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'e brain functional connectivity classification based on deep learning is a research hotspot nowadays. However, the classification
performance is far behind the demand of clinical applications. To alleviate the problem, this paper proposes a multiview deep
learning method for brain functional connectivity classification. Firstly, the proposed method adopts multiple brain atlases to
identify brain regions and thereby builds different brain functional connectivity of different views. Secondly, it uses a multiview
feature selection strategy to select out the most discriminative features of each view with the assistance of other views. 'en, it
trains a stacked autoencoder to extract deep features of the brain functional connectivity of each view. At last, it utilizes a
multiview fusion strategy to take full advantage of complementary information of different views for brain functional connectivity
classification. 'e proposed method has been compared with several deep learning-based brain functional connectivity clas-
sification methods on three public datasets of neuropsychiatric disorders. 'e experimental results have validated the superior
performance of the proposed method.

1. Introduction

'e human brain is an extremely complex system that ac-
complishes specific tasks through cooperation between brain
regions.'e cooperation between different brain regions can
be represented as the brain functional connectivity (BFC)
that is usually obtained by analyzing quantitatively the
resting-state functional magnetic resonance imaging (rs-
fMRI) data. Previous research indicates that many neuro-
psychiatric disorders are closely related to the abnormal
changes of BFC of the patients [1, 2]. 'erefore, research on
brain functional connectivity classification (BFCC) has great
practical significance as it is helpful to diagnose neuro-
psychiatric disorders and reveal the pathogenic mechanism
of neuropsychiatric disorders.

'e existing BFCC methods are mainly divided into two
categories—the traditional machine learning-based method
and the deep learning-based method. 'e former uses
shallow models to analyze BFC, such as support vector
machine (SVM) [2, 3] and least absolute shrinkage and

selection operator (LASSO) [4]. Although this method has
good performance, it remains to be promoted due to in-
sufficient feature extraction ability caused by its shallow
structure. 'e latter is able to extract BFC features from low
levels to high levels, which endows it with stronger feature
extraction ability. Stacked autoencoders (SAE) [5, 6] and
convolutional neural network (CNN) [7, 8] have become
two most popular deep learning modes for BFCC due to
their good performance on BFCC. However, facing the BFC
data with the high dimension and small sample character-
istics, the deep learning-based method still has much room
for improvement.

Multiview learning is aimed at studying how to make use
of multiview data to build more effective learning models.
Due to its effectiveness and universality, multiview learning
has received increasing attention in the field of machine
learning and data mining. It also has been applied into BFCC
of neuropsychiatric disorders. 'e existing methods usually
regard one BFC datum obtained by one brain Atlas as a
single-view datum and use different BFC data obtained by
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different brain atlases to classify neuropsychiatric disorders.
For example, Liu et al. [9] extracted multiview feature
representations for subjects using multiple brain atlases and
performed Alzheimer’s disease (AD)/mild cognitive im-
pairment (MCI) classification by SVM. Huang et al. [10]
proposed a novel multitemplate ensemble classification
framework for autism spectrum disorder (ASD) diagnosis.
'is framework can automatically allot optimal weight for
each template and uses an ensemble classification strategy to
get the classification results. Huang et al. [11] also presented
a framework to enhance the representation of functional
connectivity network by fusing the common and comple-
mentary information conveyed in multiple functional
connectivity networks. 'is framework makes use of a
multikernel SVM to linearly fuse the selected features from
each network for ASD diagnosis. 'ese methods have
proved that multiview learning is helpful for improving the
performance of BFCC, but they all adopt the traditional
machine learning methods.

As the feature extraction ability of deep learning
methods is stronger than that of traditional machine
learning methods, the performance of BFCC for neuro-
psychiatric disorders is expected to be further improved if
multiview learning is introduced into deep learning-based
methods.

'us, this paper proposes a multiview deep learning
method for BFCC (called as MVDL-BFCC). Firstly, the
proposed method employs different brain atlases to identify
brain regions and constructs different BFCs from multiple
views. Secondly, it uses a multiview feature section strategy
to pick out the most discriminating BFC features for each
view with the help of the information conveyed in other
views. 'en, it trains a SAE to extract deep features of BFC
for each view. At last, it uses a multiview feature fusion
strategy to merge the deep features of all views. 'e inno-
vation of the proposed method is that a multiview feature
selection strategy and a multiview feature fusion strategy are
introduced into deep learning for BFCC. 'e two new
strategies can comprehensively utilize the complementary
information of different views to further improve the per-
formance of deep learning-based method for BFCC. 'e
experimental results have validated the effectiveness of the
two new strategies and the superior performance of the
proposed method.

