sets and two intelligence measurements
(IQ and fluid intelligence).

to be uniquely correlated with and predictive on IQ-relevant
metrics (e.g. multiple IQ sub-domain scores) but not the
IQ-irrelevant measures such as temperament traits. Finally
and more importantly, the identified IQ-predictive models
can be generalized to two independent cohorts, the Human
Connectome Project (HCP) data set with 200 subjects, and
the Center of Biomedical Research Excellence (COBRE) cohort
with 120 subjects including both healthy controls (HCs) and
psychotic disorder over a wide age range. Particularly, all
predictions are gender specific, namely, the prediction and
generalization work well within the same gender but not the
opposite gender.

Materials and Methods
Subjects in Three Data Cohorts

The data from the University of Electronic Science and Technol-
ogy of China (UESTC) were used as the discovery data set, while
data from the HCP Q3 release and the COBRE project were used
for validation.

UESTC Data Set
This data set has been used in one of our previous study (Jiang
et al. 2018b). A total of 440 healthy college students covering a

wide range of research areas were recruited from the UESTC.
All participants were Han Chinese. The research protocol was
approved by the Ethics Committee of School of Life Science
and Technology at the UESTC. Participants provided written
informed consent and were paid for their participation. Par-
ticipants had no history of neurologic or psychiatric disorders
and were not taking any medications that could interfere with
their ability to complete a questionnaire or provide MRI data.
Each subject was asked to complete the Chinese version of
Wechsler Adult Intelligence Scale (WAIS-RC) (Dai et al. 1990).
With high test–retest reliability, WAIS is a widely used mea-
surement system that includes several fundamental cognitive
performance subtests contributing to intelligence (Jensen 1998)
including information, comprehension, digit span, similarities,
picture arrangement, block design, and digit symbol. The com-
puted overall score from WAIS, that is Full-Scale IQ, can be
used to represent general intellectual abilities. Participants with
missing imaging data, incomplete psychological assessment, or
excessive head motion (defined as > 3 mm translation or >3

◦

rotation during the run) were excluded. Finally, 360 subjects
(174 F/186 M, mean age 19.4 ± 1.1 years, in range of 17–24 years)
were retained in our study. There is no difference between males
and females in age (P = 0.34, see Supplementary Fig. S1). In this
investigation, Full-Scale IQ scores ranged between 74 and 132
(mean IQ = 108.2 ± 11.4).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
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HCP Data Set
We used the Q3 HCP data release. A total of 236 healthy subjects
were included in this release. After excluding subjects with
either missing functional MRI (fMRI) data or missing intelligence
cognitive scores, 200 subjects (125 females; 22–36 years, mean
age = 29.1 years) were retained. Males and females did not differ
in age (P = 0.08) or education (P = 0.95). HCP participants did not
receive the same intelligence tests as in the UESTC (i.e. WAIS-
RC); instead, a different yet related intelligence metrics gF were
used. The gF is the capacity to reason and solve novel problems,
independent of any knowledge from the past (Jaeggi et al. 2008),
which is highly correlated with IQ (Snow et al. 1984). Correlations
between gF and several cognition abilities and life outcomes
like scholastic achievement, socioeconomic success, and health
inequalities have been widely reported already (Colom and Flo-
res-Mendoza 2007). In the HCP protocol, gF was assessed using a
form of Raven’s progressive matrices (RPM) with 24 items (Bilker
et al. 2012) (scores are integers indicating number of corrected
items). In this study, gF scores ranged from 4 to 24, with mean
score 16.5 ± 4.8.

COBRE Data Set
A total of 120 participants (42 females; 18–65 years, mean
age = 38.0 years) were included for validation analysis, in which 9
were diagnosed with bipolar disorder (BP), 51 with schizophrenia
(SZ) or schizoaffective disorder and 60 HCs. Females and
males are age (P = 0.52) and education (P = 0.61) matched.
Informed consent was obtained from all subjects. Detailed
inclusion/exclusion criteria can be found in Supplementary
File S1. The COBRE subjects received the same intelligence test
as in the UESTC (i.e. WAIS). Specifically, IQ scores ranged from
65 to 134, with mean score of 106.9 ± 15.1.

