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ORs (95% CI) of MAFLD associated with a SD
increase in PM2.5 and its constituents

•
•
•

PM2.5 constituents were found to be positively associated with the odds of MAFLD.
Smoking behavior and sex difference may exacerbate the toxic effects.
New insights toward the epidemiologic understanding of the hepatotoxicity of ambient PM2.5 was provided.
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Highlights Impact and implications

� Ambient PM2.5 constituents are positively associ-

ated with the risk of MAFLD.

� Nitrate is the most heavily weighted particle in the
joint effect on MAFLD.

� Smoking and male sex may exacerbate the toxic
effects of PM2.5.

� We provide novel insights into the hepatotoxicity
of ambient PM2.5.
https://doi.org/10.1016/j.jhepr.2023.100912
This large-scale epidemiologic study explored the as-
sociations between constituents of fine particulate
pollution (PM2.5) and metabolic dysfunction-
associated fatty liver disease (MAFLD), and further
revealed which constituents play a more important
role in increasing the risk of MAFLD. In contrast to
previous studies that examined the effects of PM2.5 as
a whole substance, this study carefully explored the
health effects of the individual constituents of PM2.5.
These findings could (1) help researchers to identify
the specific particles responsible for hepatotoxicity,
and (2) indicate possible directions for policymakers
to efficiently control ambient air pollution, such as
targeting the sources of nitrate pollution.
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Background & Aims: Existing evidence suggests that long-term exposure to ambient fine particulate pollution (PM2.5) may
increase metabolic dysfunction-associated fatty liver disease (MAFLD) risk. However, there is still limited evidence on the
association of PM2.5 constituents with MAFLD. Therefore, this study explores the associations between the five main chemical
constituents of PM2.5 and MAFLD to provide more explicit information on the liver exposome.
Methods: A total of 76,727 participants derived from the China Multi-Ethnic Cohort, a large-scale epidemic survey in
southwest China, were included in this study. Multiple linear regression models were used to estimate the pollutant-specific
association with MAFLD. Weighted quantile sum regression was used to evaluate the joint effect of the pollutant-mixture on
MAFLD and identify which constituents contribute most to it.
Results: Three-year exposure to PM2.5 constituents was associated with a higher MAFLD risk and more severe liver fibrosis.
Odds ratios for MAFLD were 1.480, 1.426, 1.294, 1.561, 1.618, and 1.368 per standard deviation increase in PM2.5, black carbon,
organic matter, ammonium, sulfate, and nitrate, respectively. Joint exposure to the five major chemical constituents was also
positively associated with MAFLD (odds ratio 1.490, 95% CI 1.360–1.632). Nitrate contributed most to the joint effect of the
pollutant-mixture. Further stratified analyses indicate that males, current smokers, and individuals with a high-fat diet might
be more susceptible to ambient PM2.5 exposure than others.
Conclusions: Long-term exposure to PM2.5 and its five major chemical constituents may increase the risk of MAFLD. Nitrate
might contribute most to MAFLD, which may provide new clues for liver health. Males, current smokers, and participants with
high-fat diets were more susceptible to these associations.
Impact and implications: This large-scale epidemiologic study explored the associations between constituents of fine par-
ticulate pollution (PM2.5) and metabolic dysfunction-associated fatty liver disease (MAFLD), and further revealed which
constituents play a more important role in increasing the risk of MAFLD. In contrast to previous studies that examined the
effects of PM2.5 as a whole substance, this study carefully explored the health effects of the individual constituents of PM2.5.
These findings could (1) help researchers to identify the specific particles responsible for hepatotoxicity, and (2) indicate
possible directions for policymakers to efficiently control ambient air pollution, such as targeting the sources of nitrate
pollution.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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matter constituents; hepatotoxicity; joint exposure analysis.
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Introduction
Metabolic dysfunction-associated fatty liver disease (MAFLD) is
estimated to exist in about 40% of adults worldwide.1–3 There is
no curative treatment for MAFLD, so the search for modifiable
risk and protective factors remains a clinical and public health
priority.3,4

Emerging epidemiologic evidence consistently showed that
ambient air pollution may be a risk factor for MAFLD.5–7 Spe-
cifically, particulate matter 2.5 lm or less in diameter (PM2.5) can
reach the pulmonary alveoli, enter the blood circulation, and
finally reach the liver, where it is catabolized. Toxicologic studies
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found that PM2.5 can cause damage to the liver and also lead to
metabolic dysfunction in the liver.8,9 These new findings may
provide further clues to guide the prevention and clinical treat-
ment of MAFLD.10