2. Related Work

BFCC is a kind of computational technology to determine
whether subjects have mental disorders by analyzing BFC. In
Reference [2], the first method of this kind was proposed.
'e proposed method used recursive feature elimination
(RFE) to select discriminating features and employed a SVM
model to distinguish healthy controls from clinically de-
pressed patients. Since then, SVM is widely applied into
BFCC. In Reference [3], Khazaee et al. used the graph theory
to extract features from BFC and trained a SVM model to
classify three groups—healthy controls, MCI, and AD.Wang
et al. [12] utilized SVM to distinguish healthy controls from
adolescent schizophrenia. Bi et al. [13] pointed out that a

single SVM was vulnerable to the kernel function and the
penalty coefficient and presented multiple SVMs to classify
ASD patients and healthy controls. Besides, LASSO is an-
other popular traditional machine learning method for
BFCC. For example, Meszlényi et al. [4] employed dynamic
time warping distance to characterize BFC and used LASSO
to realize the classification task. In Reference [14], Watanabe
et al. proposed a regularization framework where the spatial
structure of BFC was explicitly taken into account. 'e
proposed framework used LASSO to perform sparse con-
straints and utilized SVM to accomplish the classification
task. 'e above methods fully demonstrate that the com-
putational methods based on machine learning are able to
realize BFCC. However, their classification performance has
much room for improvement due to the fact that they are
shallow models based on traditional machine learning and
cannot extract deep features.

In recent years, deep learning has become one of the
research focuses in the field of BFCC. In Reference [5], Kim
et al. adopted the deep neural network (DNN) for BFCC of
schizophrenia patients and healthy controls. 'e proposed
method initialized the weights of each hidden layer by SAE-
based pretraining and used an adaptive learning algorithm
to explicitly control the weight sparsity of each hidden layer
via L1 regularization. Li et al. [6] developed a deep transfer
learning neural network (DTL-NN) framework for BFCC.
'e proposed framework firstly trained a stacked sparse
autoencoder (SSAE) prototype to learn healthy BFC in an
offline learning environment. 'en, it transferred the SSAE
prototype to a DTL-NN model for a new classification task.
In Reference [15], a stacked denoising autoencoder (SDAE)
with two hidden layers was trained to extract deep features
for identifying ASD patients.'e proposed method achieved
70% accuracy in identification of ASD versus healthy con-
trols on the ABIDE dataset. In Reference [16], a SAE was
built to distinguish normal aging from MCI, which attained
a greater improvement of the prediction accuracy.

CNN is another popular deep learning model for BFCC.
Parisot et al. [17] exploited a graph convolutional network
(GCN) framework for BFCC. 'is framework represents
each subject as a sparse graph, where its nodes are associated
with imaging-based feature vectors, while phenotypic in-
formation is integrated as edge weights. Meszlényi et al. [7]
built a CNN architecture for BFCC called connectome-
convolutional neural network (CCNN). 'is model can
combine information from diverse functional connectivity
metrics. Kawahara et al. [8] proposed BrainNetCNN that is a
CNN framework to predict clinical neurodevelopmental
outcomes from brain networks. BrainNetCNN includes
novel edge-to-edge, edge-to-node, and node-to-graph
convolutional filters that leverage the topological locality of
brain networks. Brown et al. [18] further expanded the
BrainNetCNN framework by introducing data-dependent
anatomically informed prior regularization terms. Ji et al.
[19] developed a new convolutional neural network with
element-wise filters (CNN-EW) for BFCC. 'e proposed
method gives a unique weight to each edge of brain network
which may reflect the topological structure information
more realistically.
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Based on the above introduction, it is clear that deep
learning has gained increasing attention for BFCC. How-
ever, most of the existing studies only make use of single-
view BFC data for BFCC. 'e BFC data from single-view
may not fully reflect the characteristics of brain function-
ality, which would restrict the performance of deep learning
for BFCC. Inspired by the recent development of multiview
learning, this paper proposes a multiview deep learning
method for BFCC.