MRI Data Acquisition

UESTC Data Set
MRI scans were performed on an MR750 3.0 Tesla magnetic
resonance scanner (GE Healthcare). Resting-state functional
imaging data were acquired using a gradient echo, echo-
planar-imaging sequence with the following parameters: time
repetition (TR) = 2000 ms, time echo (TE) = 30 ms, field of view
(FOV) = 240 × 240 mm2, matrix = 64 × 64, flip angle = 90

◦
, voxel

size = 3.75 × 3.75 × 4.0 mm3, 36 slices, and 245 volumes. A
T1-weighted brain volume MRI sequence was subsequently
performed with the following parameters: TR = 8.16 ms,
TE = 3.18 ms, flip angle = 7◦, FOV = 256 mm × 256 mm, voxel
size = 1 × 1 × 1 mm3, and 188 slices. Before scanning, all subjects
were instructed to move as little as possible, keep eyes closed,
think of nothing in particular, and not fall asleep. Subjects were
asked right after the scan whether they had fallen asleep during
the scan.

Resting-state FMRI Data Preprocessing

For UESTC data set, imaging data were preprocessed using Data
Processing Assistant for Resting-State fMRI Advanced Edition
(http://rfmri.org/DPARSF). The first 10 volumes were discarded
to allow for magnetization equilibrium. Subsequent data prepro-
cessing included slice timing correction, head motion correction,
spatial normalization to the Montreal Neurological Institute
(MNI) template, resampling to 2 × 2 × 2 mm3, smoothing using
a 4 mm Gaussian kernel, temporal band-pass filtering (0.01–

Figure 2. The prediction and validation flowchart incorporating feature selection
and regression analysis.

0.08 Hz), and regressing out nuisance signals of head motion
parameters, white matter, CSF, and global signals (Jiang et al.
2018b). Details regarding data acquisition and preprocessing for
HCP and COBRE cohorts can be found in Supplementary File S2.

Whole-brain FC Extraction

For all three data sets, the preprocessed functional MRI
data were parcellated using Brainnetome Atlas (Fan et al.
2016) (https://www.nitrc.org/projects/bn_atlas), resulting in 246
regions of interests (ROIs) that can serve as 210 cortical and
36 subcortical nodes for calculating fine FCs (Jiang et al. 2017).
Time series within each node was obtained for each individual
by averaging fMRI time series over all voxels in each of the 246
ROIs. Then, Pearson correlations of time courses between each
node pair were calculated and were normalized to Z scores using
Fisher transformation, resulting in a 246 × 246 symmetric FC
matrix for each subject. After removing 246 diagonal elements,
we extracted the upper triangle elements of the FC matrix as
the features for prediction, namely, each subject has a FC vector
in the dimension of (246 × 245)/2 = 30 135.

Individualized Prediction

A prediction framework integrating feature selection and sparse
regression was adopted to predict the IQ scores. For neuroimag-
ing data with feature dimension considerably overwhelming
the sample size, feature selection is necessary to reduce the
redundancy, simplify the fitted model, and enhance general-
ization (Bermingham et al. 2015). As shown in Figure 2, we
employed a nested 10-fold and leave-one-out cross-validation
(LOOCV) strategy. Details can be found in Supplementary File S3.
Specifically, in each outer loop of the LOOCV, one subject was left

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
http://rfmri.org/DPARSF
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://www.nitrc.org/projects/bn_atlas
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
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out as testing subject, and the remaining N-1 subjects were used
as the training set, in which a 10-fold least absolute shrinkage
and selection operator (LASSO) regression was run to build the
model, where N is the number of subjects (Cui et al. 2016). The
details are shown below:

Inner Training Loop
(i) Feature selection: With the ReliefF algorithm (Rob-

nik-Sikonja and Kononenko 1997), every training feature
was assigned with a weight statistically accounts for its
relevance to the predicted measure, that is the IQ. By
determining top m weighted features, we can exclude
redundant features effectively. Notably, the determination
of m follows existing studies (Dosenbach et al. 2010;
Greene et al. 2018; Jiang, et al. 2018a; Liu et al. 2018). Sup-
plementary File S3 provides details on the determination
of m and other parameters related to ReliefF.

(ii) Regression model building: The specific IQ scores were
estimated with the selected FCs by regression techniques
with 10-fold cross-validation in training data set, resulting
in a regression model. To compare the prediction perfor-
mance of different regression algorithms, a total of four
popular linear regression models were used here (Supple-
mentary File S3). Furthermore, to evaluate the effective-
ness of feature selection, prediction procedures without
ReliefF were also tested for all four regression models,
where the whole-brain FCs were used as predictors (Sup-
plementary File S3).