Notably, ambient PM2.5 originates from the complex interac-
tion of multiple emissions and chemical reactions; it is a mixture
of various chemical constituents, such as elemental carbon,
organic carbon, sulfate (SO4

2−), nitrate (NO3
−), and ammonium

(NH4
+). These PM2.5 constituents have different toxicological

profiles, which may lead to different effects on liver health;
simultaneously, they can further reflect specific emission sources
to inform mitigation strategies. Therefore, understanding the
constituent-specific effect on liver health may provide a clearer
perspective on PM2.5 hepatotoxicity, which will help establish a
more specific source-oriented PM2.5 control strategy. A few
studies investigated the effect of chemical constituents of PM2.5

on metabolic disorders or diseases.11–14 For instance, black car-
bon and organic matter were found to be mainly associated with
glucose levels,12 particle sulfate mainly associated with meta-
bolic syndrome (MetS),13 and organic carbon matter mainly
associated with subclinical atherosclerosis.14 However, evidence
on the associations between PM2.5 constituents and MAFLD is
limited.

This epidemiologic study aims to assess whether long-term
exposure to ambient PM2.5 and five major constituents were
associated with the odds of MAFLD and to explore the constit-
uents that contribute most to the joint effect on MAFLD. This
study was conducted on the basis of the China Multi-Ethnic
Cohort (CMEC), a large-scale cohort composed of several ethnic
groups in southwest China.15
Materials and methods
Study design and data collection
We used baseline data from the China Multi-Ethnic Cohort
(CMEC) to conduct a cross-sectional, observational study to
assess the relationship between PM2.5 constituents and MAFLD.
The CMEC recruited 99,556 participants, aged 30-79, from the
general population in five southwestern provinces of China be-
tween May 2018 and September 2019.15 Participants answered a
questionnaire through a face-to-face interview, had physical
measurements taken, and provided biological samples. The
entire process was guided by uniformly trained investigators and
qualified physicians. The study design, survey methods, quality
control strategies, and limitations of CMEC have been reported
elsewhere.15,16 The CMEC received ethical approval (K2016038
and K2020022) from the Sichuan University Medical Ethical
Review Board, and all participants provided written informed
consent.

Assessment of PM2.5 and its constituents
Estimates of the monthly total mass of PM2.5 and its five major
constituents (black carbon [BC], organic matter [OM], sulfate,
nitrate, and ammonium) were obtained from the V4.CH.02
product developed by the Dalhousie University Atmospheric
Composition Analysis Group.17 The V4.CH.02 product method-
ology for datasets used in this study was described before.
Briefly, the monthly total mass of PM2.5 at 10 km × 10 km reso-
lution was simulated by the Goddard Earth Observing System
chemical transport model, which incorporated the aerosol opti-
cal depth retrievals from several satellite instruments and then
calibrated with ground-based observations from China meteo-
JHEP Reports 2023
rological monitoring stations.17 Further, concentrations of five
major PM2.5 chemical constituents were estimated through
simulated relative contributions of each constituent against the
total mass of PM2.5.

For this study, the total mass of PM2.5 and the annual con-
centrations of its five chemical constituents’ before the baseline
survey of each CMEC participant was estimated according to the
geocoded residential address information. In line with existing
studies, we used a 3-year average of total mass PM2.5 and its five
chemical constituents before the baseline survey as the indi-
vidual exposures.