3. Method

3.1. Main Idea and Overall Framework. Although BFCC
based on deep learning has achieved good performance,
there is much room for improvement on how to better
utilize the BFC data of the high dimension and small
samples’ characteristics. 'e existing deep learning-based
methods usually extract deep features from all the brain
functional connections. However, all the brain functional
connections are redundant for classification since studies
have found that a brain disease is related to abnormalities of
some functional connections. 'us, feature selection is ex-
pected to alleviate dimension disaster and enhance the
performance of BFCC. Besides, the existing deep learning-
based methods usually exact deep features from BFC ob-
tained by one brain Atlas. In fact, the BFC under different
brain atlases can be considered as different organizing ways
of functions under different views. Each view of BFC may
contain special information that does not exist in the BFC of
other views. So it is hopeful to enhance the performance of
BFCC by effectively using the complementary information
of different views.

Based on the above ideas, this paper proposes a multi-
view deep learning method for BFCC. As illustrated in
Figure 1, the proposed method mainly consists of two
parts—the multiview feature selection strategy and the deep
neural network learning module with multiview feature
fusion. 'e multiview feature selection strategy is able to
select out the most discriminating features of each view
under the guidance of complementary information of other
views. 'e selected features of each view are the input of the
deep neural network learningmodule withmultiview feature
fusion. 'e selected discriminating features of each view are
extracted deep features by an SAE. All the deep features will
be fused for classification.

3.2. Multiview Feature Selection. To eliminate redundant
features and comprehensively use the information of different
views, a multiview feature selection strategy is developed. 'is
strategy can pick out the most discriminating features of each
view by effectively using complementary information of other
views. Detailed description of this strategy is as follows.

Let a training set containing N subjects be denoted by
X � x1, x2, . . . , xN , where xi represents the BFC data of
subject i. Suppose the number of brain atlases that are to
locate brain regions for building BFC is V. 'at is, each
subject has V views of BFC data. Let the dimension of BFC

data for view v be denoted by nv, thus the dimension of
features after concatenating the BFC data of all views is
defined by D � 

V
v�1 nv. 'e labels of N subjects are

expressed as a set. Y � y1, y2, . . . , yN . To make use of the
complementary information of different views, all the views
are divided into two categories when performing feature
selection on the BFC data of view v. As illustrated in Figure 2,
view v is the primary view, while all the other views are
auxiliary views.

'emultiview feature selection on the BFC data of view v

is accomplished by the following linear regression model
with L1 regularization.

minω
1
2N



N
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yi − ωT

xi

����
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�����, (1)

where ω is the D dimensional weight vector; ωg represents
the weight vector for the features of different category views,
i.e., ω1 is the weight vector for the features of the primary
view, ω2 is that of the auxiliary views, and they can be
concatenated together to form ω; ag denotes the
weight coefficient of the weight vector ωg, i.e., a1 is the
weight coefficient of the primary view, a2 is the weight
coefficient of the auxiliary view, and they have the relation.


2
g�1 ag � 1.
In the linear regression model with L1 regularization, the

L1 penalty termmakesmost elements of the weight vectorω be
0 in the training process. 'e features corresponding to
nonzero elements are considered to be the most discriminative
features for classification.'emain innovation of the proposed
method is the new L1 regularization term that, respectively,
assigns different weight coefficients for the primary view and
the auxiliary view. A smaller value of a1 means a smaller
punishment on the weight vector of the primary view and a
greater punishment on that of the auxiliary view. At this time,
there are fewer zero elements in the weight vector of the
primary view (ω1), while there are more zero elements in the
weight vector of the auxiliary view (ω2). Obviously, the new L1
penalty term does not only reduce the data dimension and
alleviate the over-fitting phenomenon but also selects out more
discriminative features of one view by using complementary
information of other views.

In the multiview feature selection model defined in
formula (1), the first item is differentiable and the second
item is not differentiable. To solve this optimization model,
the proximal gradient method is adopted. 'e objective
function defined by formula (1) is decomposed into the
following two functions.

f(ω) �
1
2N
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As f(ω) is differentiable and ∇f satisfies the L-Lipschitz
condition, there exists a constant L that makes the following
formula true.
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'erefore, f(ω) is approximate to the following equa-
tion by Taylor expansion at ωj.

f(ω) ≈
L

2
ω − ωj −

1
L
∇f ωj  

�������

�������

2

2
+ C, (4)

where C is a constant that is independent of ω.
Obviously, the minimum value of the above formula is

obtained at ωj+1.