Outer Predicting Loop
The one left out subject was then input into the regression
model derived with inner training data, generating a predicted
IQ score. This loop was repeated N times to test through all
subjects. Each time, the predicted IQ score for the left-out sub-
ject, the identified FCs, and their corresponding weights in the
regression model were obtained. By pulling together all testing
subjects across N loops, we obtained the predicted IQ scores
for all subjects. Pearson’s correlations between the predicted
and true IQ scores were used to assess predictive power. More-
over, the root mean square error (RMSE) and normalized RMSE
(NRMSE) were also calculated (Meng et al. 2017). In order to
confirm the specificity of the predictive models and control for
potential confounds, the partial correction between predicted
and true IQ scores after ruling out age and mean frame-to-frame
displacement was calculated (Cui et al. 2017; Jiang et al. 2018).

Selecting IQ-predictive Consensus FCs

Since we applied a cross-validation strategy to estimate the IQ
scores, in each iteration slightly different FCs were selected.
For better interpretation and visualization, we grouped the 246
FC nodes into 24 relatively larger brain regions anatomically
defined by the Brainnetome atlas (Fan et al. 2016; Rosenberg et al.
2016) and estimated the contributing power of all FCs connecting
among these macroscale regions by averaging the regression
coefficients of all loops. To circumvent the influence of dispro-
portion of nodes incorporated in different macroscale regions,
mean contributing weights were calculated by averaging the
total weights of the selected FCs connecting each pair of this
macroscale regions. The fundamental features that are com-
mon across two gender groups were defined as the shared FCs
connecting the same pair of macroscale regions among the

top 100 weighted FCs from males and females, respectively. By
selecting the FCs that were repeatedly identified by all loops (i.e.
with a 100% occurrence rate), we obtained the “consensus FCs”
(Dosenbach et al. 2010; Liu et al. 2018).

Intelligence Specificity of the Consensus FCs

The intelligence-specificity of the identified consensus FCs for
each gender was tested by calculating correlations between the
consensus FCs and IQ, six intellectual sub-domain, and three
temperament traits [harm avoidance (HA), novelty seeking (NS),
and reward dependence (RD)] scores (Cloninger et al. 1993), both
in the same and the opposite gender group of UESTC. In the
traditional view of psychology, there is no meaningful relation-
ship between temperament and intelligence (Zeidner 1995). If
the consensus FCs are intelligence specific, then they should
show higher correlations with intellectual metrics instead of the
temperament traits.

Predictability and Gender Specificity of the
Consensus FCs

Note that Figure 3 was unbiased prediction results that include
about 100–150 FCs in each of the cross-validations. We further
evaluated the predictability and gender specificity of the
selected much less “consensus FCs” (accounting for<0.05% of
the whole-brain 30 135 FCs) on the above mentioned 10 behav-
ioral metrics. If these consensus FCs can achieve acceptable
accuracy on prediction for intelligence-relevant metrics within
discovery cohort, then we are able to use them to perform
external validations. Specifically, multiple linear regression
with rigorous 10-fold cross-validation was performed, in which
8 male-specific or 13 female-specific consensus FCs were used
as regressors to predict each of the 10 behavioral metrics in
either same gender or opposite gender group. The process was
repeated 100 times with subjects randomly shuffled for each
metric, and the predictive performance was measured by the
mean of the 100 correlations. As hypothesized, if the consensus
FCs are gender specific and IQ predictive, then the female-
specific FC patterns should be only able to predict intelligence
metrics for females instead of males rather than temperament
traits in both gender. For males, it is vice versa.

Validation in External Data Sets

We further tested the predictive potential of the IQ-predictive
models by conducting external validations in two independent
cohorts. In discovery data set, by fitting the IQ scores with
the corresponding consensus FCs using multiple linear regres-
sion, we can acquire the female-specific and male-specific IQ-
predictive models. It is worth noting that predicting with con-
sensus FCs within the discovery data set may cause certain bias
due to the fact that features adopted here were derived from
the prediction process that incorporated all subjects. The reason
for this test here is to ensure that the consensus FCs have the
comparable IQ-predictive power and are gender specific, while
their reproducibility and generalizability were solely validated
in two external data sets as below.

To test the generalizability, we extracted the same FCs as
selected in IQ-predictive models from HCP or COBRE subjects
through Brainnetome atlas, which were then directly fed into
the above IQ-predictive models. Additionally, we calculated the
partial correlations between the predicted and observed IQ

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
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Figure 3. Scatter plot of the predicted IQ scores with respect to their true values for males, females, and all subjects. Based on the prediction framework using whole-
brain FC, results revealed significant correlations of r = 0.72 (P = 3.15 × 10−29), r = 0.46 (P = 3.10 × 10−12), and r = 0.51 (P = 1.11 × 10−25) between the predicted IQ scores
and true values for females (a), males (b), and all subjects (c).