Ascertainment of MAFLD cases
According to the definition for MAFLD proposed by an interna-
tional expert consensus statement, participants were identified
as MAFLD cases if they had hepatic steatosis and met at least one
of the following three criteria: overweight or obese, type 2 dia-
betes mellitus (T2DM) or if they were normal weight with evi-
dence of metabolic dysregulation.18 Hepatic steatosis was
detected by abdominal ultrasonography. The presence of over-
weight or obesity was assessed as body mass index (BMI) >−23 kg/
m2 (Asian-specific cut-off), where BMI was calculated as weight
(kg) divided by height squared (m2). T2DM was identified as
fasting plasma glucose >−7.0 mmol/L or hemoglobin A1c >−6.5%.
The presence of metabolic dysregulation was assessed as the
presence of two or more of the following conditions: 1) a waist
circumference >−90/80 cm in men/women (the cut-off for Asians),
2) blood pressure >−130/85 mmHg or related drug treatment, 3)
triglycerides >−1.70 mmol/L or related drug treatment, 4) HDL-C
<1.0 mmol/L for males and <1.3 mmol/L for females, 5) predia-
betes (i.e., fasting glucose levels from 5.6 to 6.9 mmol/L or he-
moglobin A1c from 5.7% to 6.4%), 6) homeostasis model
assessment of insulin resistance score >− 2.5, and 7) plasma high-
sensitivity C-reactive protein level >2 mg/L. Considering related
variables collected by the CMEC, this study utilized the first five
conditions to diagnose patients in the actual diagnosis process
based on the accessibility of data.

Potential confounders and model adjustments
Potential confounders were recognized based on known and
suspected MAFLD risk factors associated with PM2.5 exposure
and were summarized in a causal-directed acyclic graph (Fig. S1).
Potential confounders included individual demographic, socio-
economic, health behavior variables, and environmental factors.
Based on the directed acyclic graph, we adjusted our model for
age, sex, highest education level attained, annual household in-
come, ethnicity and admission sites, urban area, smoking status,
alcohol consumption, unhealthy diets, physical activity, second-
hand smoking exposure, biomass fuel exposure, 3-year average
temperature, and 3-year average relative humidity. Detailed
definitions of these variables are provided in the supplementary
text.

Statistical analysis
We used pollutant-specific logistic regression models to estimate
the associations between each PM2.5 constituent and MAFLD and
calculated the prevalence odds ratio of MAFLD per standard
deviation (SD) increase in pollutant concentration to measure
the associations. We initially explored the crude association be-
tween PM2.5 constituents and MAFLD (model 0), then adjusted
for baseline factors (age, sex, education level, household income,
ethnicity and admission sites, and urban area) in model 1, and
2vol. 5 j 100912



further adjusted for health behaviors (smoking status, alcohol
consumption, unhealthy diet, physical activity, second-hand
smoking exposure, and biomass fuel exposure) and environ-
mental factors (3-year average temperature and 3-year average
relative humidity) in model 2.

We applied a generalized weighted quantile sum (WQS)
regression with a logit link function to estimate the association
between the PM2.5 constituent mixture and MAFLD.19 The WQS
approach simultaneously estimated the weights of each constit-
uent and the coefficient of the PM2.5 mixture. The weights re-
flected the contribution of each constituent to the association and
were used to calculate the weighted sum of constituents, often
called the WQS index. The coefficient represents the log odds ratio
(OR) per 1-unit increase in the WQS index. We adjusted for the
same confounders as those in the final pollutant-specific logistic
regression models. As suggested by an anonymous reviewer, we
also performed a sensitivity analysis with additional adjustments
for central obesity and diabetes mellitus.

To explore whether potential factors would modify the as-
sociations, we conducted subgroup analyses by sex (male and
female), age group (categorized as >−65 vs. <65 years), smoking
status (never, current smoker, and previous smoker), alcohol
consumption (never, low/moderate, and high), the presence of
high-fat diet, the presence of central obesity, and the presence of
diabetes mellitus. We carried out sensitivity analyses to test the
robustness of the findings to different exposure windows (2- and
4-year average concentration), different target populations
(additionally excluding participants with self-reported preg-
nancy, cancer, or tuberculosis and those in Lhasa, Tibet because
of low variability of ambient air pollutant owing to high altitude
– approximately 3,650 m) and alternative model adjustment
(further adjusted for family history of hypertension and dia-
betes). To evaluate the effects of PM2.5 and its constituents on the
severity of MAFLD, we fitted generalized linear regression
models with the same confounders as in model 2 in the context
of the degree of liver fibrosis and the degree of metabolic dis-
orders, respectively. The degree of liver fibrosis was evaluated by
non-invasive test indices (i.e., APRI [aspartate aminotransferase-
to-platelet ratio], FIB-4 [fibrosis-4], and Forns index); the
severity of metabolic disorders was assessed according to the
number of major metabolic disorders (0 to 6). Detailed defini-
tions were described in the supplementary text.

Further, the observations with missing data were excluded if
the missing ratio was less than 5% or imputed by the multivariate
imputation method if the missing ratio was between 5% and 10%.
The results from model 2 with imputed data were compared
with the complete case analyses in the supplementary file.