ωj+1 � ωj −
1
L
∇f ωj . (5)

After considering h(ω), the complete iteration is as
follows:

ωj+1 � argminω
L

2
ω − ωj −

1
L
∇f ωj  

�������

�������

2

2
+ h(ω). (6)

For the last formula, firstly calculate ξ � ωj − 1/L∇f(ωj)

and then solve the following formula:

ωj+1 � argminω
L

2
‖ω − ξ‖

2
2 + h(ω). (7)

Let ωp represent the pth component of ω and this
component correspond to view g. If the last formula is
expanded, it can be found that there does not exist an item
like ωpωq(p≠ q). 'at is, each component of ω does not
affect each other. So the last formula has the following
closed-form solution:

ωp
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λag
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λag
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(8)

'e optimal solution of the objective function defined by
formula (1) can be obtained by iterating the formula (8).

After the above optimization process, the obtained
feature subset of each view will be served as an input to an
SAE for extracting deep features of each view.

3.3. Multiview Deep Feature Fusion. Most existing deep
learning-based multiview learning methods merely con-
catenate or add the deep features of each view element by
element, as illustrated in Figure 3(a). Although they can
obtain deep features from multiple views, they cannot take
full advantage of multiview learning without aligning the
deep features of each view in the common feature space. To
address this problem, a multiview feature fusion strategy is
introduced into SAE for merging the deep features of each
view. As shown in Figure 3(b), the normalized cross cor-
relation (NCC) between deep features of different views is
firstly calculated; then, the normalized cross-correlation is
added to the loss function as an regularization item, which
can take the role of aligning the deep features of each view in
the common feature space.

Next, we take two views as an example to describe in
detail the implementation way of multiview feature fusion.
Figure 4 shows how to obtain the first fused deep feature.'e
calculation ways of other fused deep features are similar. In
this figure, z � [z1, z2, . . . , zK] represents the fused deep
feature vector, where K is the number of fused deep features;
v1 and v2 are two deep feature vectors from two views; h �

[v1, v2] are the concatenated features of v1 and v2; W is the
parameter vector of the feature fusion layer.
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Figure 1: 'e overall framework of the proposed method.
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Figure 2: Schematic of primary view and auxiliary views.
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u1 � [u1
1, u2

1, . . . , uK
1 ] and u2 � [u1

2, u2
1, . . . , uK

2 ] are linear
transformations of v1 and v2, respectively. For u1 and u2,
their first features are calculated as follows:

u
1
1 � w

1
1v1,

u
1
2 � w

1
2v2,

(9)

where w1
1 and w1

2 are the network parameters corresponding
to v1 and v2 in the first column of W, respectively.

'e first feature in the fused deep feature vector z is
obtained by

z1 � u
1
1 + u

1
2. (10)

Formula (10) is essentially served as feature extraction by
a fully connected layer. To align the fused deep features,
maximized correlation of u1 and u2 is considered in the
model training process. 'e following normalized cross
correlation function is used to measure the correlation of u1
and u2.

NCC u1, u2(  �
1

K − 1


K
k�1 u

k
1 − μ1  u

k
2 − μ2 

σ1σ2
, (11)

where μ1 � 1/K 
K
k�1 uk

1 and μ2 � 1/K 
K
k�1 uk

1, respectively,

represent the mean values of all features in u1 and u2; σ1 �
�������������


K
k�1 (uk

1 − μk
1)

2


and σ2 �

�������������


K
k�1 (uk

2 − μk
2)

2


, respectively,
represent the variances of all features in u1 and u2. 'e value
of NCC(u1, u2) is between −1 and 1. 'e closer it gets to 1,
the greater the correlation of u1 and u2. 'e closer it gets to
−1, the smaller the correlation of u1 and u2.

In the model training process, the sum of the normalized
cross correlation between deep features of different views is

used as a regularization item. Maximizing this term can
achieve the alignment of deep features of different views.
'is term is expressed as

LMV � 
V

v�1
NCC uv, uv+1( . (12)

3.4. Classification Model. In the proposed method, the
prototype learning is used for classification. 'e prototype
learning classifies instances according to the distance be-
tween instances and prototypes. 'e prototype of each
category is initialized to the mean value of extracted features
for each category and is defined in the following formula:

pc �
1

Nc


xi∈classc

g xi( , (13)

where c ∈ 1, 2, . . . , C{ } denotes a category label; C is the
number of category; g(xi) is the extracted features for the
training instance xi.

Given an instance x, the Euclidean distance between
g(x) and the prototype of the category c is defined as

dc � g(x) − pc

����
����
2
2. (14)

'e probability that the instance x belongs to the cat-
egory c is defined as

P(y | x) �
e

− cdy


C
c�1 e

− cdc
. (15)

'e distance-based cross entropy (DCE) loss is used to
measure the classification error.