Figure 4. Mean weights distribution of whole-brain FCs and the shared FCs across gender groups. (a) The mean contributing weights of whole-brain FCs for males and

females were calculated by averaging the total beta weights in all regression models of the selected FCs. As shown in the matrix plot, the 246 FC nodes are grouped
into 24 macroscale brain regions that are anatomically defined by the Brainnetome atlas; Matrix plots: rows and columns represent predefined macroscale regions,
and bigger circles represent higher predictive weight. (b) The shared FCs that connect the same pair of macroscale regions among top 100 weighted FCs for females
(red line) and males (blue line). Black ones indicate FCs connecting exactly the same pair nodes. As shown in the circle plots, the 246 FC nodes (inner circle) are also

grouped into 24 macroscale brain regions (outer brain representations), and nodes incorporated in each of 24 macroscale brain areas are plotted with different colors,
which delineate their corresponding anatomy locations in the outer brain representations.

scores by adopting age and mean frame-to-frame motion as
control measurements (Hsu et al. 2018).

Results
IQ Prediction in Discovery Data Set

The achieved Pearson correlations between true and pre-
dicted IQs were r = 0.72 for females (Figure 3a: P = 3.15 × 10−29,
RMSE = 7.9, NRMSE = 0.07), r = 0.46 for males (Figure 3b: P = 3.10 ×
10−12, RMSE = 9.7, NRMSE = 0.09), and r = 0.51 for all subjects
(Figure 3c: P = 1.11 × 10−25, RMSE = 9.6, NRMSE = 0.09). Notably,
as demonstrated in most prediction studies using multivariate
regression methods (Rosenberg et al. 2016; Siegel et al. 2016;
Greene et al. 2018; Yip et al. 2019), the predicted range was
narrower than the observed range; therefore, the model may
be most successful at generating predictions of IQ level
relative to other subjects (Finn et al. 2015). A Steiger’s z-test
for testing differences between two independent correlations
(Steiger 1980; Fong et al. 2018) revealed that the prediction
performance of IQs for females was significantly higher
than that for males (z = 3.86, P = 0.0001). Predictions remain
significant even after controlling for age and mean frame-wise
head motion (see Supplementary Table S1). Further analysis
demonstrated that the difference in predictability was a
reflection of actual gender difference, which was not influenced

by data divisions (see Supplementary Fig. S2). Additionally, for
robustness, we compared the effectiveness of feature selection,
different feature numbers, and four regression models (see
Supplementary Table S2 and Fig. S3). Note that female IQ was
always more predictable than males regardless of the feature
number used and the types of feature selection in all four
regression models (see Supplementary Table S2).

IQ-Predictive FC Patterns

Figure 4a demonstrated the mean contributing weights of
whole-brain FC in the prediction of IQ scores, with bigger dots
representing higher predictive power. Specifically, for females,
FC connected regions that show more contributing power pre-
dominantly concentrated on superior frontal gyrus [SFG, Brod-
mann area (BA) 6, 9, 10], precuneus (BA 7), fusiform gyrus (FuG,
BA 37), parahippocampal gyrus (BA 35/36), and superior and
inferior parietal lobule (BA 7, 39, 40). While for males, FC related
regions including middle and inferior temporal gyrus (ITG, BA 20,
21, 37), STG (BA 22, 38), amygdala, basal ganglia, thalamus, and
precuneus exhibited more predictive power. Moreover, a further
analysis indicated that the direction of these identified feature
weights also relates to the true direction of the correlations
between FCs and IQ scores (see Supplementary Fig. S4).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
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Figure 5. Specificity and predictability of the consensus FC patterns. When summarizing the FC occurrence in all cross-validations, 8 FCs were repeatedly identified
for males (a) and 13 for females (b), with a 100% identification rate, and we defined them as the consensus FCs. (c) Correlations between the consensus FCs and
IQ, six intellectual sub-domains and three temperament traits scores, both in the same and the opposite gender group (significant correlations with P < 0.05 were
marked with ∗). (d) Prediction results for 10 behavior metrics (7 intelligence and 3 temperament) scores were solely based on the consensus FCs from the same or

opposite gender group for male and female subjects, respectively. Here we ran multiple linear regression with 10-fold cross-validation, in which 8 male-specific or 13
female-specific consensus FCs were used as regressors to predict each of the 10 behavioral metrics. The process was performed with 100 bootstrapping repetitions
with subjects randomly shuffled for each of the 10 behavior metrics. Prediction performance for females with the corresponding consensus FCs are visualized in red

and males in blue, while prediction results for females with consensus FCs from the opposite gender are visualized in light red and males in light blue.