All analyses were performed on complete case data using R
version 4.1.0. This study has been reported per the STROBE
(Strengthening the Reporting of Observational Studies in Epide-
miology) guideline and the corresponding checklist is shown in
Table S1.20
Results
We included 80,201 participants from the CMEC who had the
same fixed available address for more than 3 years and for whom
MAFLD had been reliably diagnosed or ruled out. Of these, 4.29%
of the eligible population were excluded (31 with cirrhosis and
3,443 with data missing on key covariates and potential mod-
JHEP Reports 2023
ifiers), leaving 76,727 participants for analysis. The general
characteristics of the participants for analysis are shown in
Table 1. Of the 76,727 participants used for analysis, 46,296 (60%)
were women; the mean (SD) age was 51.97 (11.53) years. There
were 15,216 (19.8%) cases of MAFLD, of which 12,767 (83.9%) had
central obesity and 3,689 (24.2%) had diabetes. The distributions
of PM2.5 and its constituents are shown in Fig. 1. Based on the
participants’ residential addresses, the mean (SD) 3-year con-
centrations of PM2.5, BC, ammonium, nitrate, OM, and sulfate
were 36.39 (21.79), 1.88 (1.14), 5.75 (3.52), 7.23 (5.66), 8.20 (5.05)
and 9.78 (5.10) lg/m3, respectively.

The pollutant-specific logistic regression models showed that
PM2.5 mass and its constituents are both associated with MAFLD
(Table 2). Higher concentrations of both PM2.5 and its constitu-
ents were associated with a statistically significantly higher
prevalence of MAFLD. For the fully adjusted model, a per-SD
increase in the 3-year average PM2.5 mass concentration was
positively associated with MAFLD (OR 1.480; 95% CI 1.366-1.605),
and per-SD increases in the 3-year average BC (1.426, 1.323-
1.538), OM (1.294, 1.196-1.401), ammonium (1.561, 1.440-1.692),
sulfate (1.618, 1.501-1.744) and nitrate (1.368, 1.262-1.482) con-
centrations were also positively associated with MAFLD.

The WQS logistic regression models showed that the WQS
index of the mixed constituents was positively associated with
MAFLD risk (OR 1.490, 95% CI 1.360- 1.632). In the pollutant-
mixture, nitrate, sulfate, BC, OM, and ammonium weight esti-
mations were 0.670, 0.192, 0.064, 0.038, and 0.036, respectively
(Fig. 2).

Subgroup analyses showed consistent positive associations of
PM2.5 and its constituents with MAFLD across different sub-
groups (Fig. 3). Certain subgroups of people are more susceptible
to PM2.5 and its constituents, including males, older adults (>−65
years-old), current smokers, and those who consume a high-fat
diet. For example, the ORs of nitrate (1.506, 1.344-1.688), sul-
fate (1.897, 1.700-2.116), ammonium (1.794, 1.598-2.015), BC
(1.632, 1.464-1.818) and OM (1.389, 1.242-1.555) were higher in
males (Tables S2–S6).

Sensitivity analyses further validated the reliability of the
primary findings. After additionally adjusting for central obesity
and diabetes mellitus, the OR of MAFLD associated with joint
exposure to PM2.5 constituents was 1.780 (1.614–1.963)
(Table S7). Sensitivity analyses suggested similar results of esti-
mated ORs of MAFLD for PM2.5 and its constituents when
changing the exposure-window to 2-year or 4-year concentra-
tions (Table S8). Little change in results occurs when additionally
excluding participants with self-reported pregnancy, cancer, or
tuberculosis and those from Lhasa (Tables S9–S11). The ORs for
PM2.5 and its constituents are slightly lower when additionally
adjusted for a family history of hypertension and diabetes mel-
litus (Table S12). The concentration-response relationships of the
3-year average pollutant and MAFLD suggest that these re-
lationships are approximately linear (Fig. S2). As for the associ-
ation of PM2.5 constituents and the severity of MAFLD, we
observed significant positive associations of most PM2.5 constit-
uents with the severity of liver fibrosis (Table S13) and slightly
positive (but not significant) associations with the number of
metabolic disorders (Table S14). This lack of significance could be
explained by the fact that fewer people had more severe meta-
bolic disorders (Table S15), so the sample size was insufficient to
explore this association.
3vol. 5 j 100912



Table 1. Characteristics of the participants according to the presence of MAFLD.