LDCE � −logP(y | x). (16)

Besides, the margin-based prototype (MP) loss is
adopted to further improve the generalization ability of the
proposed method.

LMP � dy − dr + m 
+
, (17)

where dy represents the distance of an instance to the
prototype of the same category; dr represents the minimi-
zation distance of an instance to the prototypes of different
categories; and m is a margin hyper-parameter. 'e goal of
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Figure 3: Two different ways of deep feature fusion. (a) Concatenation and (b) Proposed fusion way.
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Figure 4: Illustration of multiview feature fusion.
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the model training is to reduce the distance of an instance to
the prototype of the same category and increase the distance
to the prototypes of different categories by minimizing the
MP loss.

To sum up, the overall classification loss function is
defined as

L � LDCE + λ1LMP − λ2LMV. (18)

3.5. Algorithm Description. 'e training process of the
proposedMVDL-BFCCmethod is described in Algorithm 1.

4. Experiments and Results

4.1. Datasets and Implementation Details. In this section,
three common rs-fMRI datasets are used to evaluate the
proposed method, including Autism Brain Imaging Data
Exchange (ABIDE), Autism Brain Imaging Data Exchange II
(ABIDE II), and Attention Deficit Hyperactivity Disorder
(ADHD). 'e three datasets are composed of fMRI data
from multiple international institutions around the world.
'e first two datasets include normal controls and ASD
patients. 'e third dataset consists of normal controls and
ADHD patients. Table 1 shows the subject sizes of different
datasets.

All the fMRI datasets are downloaded from the Pre-
processed Connectomes Project (PCP) website. Each dataset
is firstly preprocessed by configurable pipeline for the
analysis of connectomes (CPAC) from PCP. 'e pre-
processing flow includes slice timing correction, motion
realignment, normalization, smoothing, nuisance signal
removal, band-pass filtering, and registration. 'en, a cer-
tain number of brain regions in the cerebral cortex by
different Atlases are selected as regions of interest. 'e
corresponding mean time-series for each brain region is
extracted. After that, the Pearson correlation coefficients
(PCC) between each pair of brain regions are calculated to
produce an adjacency matrix for each subject. 'e BFC
matrix for each subject is finally obtained by making the
Fisher’s z transformation on its adjacency matrix. 'e BFC
matrix is a symmetric matrix. 'e upper triangular of this
matrix is expanded into vectors in rows to form the feature
data of each subject. 'at is, each subject is represented as a
vector of BFC feature. 'e dimension of this vector is equal
to the number of different brain functional connections that
are computed as follows:

S �
(n − 1)n

2
, (19)

where n is the number of brain regions.
In this paper, three brain Atlases are used to produce the

multiview data, i.e., CC200 [20], AAL90 [21], and Dos-
enbach160 [22]. If CC200 is used, each subject is represented
as a vector which consists of 200 × (200 − 1)/2 � 19900
features. If AAL90 is used, each subject is represented as a
vector which consists of 90 × (90 − 1)/2 � 4005 features. If
Dosenbach160 is used, each subject is represented as a vector
which consists of 160 × (160 − 1)/2 � 12720 features.

4.2. Experimental Setting and Evaluation Indicators. In the
experiments, the number of nodes in the first hidden layer
is set to 1000 and those in the other hidden layers are set to
100. In the training process, the Adam gradient descent
method is used to minimize the loss function. In each it-
eration, the batch size and the learning rate are set to 96 and
1 × 10− 4, respectively. To take full advantage of the limited
training instances, all the experiments adopt a 5-fold
cross-validation. Each dataset is randomly divided into a
training set, a validation set, and a testing set in a ratio of
3.1.1.

Five common indicators including accuracy (ACC),
sensitivity (SEN), specificity (SPE), positive predictive value
(PPV), and negative predictive value (PPV) are used to
evaluate the classification performance of the proposed
method. 'ese five indicators are, respectively, defined as
follows:

ACC �
TP + TN

TP + TN + FP + FN
× 100%,

SEN �
TP

TP + FN
× 100%,

SPE �
TN

TN + FP
× 100%,

PPV �
TP

TP + FP
× 100%,

NPV �
TN

TN + FN
× 100%,

(20)

where TP denotes the number of positive instances that are
predicted to be positive instances; TN denotes the number of
negative instances that are predicted to be negative
instances; FP denotes the number of negative instances that
are predicted to be positive instances; FN denotes the
number of positive instances that are predicted to be neg-
ative instances.