Furthermore, to compare between two gender groups, we
demonstrated the shared FCs that connect the same pair of
macroscale regions among top 100 weighted FCs for females
(red line) and males (blue line) among all 30 135 FCs in Figure 4b.
Specifically, three gender-common FCs connecting exactly the
same nodes pairs (black line) were identified, including FCs
between right inferior frontal junction and right caudolateral
ITG, right lateroventral ITG, and left rostral temporal thalamus
and between left dorsolateral SFG and right ventral caudate.
The shared FC-related regions prominently encompassed the
prefrontal–parietal regions, ITG, and STG, which were implicated
in the parieto-frontal integration theory (P-FIT) inference (Jung
and Haier 2007) on human intelligence.

The Identified Consensus FCs

When summarizing the FC occurrence in all cross-validations,
8 FCs were repeatedly identified as consensus FCs for males
(Figure 5a) and 13 for females (Figure 5b), with a 100% identifi-
cation rate, which accounted for less than 0.05% of the whole-
brain’s 30 135 FCs and are key features for the following valida-
tion on IQ predictability and gender specificity. Detailed neu-
roanatomy information of the consensus FCs and their corre-
lations with IQ scores can be found in Supplementary Table S3.

Intelligence Specificity of the Consensus FCs

As shown in Figure 5c, most of the correlations between each of
the consensus FCs and seven intelligence-relevant (IQ and six
sub-domains) scores were significant within same gender (red
block and blue block) but not significant for three temperament
trait scores. More interestingly, few significant correlations were
observed between any of the 10 behavioral metrics (7 intelli-
gence and 3 temperaments) and consensus FCs derived from
the opposite gender. Particularly, all 8 male-specific consensus
FCs were significantly correlated with IQ scores [P < 0.05, false
discovery rate (FDR) corrected for multiple comparisons], and
12 out of 13 female-specific consensus FCs show significant
correlations with IQ scores (P < 0.05, FDR corrected).

Gender Specificity of the Consensus FCs

Figure 5d demonstrates the mean prediction accuracies for
seven intelligence-relevant metrics and three temperament
traits in four combinations of gender prediction. Specifically,
significant correlations of r = 0.57 ± 0.009 (p < 10−16, RMSE =
9.06 ± 0.07) and r = 0.71 ± 0.01 (p < 10−27, RMSE = 8.02 ± 0.09)
were revealed for males and females between the predicted
and observed IQ scores. Regarding the six intelligence sub-
domains, only the digit symbol was not significantly predicted

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
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Figure 6. Generalization of the consensus FCs-based predictive models to external data sets. (a) By fitting IQ scores with the corresponding consensus FCs using

multiple linear regression in all UESTC male or female subjects, we acquired the male-specific and female-specific IQ-predictive models. The same consensus FCs
were extracted from two validation cohorts through Brainnetome atlas and then fed into the models directly to predict (b) the fluid intelligence (gF) for 200 HCP and
(c) IQ scores of 120 COBRE subjects. Values in the x-axis and y-axis were normalized for visualization.

by consensus FCs in females (r = 0.08 ± 0.03, P > 0.1). As
expected, in both gender groups, no significant correlations
were achieved for three temperament traits prediction. In
addition, there were no significant prediction results in males
when predicting any of the 10 behavior metrics with female-
specific consensus FCs and neither in females similarly (see
Supplementary Table S4). Moreover, similar to the prediction
results using whole-brain FCs, females achieved significantly
higher accuracies than males for almost all seven metrics
(P < 0.001; see Supplementary Table S4).

IQ Predictability in External Data Sets

By fitting IQ scores with 8 male-specific or 13 female-specific
consensus FCs using multiple linear regression for 186 males
and 174 females, we acquired the male-specific and female-
specific IQ-predictive models in UESTC cohort. Pearson’s cor-
relations of r = 0.63 (P = 1.56 × 10−21) and r = 0.77 (P = 1.02 × 10−34)
were achieved for males and females, respectively, which rep-
resent the goodness of fit of the gender-specific IQ-predictive
models in the UESTC data set (Fig. 6a). Similarly, female IQ was
more predictable that male IQ under Steiger’s z-test (z = 2.62,
P = 0.009).