Variablea Overall (N = 76,727)

MAFLD

No, n = 61,511 Yes, n = 15,216

Demographics
Age, years 51.97±11.53 51.79±11.69 52.69±10.79
Sex

Male 30,431 (39.7%) 23,292 (37.9%) 7,139 (46.9%)
Female 46,296 (60.3%) 38,219 (62.1%) 8,077 (53.1%)

BMI, kg/m2 24.10±3.42 23.35±3.07 27.11±3.06
Waist-to-hip ratio 0.88±0.07 0.87±0.07 0.93±0.06
Han ethnicity 46,212 (60.2%) 36,368 (59.1%) 9,844 (64.7%)
Urban area

Urban 38,478 (50.1%) 29,662 (48.2%) 8,816 (57.9%)
Rural 38,249 (49.9%) 31,849 (51.8%) 6,400 (42.1%)

Education level
Elementary school or below 38,816 (50.6%) 31,472 (51.2%) 7,344 (48.3%)
Middle or high school 29,315 (38.2%) 23,269 (37.8%) 6,046 (39.7%)
College or above 8,596 (11.2%) 6,770 (11.0%) 1,826 (12.0%)

Annual household income, U
<2,0000 27,255 (35.5%) 22,303 (36.3%) 4,952 (32.5%)
2,0000-199,999 39,094 (51.0%) 31,265 (50.8%) 7,829 (51.5%)
s200,000 10,378 (13.5%) 7,943 (12.9%) 2,435 (16.0%)

Lifestyle behaviors
Smoking Status

Never smoker 56,928 (74.2%) 46,234 (75.2%) 10,694 (70.3%)
Current smoker 15,896 (20.7%) 12,374 (20.1%) 3,522 (23.1%)
Previous smoker 3,903 (5.1%) 2,903 (4.7%) 1,000 (6.6%)

Second-hand smoking exposure 38,510 (50.2%) 30,870 (50.2%) 7,640 (50.2%)
Alcohol consumption

Never 43,209 (56.3%) 35,055 (57.0%) 8,154 (53.6%)
Low or Moderateb 25,703 (33.5%) 20,342 (33.1%) 5,361 (35.2%)
Highb 7,815 (10.2%) 6,114 (9.9%) 1,701 (11.2%)

Total energy intake, kcal/day 1,644.38±607.05 1,630.78±602.38 1,699.32±622.58
High-fat dietc 42,512 (55.4%) 33,828 (55.0%) 8,684 (57.1%)
Low fruit or vegetable intaked 26,992 (35.2%) 21,612 (35.1%) 5,380 (35.4%)
Physical activity

Low 46,453 (60.5%) 37,784 (61.4%) 8,669 (57.0%)
Moderate 4,798 (6.3%) 3,788 (6.2%) 1,010 (6.6%)
High 25,476 (33.2%) 19,939 (32.4%) 5,537 (36.4%)

Biomass fuel exposure
Light 12,104 (15.8%) 9,680 (15.7%) 2,424 (15.9%)
Moderate 60,676 (79.1%) 48,480 (78.8%) 12,196 (80.2%)
Heavy 3,947 (5.1%) 3,351 (5.4%) 596 (3.9%)

Clinical characteristics
Central obesitye 44,483 (58.0%) 31,716 (51.6%) 12,767 (83.9%)
Diabetes mellitus 8,575 (11.2%) 4,886 (7.9%) 3,689 (24.2%)
Family history of hypertension 24,480 (31.9%) 18,969 (30.8%) 5,511 (36.2%)
Family history of diabetes mellitus 8,294 (10.8%) 5,942 (9.7%) 2,352 (15.5%)