4.3. Effects ofMultiviewData. To examine the effect of using
multiview data, this section constructs three SAE models
based on single-view data and four SAE models based on
multiview data. 'e single-view data based SAE models only
use one BFC. 'e multiview data based SAE models use
different BFC and concatenate the features of the last
hidden layer together for classification. For comparison, all
the SAEmodels have the same settings except the input data.
Table 2 provides the experimental results on the ABIDE I
dataset.

From Table 2, it is easy to find that the latter four SAE
models that input more than one BFC data have higher
classification accuracy than the former three SAE models
that input only one BFC data. To be specific, the three SAE
models based on two BFC data have a little higher classi-
fication accuracy than the former three SAEmodels based on
one BFC datum. 'e SAE model based on three BFC data
obtains the highest classification accuracy and achieves the
best performance on three out of five evaluation indicators.
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'ese results suggest that different BFCs about different
atlases contain complementary information for classifica-
tion. Besides, a closer look at this table shows that the
classification performance is not obviously enhanced with
the number of views increasing. 'is may be because there
are a lot of redundant features in the BFC data under dif-
ferent views. Moreover, redundant features would greatly
increase with the number of views increasing. To sum up, it
is hopeful for further enhancing the classification perfor-
mance to perform feature selection by determining a proper
number of views.

4.4. Effects of Multiview Feature Selection. To validate the
effectiveness of multiview feature selection on the classifi-
cation performance, this section sets different weight co-
efficients for the primary view and the auxiliary view in
equation (1). In this equation, a1 and a2 represent the weight
coefficient of primary view and auxiliary view, respectively.
'ey have the relation. a1 + a2 � 1. For them, a bigger value
means a greater punishment for the corresponding view and

a more sparse weight. When making feature selection on the
data of one certain view, the data of the other views should
play an auxiliary part. 'e weight coefficient of the primary
view is set to a smaller value, while that of the auxiliary view
is set to a bigger value. 'us, more discriminant features of
the primary view can be obtained under the guidance of the
other auxiliary views.

Figure 5 shows the experimental results. 'e general
trend is that five indicators increase at first and then de-
crease. When a1 � 0 and a2 � 1, the weight coefficient of the
primary view is 0, which means no feature selection is
carried out on the data. At this time, the classification ac-
curacy is 70.26%. When a1 � 0.1 and a2 � 0.9, that is, the
weight coefficient of the primary view is 0.1 and the weight
coefficient of the auxiliary view is 0.9, all the five indicators
enhance except NPV compared with the former case. When
a1 � 0.2 and a2 � 0.8, three indicators including ACC, SPE,
and NPV reach the best results while the rest two indicators
rank second. If a1 goes on increasing, the classification
performance would decline on a whole, but it is still better
than that without feature selection.

Table 1: 'e subject sizes of different datasets.

Dataset Normal controls Patients Total
ABIDE I 530 505 1035
ABIDE II 487 556 1043
ADHD 418 175 593

Input: a training set (X, Y), where X is the set of the BFCof all subjects, and Y is the set of all the category labels
Output: the optimal multiview feature selection weight ω∗, the optimal network weight W∗, and the optimal weight bias b∗

(1) Randomly initialize ω, W, and b

(2) while the stop condition is met do
(3) compute ω according to (8)
(4) end while
(5) ω∗ � ω
(6) while the stop condition is not met do
(7) e forward propagation process. input (X, Y) into DNN, extract multiview features, and obtain classification result Y by the

prototype learning
(8) Calculate loss. According to Y and Y, calculate the function loss by (18)
(9) e back propagation process. the gradient descent method is used to update W and b

(10) end while
(11) W∗ � W, b∗ � b

(12) Return ω∗, W∗, and b∗.

ALGORITHM 1: 'e proposed MVDL-BFCC method.

Table 2: Results of using different views of data on the ABIDE dataset.

Data ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)
CC200 69.30 73.60 65.30 68.97 69.90
AAL90 66.78 73.33 59.97 66.17 68.51
Doshen160 67.57 73.64 61.29 66.82 69.57
CC200 +AAL90 69.88 70.32 69.44 70.69 69.18
CC200 +Doshen160 69.84 70.35 69.29 70.67 69.28
AAL+Doshen160 68.64 69.27 67.97 69.44 68.06
CC200 +AAL90+Doshen160 70.26 71.22 69.27 70.92 70.08
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'e above results demonstrate that a proper value for the
weight coefficient of the primary view helps to sort out more
discriminant features from the primary view data by the
complementary information of the auxiliary view. A very
small value for the weight coefficient of the primary view
would pick out more features from the primary view data,
but some of which are redundant for classification. Although
a too large value for the weight coefficient of the primary
view would not select more features from the primary view
data, it would pick out more redundant features from the
auxiliary view data and still impair the classification per-
formance. According to the experimental results, the best
performance is obtained when a1 � 0.2. 'erefore, a1 � 0.2
is used in the comparative experiments.