A correlation of r(73) = 0.253 (P = 0.02) was achieved when
applying the predictive model trained in UESTC males to
predict the gF scores for 75 HCP males. Similarly, female-
specific predictive model achieved a significant correlation of
r(123) = 0.29 (P = 0.001) for 125 HCP female participants (Fig. 6b).
As an even stronger test of generalizability in COBRE data set,
which includes subjects with SZ, BP, and HC in a wide range
of age (18–65 years), significant correlations were obtained
between the predicted and observed IQ scores in 42 females
[r(40) = 0.40, P = 0.008; 22 HC, 5 BP, and 15 SZ] and 78 males

[r(76) = 0.23, P = 0.04; 38 HC, 4 BP, and 36 SZ; Fig. 6c]. Predictions
remain significant after adjusting for age and mean frame-to-
frame head motion, ruling out these potential confounds (see
Supplementary Table S1). However, the difference in prediction
performance from males and females did not reach significance
in both validation cohorts (HCP: Steiger’s z = 0.29, P = 0.39; COBRE:
z = 0.96, P = 0.169). Interestingly, results were not significant
when applying the male-specific or female-specific model
to subjects in the opposite gender group for both external
validation data sets.

Discussion
An ultimate goal of the use of imaging biomarkers is to perform
individualized prediction of educational or health outcomes
for new individuals (Gabrieli et al. 2015), as well as to facil-
itate our understanding of the neurobiological basis of clini-
cal behaviors. In this work, we carefully investigate the gen-
der difference and generalizability of predicting individualized
IQ and sub-domain scores using whole-brain FC. Results indi-
cated a higher predictability for females (Figure 3, 5d, 6, and
Supplementary Table S4) than males, and the gender-specific
IQ-predictive models were successfully generalized to two inde-
pendent data sets, providing evidence for meaningful gender-
related heterogeneity in the neurobiology of intelligence.

Summary of Findings

Interestingly, our results initially showed significant gender het-
erogeneity on IQ predictability, not only on the prediction accu-
racy (Fig. 3, females: 0.72 vs. males: 0.46) but also on the iden-
tified FC patterns (Fig. 4a). First, based on the prediction frame-
work, we identified several consensus FC patterns (8 for males

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz134#supplementary-data
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and 13 for females; Fig. 5a and b), which show higher corre-
lations with intellectual metrics instead of the temperament
traits. Second, using the identified consensus FCs, we success-
fully predicted the IQ and its six sub-domain scores, achiev-
ing high prediction precision for both gender groups, whereas
we found no significant results for three intelligence-irrelevant
temperament traits. Prediction correlations were comparable
with results derived from the whole-brain FCs, suggesting that
individual intelligence scores can be predicted solely based on
these predictive features. These results suggest that consensus
FCs derived from each gender group have great specificity and
strong predictability for intellectual abilities. Additionally, pre-
dictive models based on these consensus patterns also demon-
strated great gender specificity. The female-specific FC patterns
were unable to predict any of the intelligence metrics or temper-
ament traits for males well and vice versa. Moreover, specificity
of the gender-specific predictive models was also revealed in
the validation data set. The female-specific linear model fit to
the UESTC data with consensus FCs can be directly applied
to predict IQ scores for female subjects in the validation data
sets, and the same is true for males. However, we were unable
to predict intellectual performance by applying the female- or
male-specific models to subjects in the opposite gender group.

Moreover, aiming to identify imaging biomarkers that could
guide clinical practice, we tested the IQ-predictive models on
their performance to predict outcomes for new individuals and
in multiple cohorts. Since the most useful imaging signatures
should generalize meaningfully to other outcomes related to the
same construct (Woo et al. 2017; Jiang et al. 2018b), in line with
this, our current models were developed in a rigorous cross-
validation framework, which not only estimated the IQ and its
sub-domain scores with a relative high prediction accuracy but
also can be generalized to predict multiple intellectual metrics
(IQ and gF) successfully across two completely independent
data sets (one even include psychotic disorders), suggesting the
identified FC patterns are powerful and reliable predictors of
intelligence capabilities. Note that IQ (measured by WAIS) and
gF [measured by RPM (Bilker et al. 2012)] are two similar but
not identical intelligence measurement systems; therefore, the
cross-cohort generalization is a powerful evidence to validate
the predictability of intellectual performance using the identi-
fied connectivity patterns and model (Woo et al. 2017).