MAFLD, metabolic dysfunction-associated fatty liver disease; PM2.5, particulate matter 2.5 lm or less in diameter.
a Mean ± SD or n (%) were used to present descriptive analysis of the data for continuous and categorical variables, respectively; differences between MAFLD and non-MAFLD
participants were examined with t test (for continuous variables) and Chi-squared test (for categorical variables).
b Low/moderate alcohol consumption was defined as consuming <−20 g/day of alcohol for women or <−30 g/day for men; high alcohol consumption was defined as consuming
>20 g/day of alcohol for women or >30 g/day for men.
c High-fat diet was defined as consuming fat >−75 g/day.
d Low fruit or vegetable intake was defined daily fruit and vegetable intake <500 g.
e Central obesity was defined as a waist-to-hip ratio of 0.85 or higher for women and 0.9 or higher for men.
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Discussion
As previously mentioned, ambient PM2.5 is a mixture of various
chemical constituents. Identifying the toxic agents in PM2.5 and
quantifying each constituent’s effect on the health outcome of
interest would be valuable.11 Although a few studies have re-
ported the associations between PM2.5 mass and the risk of liver
diseases,5,21–23 it is unclear which constituent of PM2.5 contrib-
utes the most to MAFLD. Based on a large-scale multi-ethnic
epidemiological survey in southwest China, this study of 80,201
individuals investigated the association between MAFLD and
JHEP Reports 2023
long-term exposure to PM2.5 chemical constituents (BC, OM,
sulfate, nitrate, and ammonium).

We found that increased concentrations of nitrate, sulfate,
and possibly BC, were associated with an increased risk of
MAFLD using either the pollutant-specific or joint analyses
strategies. Our findings were robust when adjusting for an
extended set of covariates. Our findings suggested that males
were more susceptible to associations between MAFLD and its
major chemical constituents, and nitrate may play the most
considerable role in increasing MAFLD risk. These robust findings
4vol. 5 j 100912



PM2.5 Nitrate Sulfate Ammonium BC OM

80

60

40

20

0

C
on

ce
nt

ra
tio

ns
 (μ

g/
m

³)

Min
Max

Mean
IQR

4.817
79.194
36.389
43.786

0.117
16.219
7.229

11.561

1.236
17.136
9.782
10.203

0.494
11.106
5.753
7.261

0.203
6.553
1.885
2.267

0.603
16.817
8.203
10.222

Fig. 1. Distribution of the 3-year average concentrations of PM2.5 mass and
its major chemical constituents at the residences of CMEC participants. BC,
black carbon; OM, organic matter; PM2.5, particulate matter 2.5 lm or less in
diameter.
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Fig. 2. Weight of each constituent in the association between PM2.5 joint
exposure and MAFLD by weighted quantile sum regression. Weighted
quantile sum regression model was adjusted for age, sex, ethnicity and
admission sites, urban area, education level, annal household income, alcohol
consumption, smoke status, high-fat diet, low fruit and vegetable intake,
physical activity, second-hand smoking exposure, biomass fuel exposure, 3-
year average temperature and 3-year average humidity. BC, black carbon;
MAFLD, metabolic dysfunction-related fatty liver disease; OM, organic matter;
PM2.5, particulate matter 2.5 lm or less in diameter.
contribute to the development of evidence-based clinical ap-
proaches for assessing ambient particulate pollution risk, iden-
tifying vulnerable individuals, and providing interventions.24,25

Given the paucity of studies on PM2.5 constituents and
MAFLD, we interpret the results of this paper with reference to
the available evidence on PM2.5 constituents and metabolic dis-
orders or metabolic diseases.

Regarding PM2.5 mass, we estimated that each SD increase in
PM2.5 may give rise to an OR of 1.480 (95% CI 1.366-1.605). This
finding is broadly consistent with previous epidemiologic studies
investigating the association of ambient PM2.5 with either
MAFLD or NAFLD.5–7,23 Besides, numerous studies have found
positive associations between the mass concentrations of PM2.5

and increased incidences of metabolic disorders or diseases.26–30

For example, a study of middle-aged and elderly Chinese adults
found that an IQR increase in PM2.5 was related to higher odds of
MetS (OR 1.39, 95% CI 1.11-1.75).13 Our findings are consistent
with recent literature demonstrating an increased risk of meta-
bolic disorders or diseases (including MAFLD) associated with
long-term exposure to PM2.5.