4.5. Effects of Multiview Feature Fusion. 'e features
extracted from different view data can be concatenated or
fused in one layer. For example, all multiview features are
fused at the last layer and then the fused features are used for
classification. All multiview features are concatenated or
fused in one middle hidden layer and the fused features are
used to further extract deep features for classification. In
other words, the position of performing feature fusion has a
certain flexibility.

To examine the effect of multiview feature fusion on the
classification performance, this section builds six models
which have different feature concatenation or fusion ways.
Table 3 gives the experimental results. In this table,
Concat-i(i � 1, 2, 3) denotes the model that concatenates all
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Figure 5: Effects of the weight coefficient of the primary view on the classification performance in terms of different indicators. (a) ACC. (b)
SEN. (c) SPE. (d) PPV. (e) NPV.
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multiview features at the ith hidden layer and further ex-
tracts deep features from the concatenated features for
classification. MvFF-i(i � 1, 2, 3) denotes the model that
fuses all multiview features at the ith hidden layer and
further extracts deep features from the fused features for
classification. It is obvious to see the following two points

from this table. (1) 'e models that adopt multiview feature
fusion have better classification performance than that use
multiview feature concatenation on the whole. (2) With the
number of the hidden layer that performs feature
concatenation or feature fusion increasing, the
classification performance tends to get better. Based on these

Table 3: Results of multiview feature fusion on the ABIDE dataset.

Data ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)
Concat-1 70.42 71.81 68.99 70.77 70.27
Concat-2 70.69 71.46 69.81 71.72 69.92
Concat-3 70.92 71.97 69.86 71.53 70.71
MvFF-1 70.81 71.09 70.45 71.77 70.34
MvFF-2 70.93 71.97 69.86 71.53 70.71
MvFF-3 71.19 72.48 69.81 71.84 70.77
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Figure 6: Performance comparison of eight methods on the ABIDE I dataset.
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Figure 7: Performance comparison of eight methods on the ABIDE II dataset.
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two points, MvFE-3 is used in the proposed method, since it
has achieved the best performance on four indicators out of
five.

4.6. Comparative Evaluation. In this section, the proposed
method is compared with two traditional machine learning
methods and five deep learning methods on three datasets.
'e two traditional machine learning methods are
RFE_SVM [2] and LASSO [4]. 'e five deep learning
methods are BrainNetCNN [9], CCNN [8], SDAE [15], GCN
[17], and SAE-PL-DFF [23].

Figures 6–8 show the experimental results. From these
figures, it is found that the proposed method obtains the best
performance with respect to three evaluation indicators in-
cluding ACC, SPE, and PPV on the ABIDE I and ABIDE II
datasets. As for the remaining two evaluation indicators, the
proposed method is slightly inferior to the best method on
these two datasets. Moreover, it is exciting to see that the
proposed method achieves the best performance with respect
to all the evaluation indicators on the ADHD dataset. Based
on the above analysis, it can be concluded that the proposed
method has a better classification performance on the whole.
'erefore, multiview learning can further improve the clas-
sification accuracy of the deep learning method for BFCC.

5. Conclusion

To further improve the classification performance of the
deep learning method for BFCC, this paper proposes a
multiview deep learning method for BFCC. 'e proposed
method takes the BFC data from one brain Atlas as a single-
view data and uses three different brain atlases to produce
multiview BFC data. For the BFC data of each view, the
proposed method presents a multiview feature selection
strategy to select out the most discriminating features. And
then deep features are further extracted by an SAE. Finally,
all the deep features of each view are fused for classification
by a new feature fusion strategy. 'e experimental results

have validated the superior performance of the proposed
method. [24, 25].

'e future research is tomake use of different modal data
to produce richer multiview data to further improve the
classification performance.
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fMRI functional connectivity-based classification using a
convolutional neural network architecture,” Frontiers in
Neuroinformatics, vol. 11, p. 61, 2017.