Gender Specificity

One most interesting finding is that the identified FC patterns
are gender specific and females show more IQ-predictability
than males no matter using whole-brain FC features or solely
based on consensus FCs. This may be due to different mecha-
nisms underlying the neurobiology of intelligence (Deary et al.
2010). As displayed in Figure 4, for female subjects, the predictive
FC nodes prominently concentrated on fundamental P-FIT indi-
cated regions like frontal-parietal networks. However, for males,
lingual gyrus and some subcortical areas including amygdala,
basal ganglia, and thalamus, beyond those identified in P-FIT
(Jung and Haier 2007), were highlighted with more contribut-
ing power; while these regions play important roles in a vari-
ety of functions including procedural learning, routine behav-
iors, motivation, reinforcement, decision-making, and working
memory. Furthermore, a meta-analysis (Hill et al. 2014) found
that although men and women commonly used the same brain
networks for working memory, men tended to have a distributed
gender-specific networks spread out among the cerebellum,

portions of the superior parietal lobe, and bilateral thalamus.
Of note, functional neuroimaging studies have demonstrated
a greater correlation between FC and intelligence in females
(Schmithorst and Holland 2006, 2007), and such dependence
showed an increasing trend in development with age, while
the opposite trend was shown in males (Schmithorst 2009).
Consequently, the low predictability for males can be partly
attributed to a more complex substrate involving more dis-
tributed networks in the processing of intelligence leading to a
weak correlation between their intelligence and FC.

Moreover, difference in the identified functional connections
for males and females may correspond well to their respective
superiority in cognitive domains. It has long been recognized
that females commonly perform better than males in tasks of
verbal abilities and item memory, while males perform bet-
ter than females in visuospatial processing and mathematical
tasks (Bell et al. 2006; Lejbak et al. 2011). For females, the FuG-
related functional patterns demonstrated the most predictive
power. The FuG, especially the so-called “visual word form area”
(VWFA), has been hypothesized to get involved in the lexical
processes that bridge the gap between linguistic visual input
and speech representations. The VWFA is largely implicated in
identifying words and letters from lower-level shape images,
prior to association with phonology or semantics, and partici-
pating in higher-level processing of word meaning (Dehaene and
Cohen 2011). In addition, lesions to the VWFA are associated
with impairments in oral reading and oral-naming tasks, as
well as reading disorders like the dyslexia (Hillis et al. 2005).
For males, FC connected regions consisting of basal ganglia and
thalamus were highlighted with more contributing power in the
prediction of IQ scores. The caudate nucleus, a main component
of the basal ganglia, was supposed to participate in the spa-
tial mnemonic processing (Postle and D’Esposito 2003), which
was responsible for the recording of information about one’s
environment and spatial orientation. Activity in the caudate
nucleus was demonstrated to be greater during tasks featuring
spatial and motoric memory demands than those that involved
non-spatial tasks (Postle and D’Esposito 1999). Additionally, the
basal ganglia (especially the caudate nucleus) has also been
reported to play a crucial role in the procedural memory, a core
component underlying mathematical abilities (Ullman 2004).
Existing studies suggested that abnormalities of brain structures
subserving the procedural memory system like basal ganglia
could lead to difficulties with math skills (Evans and Ullman
2016). Overall, these results may suggest that males and females
commonly take advantage of their most efficient cognitive pro-
cess in problem solving.

The Parieto-Frontal Integration Theory (P-FIT) and the
Identified FC Patterns

Putatively, intelligence is postulated to be underpinned by a
distributed network that integrates verbal, visuospatial, atten-
tion, working memory, and executive processes, rather than
single units (Glascher et al. 2010). One comprehensive synthesis
of neuroimaging research on intelligence is the P-FIT, which
highlights the significance of an interacting network of brain
regions including the prefrontal cortex, parietal cortex, cingulate
cortex, and some temporal and occipital regions (Jung and Haier
2007). In our study, multiple brain areas, including basal ganglia,
SPL, IPL, STG, ITG, and prefrontal areas were identified as fun-
damental features with high predictive power, most of which
conform to the P-FIT model and correspond to core hubs of
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default mode network (DMN), executive control network (ECN),
and subcortical network.

The P-FIT has received support from multiple brain lesion
studies and analyses of HCs’ cognitive data across different
neuroimaging modalities (Song et al. 2008; Deary et al. 2010;
Glascher et al. 2010; Vakhtin et al. 2014). Moreover, recent work
has suggested that, as a complex construct, IQ is underpinned by
communication among widespread brain regions, including but
not limited to P-FIT areas (Hearne et al. 2016), which conforms
with our identified FC patterns. For example, a recent fMRI
study reported that high figural creativity, a type of high cog-
nitive functions, was characterized by strong top-down effects
between ECN, attention, and memory retrieval networks and
weak bottom-up processing between the DMN, subcortical, and
primary sensory networks (Kenett et al. 2018; Liu et al. 2018).