The pollutant-specific analysis indicated that the five PM2.5

constituents were all positively associated with MAFLD, with
sulfate having the highest effect (OR 1.618, 1.501–1.744). Further,
Table 2. Odds ratio (95% CIs) of MAFLD associated with each SD increase in 3

Model 0

PM2.5 1.141 (1.121–1.161)
Black carbon 1.152 (1.132–1.173)
Organic matter 1.135 (1.115–1.155)
Ammonium 1.139 (1.118–1.159)
Sulfate 1.137 (1.116–1.157)
Nitrate 1.138 (1.118–1.158)

MAFLD, metabolic dysfunction-associated fatty liver disease; PM2.5, particulate matter
Model 0: unadjusted.
Model 1: adjusted for age, sex, ethnicity and admission sites, urban area, education lev
Model 2: additionally adjusted for alcohol consumption, smoke status, high-fat diet, low
fuel exposure, 3-year average temperature and 3-year average humidity.
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the joint exposure analysis found that the effect of the five-
constituent mixture is similar to PM2.5 mass, and nitrate
(67.0%) contributed most to the association of MAFLD with the
five-constituent mixture, followed by sulfate (19.2%). Our find-
ings point to the need to better control the sources of particulate
matter as targets for risk prevention. Typically, nitrate particles
are formed by the oxidation of nitrogen oxides emitted from
vehicles and other combustion sources;31 sulfate particles are
formed by the oxidation of gaseous sulfur dioxide emitted from
coal or oil burning; OM and BC may predominantly result from
vehicle emissions, coal combustion, and biomass burning;32,33

and ammonium is related to the concentration of ammonia,
which is dominated by agriculture activities.34 To our knowledge,
this is the first epidemiologic study that evaluates the health
effect of PM2.5 constituents on MAFLD and quantifies the relative
contributions of these constituents.
-year exposure to PM2.5 and its major chemical constituents.

Model 1 Model 2

1.133 (1.053–1.219) 1.480 (1.366–1.605)
1.130 (1.055–1.210) 1.426 (1.323–1.538)
1.018 (0.948–1.093) 1.294 (1.196–1.401)
1.236 (1.147–1.332) 1.561 (1.440–1.692)
1.367 (1.272–1.469) 1.618 (1.501–1.744)
1.059 (0.986–1.139) 1.368 (1.262–1.482)

2.5 lm or less in diameter; SD, standard deviation.

el, annal household income.
fruit and vegetable intake, physical activity, second-hand smoking exposure, biomass
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Subgroup

Sex

  Male

  Female

Age

  Less than 65

  More than 65

Smoking status

  Never

  Current

  Quit

Alcohol consumption

  Never

  Low/moderate

  High

High-fat diet

  No 

  Yes

Central obesity

  No 

  Yes

Diabetes mellitus

  No 

Yes

Black carbon

1 1.5 2 2.5

 Ammonium

1 1.5 2 2.5

 Nitrate

1 1.5 2 2.5

 Sulfate

1 1.5 2 2.5

Organic matter

1 1.5 2 2.5 1 1.5 2 2.5

PM2.5

Fig. 3. Odds ratio (95% CIs) of MAFLD associated with each SD increase in 3-year exposure to PM2.5 and its five components stratified by demographic and
lifestyle factors. PM2.5, particulate matter 2.5 lm or less in diameter.

Research article
Our epidemiologic findings are consistent with previous
mechanistic evidence that linked ambient PM2.5 to the liver. Key
biological mechanisms that explain the metabolic effects of
PM2.5 on the liver include oxidative stress, inflammatory re-
sponses, and fibrosis.8,35–38 Human and animal studies have
shown that PM2.5 exposure may alter the plasma lipidome and
hepatic lipid metabolism,39,40 which further promotes systemic
and hepatic inflammation.38 PM2.5 may also impair oxidative
homeostasis and induce oxidative injury, further activating he-
patic stellate cells.41 In addition, after long-term exposure, PM2.5

particles will accumulate in Kupffer cells and trigger inflamma-
tion and hepatic stellate cell collagen synthesis.42

Inorganic compounds, such as particulate sulfate, nitrate, and
ammonium, make up a large fraction of ambient PM2.5. Nitrate
and sulfate in particulate matter are mainly produced as a sec-
ondary aerosol by oxidizing sulfur dioxide (SO2) and nitrogen
oxides (NOx). Two population-level studies separately found that
exposure to sulfate could affect levels of IL1b, IL5, IL7, IL12, and
IFN-c and increase the risk of MetS, suggesting that sulfate af-
fects systemic inflammation and metabolic diseases.13,43 How-
ever, evidence on nitrate and metabolic disorders or diseases is
inconsistent. A study in children and adolescents found that ni-
trate may increase the risk of several metabolic disorders,
including MetS, central obesity, and high blood pressure,44 but
similar results were not observed in middle-aged and elderly
adults.13 Previous epidemiologic studies on particulate
JHEP Reports 2023
ammonium and metabolic disorders or diseases are inconsis-
tent.12,13 The underlying biological mechanisms by which inor-
ganic particulate compounds affect metabolic health remain to
be further explored by future studies.