[8] J. Kawahara, C. J. Brown, S. P. Miller et al., “BrainNetCNN.
convolutional neural networks for brain networks; towards
predicting neurodevelopment,” NeuroImage, vol. 146,
pp. 1038–1049, 2017.

[9] M. Liu, D. Zhang, E. Adeli, and D. Shen, “Inherent structure-
based multiview learning with multitemplate feature repre-
sentation for alzheimer’s disease diagnosis,” IEEE Transac-
tions on Biomedical Engineering, vol. 63, no. 7, pp. 1473–1482,
2016.

[10] F. Huang, P. Yang, S. Huang, L. Yang, T. Wang, and B. Lei,
“Multi-template based auto-weighted adaptive structural
learning for ASD diagnosis,” International Workshop on
Machine Learning in Medical Imaging, vol. 11861, pp. 516–
524, 2019.

[11] H. Huang, X. Liu, Y. Jin, S. W. Lee, C. Y. Wee, and D. Shen,
“Enhancing the representation of functional connectivity
networks by fusing multi-view information for autism
spectrum disorder diagnosis,”Human Brain Mapping, vol. 40,
no. 3, pp. 833–854, 2019.

[12] S. Wang, Y. Zhan, Y. Zhang et al., “Abnormal long- and short-
range functional connectivity in adolescent-onset schizo-
phrenia patients. A resting-state fMRI study,” Progress in
Neuro-Psychopharmacology and Biological Psychiatry, vol. 81,
pp. 445–451, 2018.

[13] X. A. Bi, Y. Wang, Q. Shu, Q. Sun, and Q. Xu, “Classification
of autism spectrum disorder using random support vector
machine cluster,” Frontiers in Genetics, vol. 9, p. 18, 2018.

[14] T. Watanabe, D. Kessler, C. Scott, M. Angstadt, and
C. Sripada, “Disease prediction based on functional con-
nectomes using a scalable and spatially-informed support
vector machine,” NeuroImage, vol. 96, pp. 183–202, 2014.

[15] A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz,
and F. Meneguzzi, “Identification of autism spectrum dis-
order using deep learning and the ABIDE dataset,” Neuro-
Image. Clinical, vol. 17, pp. 16–23, 2018.

[16] R. Ju, C. Hu, P. Zhou, and Q. Li, “Early diagnosis of Alz-
heimer’s disease based on resting-state brain networks and
deep learning,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 16, no. 1, pp. 244–257, 2019.

[17] S. Parisot, S. I. Ktena, E. Ferrante et al., “Disease prediction
using graph convolutional networks. application to autism
spectrum disorder and Alzheimer’s disease,” Medical Image
Analysis, vol. 48, pp. 117–130, 2018.

[18] C. J. Brown, J. Kawahara, and G. Hamarneh, “Connectome
priors in deep neural networks to predict autism,” in Pro-
ceedings of the IEEE 15th International Symposium on Bio-
medical Imaging (ISBI), pp. 110–113, Washington, DC, USA,
April, 2018.

[19] J. Ji, X. Xing, Y. Yao, J. Li, and X. Zhang, “Convolutional
kernels with an element-wise weighting mechanism for
identifying abnormal brain connectivity patterns,” Pattern
Recognition, vol. 109, Article ID 107570, 2021.

[20] R. C. Craddock, G. A. James, P. E. Holtzheimer III, X. P. Hu,
and H. S. Mayberg, “A whole brain fMRI atlas generated via
spatially constrained spectral clustering,” Human Brain
Mapping, vol. 33, no. 8, pp. 1914–1928, 2012.

[21] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou et al.,
“Automated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-
subject brain,” NeuroImage, vol. 15, no. 1, pp. 273–289, 2002.

[22] N. U. F. Dosenbach, B. Nardos, A. L. Cohen et al., “Prediction
of individual brain maturity using fMRI,” Science, vol. 329,
no. 5997, pp. 1358–1361, 2010.

[23] Y. Z. Liang and J. Z. Ji, “Brain functional connections
classfication method based on prototype learning and deep
feature fusion,” Acta Automatica Sinica, vol. 48, no. 2,
pp. 504–514, 2022.

[24] L. Caputi, A. Pidnebesna, and J. Hlinka, “Promises and pitfalls
of Topological Data Analysis for brain connectivity analysis,”
NeuroImage, vol. 238, Article ID 118245, 2021.

[25] Y. Li, M. Yang, and Z. Zhang, “A survey of multi-view
representation learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 31, no. 10, pp. 1863–1883, 2019.

Computational Intelligence and Neuroscience 11