Additionally, basal ganglia was revealed in our study as a key
FC nodes on IQ prediction, especially caudate nucleus, which
is recognized as crucial for learning, particularly when rein-
forcing or punishing feedback is received contingent on the
individual’s choice and actions (Tricomi et al. 2006). As known,
the ability to learn efficiently is central to most definitions
of intelligence. Furthermore, existing studies pointed that the
caudate has both afferent and efferent connections to the pre-
frontal and anterior cingulate cortices, and the dopaminergic
tone in these regions is crucial for working memory, which is
one of the most important cognitive processes contributing to
intelligence (Voorn et al. 2004). Consistent with our findings,
Grazioplene et al. (2015) found a positive association between
gray matter volume of the bilateral caudate nuclei and intel-
ligence, in three large independent, nonclinical adult samples
and linked greater caudate volume to better attentional func-
tion, verbal ability, and dopamine receptor availability. Another
intelligence study assessed white matter neuroanatomical con-
nectivity found that intelligence showed a significant positive
correlation with fractional anisotropy predominantly in the cor-
pus callosum, supporting the idea that efficient information
transfer between hemispheres is crucial for higher intellectual
capabilities (Navas-Sanchez et al. 2014). Therefore, intelligence
is likely to recruit a variety of complex neural mechanisms that
engage the whole brain, with emphasis on P-FIT regions (Hearne
et al. 2016) but unlike certain cognition processes localized to
specific brain regions (Hearne et al. 2016).

Limitations and Future Directions

Some limitations should be considered when interpreting the
results. First, despite a high prediction accuracy in discovery
data set, the prediction performance in external validation
cohorts was relatively low even before being corrected for
multiple comparisons, and difference in prediction accuracy
between males and females did not reach significance under
Steiger’s z-test in validation cohorts. This can be probably due
to the great heterogeneity of participant populations between
discovery and validation cohorts. In our discovery sample,
all participants were young, healthy college students with a
limited age range (19 to 24 years) for whom higher intellectual
capacity than average were likely achieved, given that the
developmental effect of age on assessments of intelligence have
been widely reported (Cockburn and Smith 1991; Vakhtin et al.
2014). However, participants in HCP (22 to 36 years) and COBRE
(18 to 65 years) were much older than those in UESTC and in
a relatively lower education level. Apart from HCs, the COBRE
cohort also included patients with SZ and BP, which may influ-

ence the sample homogeneity significantly. Moreover, difference
in the measurement of intelligence between discovery and
validation cohorts can also be a potential reason (IQ vs. gF), given
than compared with gF, IQ is a more generalizable and complex
construct. Further studies can include more heterogeneous
subjects in both discovery and validation cohorts, which could
expand the range of observed behavioral performance and add
statistical power to the analysis. Second, the cingulate cortex,
an ROI implicated in P-FIT findings were absent in our study,
which may due to the heterogeneity in our samples who are
healthy college students, with a narrower age range compared
with other adult neuroimaging studies on intelligence. Finally,
the current study was performed using whole-brain FCs from
resting-state fMRI, but whether our conclusion holds up using
brain connectivity from other cognitive tasks entails being
further examined, since a recent study predicting the cognitive
behaviors using both resting and task-evoked FC demonstrated
that task-induced brain state manipulation improves prediction
of individual traits and the task generated the best prediction
varies by sex (Greene et al. 2018). For future work, other types
of neuroimaging features (structural volume, diffusion weighted
imaging, and dynamic FC) can also be employed for prediction of
human behavioral measures either separately or in the context
of multimodal fusion (Sui et al. 2014; Du et al. 2017; Qi et al. 2018;
Sui et al. 2018).

Conclusions
In summary, the current study accomplished robust prediction
of IQ scores across multiple cohorts and investigated gender
difference for healthy subjects in a relatively large sample using
brain FC. The prediction models generalize across three com-
pletely independent data sets and two measures of intellec-
tual performance, suggesting that patterns of intrinsic FC could
serve as powerful and robust predictors of human intelligence
abilities. Interestingly, we found that intelligence of males and
females were underpinned by different neurobiological corre-
lates, which are consistent with their respective superiority in
cognitive domains (visuospatial vs. verbal ability). Additionally,
the identified FC patterns are only uniquely predictive to mul-
tiple IQ-relevant metrics scores of the same gender but are not
predictive to the opposite gender nor to the temperament traits.
This study facilitates our understanding of the biological basis of
intelligence by demonstrating that intelligence is underpinned
by a variety of complex neural mechanisms that engage numer-
ous brain regions, particularly including those identified by P-
FIT and basal ganglia, which however show remarkable gender
difference.
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