As for carbon species, BC and OM were positively associated
with MAFLD. Several epidemiologic studies have demonstrated
associations between exposure to carbon species and metabolic
diseases or other biomarkers. For instance, a longitudinal study
found that exposure to BC was associated with increased risks of
total cardiovascular disease and hypertension in Chinese
adults.45 Also, organic carbon was positively associated with
cytokines, including IL8 and MIP-1b, indicating that organic
compounds may induce systemic inflammation.43

Generally stronger positive associations were also observed
for all constituents in males, for most of the constituents in
smokers, and for sulfate and ammonium in participants with a
high-fat diet. Previous studies reported favorable gene expres-
sion in females in response to long-term exposure to air pollu-
tion, while sex hormone levels may be associated with
differential effects of air pollution.46 In addition, smoking is
generally considered a risk factor for metabolic diseases. Our
findings indicate that smoking and PM2.5 and most of its con-
stituents may have additional effects on the risk of MAFLD. A
high-fat diet may lead to obesity, bringing higher metabolism-
related risks. This study found that, in people on a high-fat
diet, sulfate and ammonium were more strongly positively
6vol. 5 j 100912



associated with MAFLD, similar to other studies’ findings. How-
ever, this study did not find statistically significant heterogeneity
in the effect of sulfate and ammonium on the presence of central
obesity and diabetes. More studies are required to validate the
mechanisms underlying these associations.

Nomatter the concentration, ambient air pollutionwill threaten
people’s health and bring a heavy disease burden to society,
considering its ubiquitous existence and the large number of peo-
ple affected. Therefore, interventions to reduce the harmful health
impacts of PM2.5 and its constituents are critical. Thefindings of this
study could help the government develop more targeted air
pollution regulations, promote the development of individual
precise protective equipment, and also inspire physicians to protect
susceptible patients in MAFLD-related clinical practice.

This study benefits from the large-scale population sizes
(76,727 participants included) of CMEC and the wide range of
ambient PM2.5 concentrations in southwest China. The CMEC
was conducted with well-established standard operating pro-
cedures and rigorous quality control measures, which were re-
ported elsewhere.15,16 Also, the exposure data were simulated
using the same method used in the assessment of ambient air
pollution for the Global Burden of Disease study, which has been
shown to have minor errors.17,47 Further strengths are the WQS
method to evaluate the association of joint exposure to PM2.5

constituents with MAFLD. WQS can estimate the weights of each
constituent and their joint effect simultaneously; thus, it gives
easy-to-understand results to guide the control of the most
harmful particulate constituents. Evidence on the positive
JHEP Reports 2023
associations of PM2.5 and its constituents with liver fibrosis
indices and MAFLD phenotypes also strengthened this work.

Nevertheless, we also acknowledge several limitations. First,
there may be some risk of exposure misclassification because
pollution exposures were matched to the participant’s most
recent residential address without considering individual
mobility. In addition, as a cross-sectional study, our study eval-
uated pollution exposures during a prespecified period of 3 years
before baseline enrollment but did not allow us to examine as-
sociations with the progression of MAFLD. Longitudinal analyses
using MAFLD measurements from follow-up surveys will provide
better evidence of the relationship between long-term exposure
to PM2.5 constituents and MAFLD. Last, future work should
consider the source apportion of PM2.5 constituents to provide
stricter regulation of the human sources of emissions that form
these constituents.

To our knowledge, this study is the first large-scale epide-
miologic study exploring the associations between PM2.5 con-
stituents and MAFLD. We observed positive associations
between a mixture of PM2.5 chemical constituents and MAFLD
and quantified specific weights of individual chemical constitu-
ents on MAFLD using WQS regression methods. This research
indicates that particulate nitrate and sulfate of PM2.5 play major
harmful roles on MAFLD and thus should be paid more attention.
Moves to mitigate these ambient chemical constituents might
bring greater benefits to public health. This study also suggests
that males and smokers were more susceptible to the association
between PM2.5 constituents and MAFLD.
Abbreviations
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