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Entropy of a bacterial stress response is a
generalizable predictor for fitness and antibiotic
sensitivity
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Current approaches explore bacterial genes that change transcriptionally upon stress expo-

sure as diagnostics to predict antibiotic sensitivity. However, transcriptional changes are

often specific to a species or antibiotic, limiting implementation to known settings only. While

a generalizable approach, predicting bacterial fitness independent of strain, species or type of

stress, would eliminate such limitations, it is unclear whether a stress-response can be

universally captured. By generating a multi-stress and species RNA-Seq and experimental

evolution dataset, we highlight the strengths and limitations of existing gene-panel based

methods. Subsequently, we build a generalizable method around the observation that global

transcriptional disorder seems to be a common, low-fitness, stress response. We quantify

this disorder using entropy, which is a specific measure of randomness, and find that in low

fitness cases increasing entropy and transcriptional disorder results from a loss of regulatory

gene-dependencies. Using entropy as a single feature, we show that fitness and quantitative

antibiotic sensitivity predictions can be made that generalize well beyond training data.

Furthermore, we validate entropy-based predictions in 7 species under antibiotic and non-

antibiotic conditions. By demonstrating the feasibility of universal predictions of bacterial

fitness, this work establishes the fundamentals for potentially new approaches in infectious

disease diagnostics.
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It is generally assumed that in order to overcome a stress,
bacteria activate a response such as the stringent response
under nutrient deprivation1–3 or the SOS response in the

presence of DNA damage4,5. Measuring the activation of a spe-
cific response, or genes associated with this response, can thereby
function as an indicator of what type of stress is occurring in a
bacterium. For instance, lexA, encoding a master regulator of the
SOS response in Escherichia coli and Salmonella6,7, is upregulated
in response to fluoroquinolones, indicative of the DNA damage
resulting from this class of antibiotics7. Moreover, genes impli-
cated in a stress response can help construct statistical models for
predicting growth/fitness outcomes under that stress. For
instance, gene-panels have been assembled from transcriptomic
data to predict whether a bacterium can successfully grow in the
presence of specific antibiotics8–12. This type of prediction of
growth under antibiotic conditions can lead to point-of-care
diagnostics that guide decisions on antibiotic prescription13.

While methods that are based on a known stress–response or a
gene-panel can be valuable in determining a bacterium’s sensi-
tivity to a stress, these methods have limited applicability: they
only work for small sets of strains, species or environments. For
instance, responses such as the stringent or SOS response are only
well characterized in a small number of species, genes in a gene-
panel may not be present in other strains or species, and
responses are not necessarily regulated in the same manner in
different strains or species14,15. This means that every time such
an approach is applied to a new strain, species or condition, a new
gene-panel needs to be assembled and validated, which requires
the collection of large amounts of data for model training. In
contrast, a universal stress response signature would allow for the
development of a predictive model that would work for multiple
species and conditions, without relying on collecting new data for
different settings. While certain organisms may elicit a “general
stress response”, i.e., regulatory changes coordinated by the same
mechanism in response to different types of stress, this general
response has not been defined for many species, and it is still not
clear to what extent the downstream transcriptional changes
triggered under different stress factors overlap16. Until this point,
there is no generally agreed upon stress response signature that
performs as a fitness predictor, with equal or better performance
than the gene-panel approaches.

One possible key ingredient in building a universal predictor is
to base a prediction not on specific genes, but rather on a bac-
terium’s global response to stress. A global, genome-wide stress
response can be captured on at least two organizational levels;
RNA-Seq captures transcriptional changes, while transposon-
insertion sequencing (Tn-Seq) characterizes the phenotypic
importance of genes, i.e., a gene’s contribution to fitness in a
specific environment17–22. We have previously shown that when
an organism is challenged with an evolutionarily familiar stress
(i.e., one that has been experienced for many generations), it
triggers a subtle response, whereas the response becomes more
chaotic when the bacterium responds to a relatively unfamiliar
stress, for instance antibiotics17. This suggests that the degree to
which a bacterium is adapted to a specific stress may be predicted
from the global response it elicits. It is possible to observe
genome-wide differences between stress-susceptible and stress-
resistant bacteria in data from previously published tran-
scriptomic studies that mostly focus on gene-panel approaches.
Specifically, in these data it can be observed that the number of
differentially expressed genes, and the magnitude of changes in
expression seem to be more dramatic in stress-susceptible strains
than stress-resistant ones8–12,23. Therefore, if these are indeed
characteristic differences between responses coming from stress-
sensitive and stress-resistant bacteria, and these differences can be
appropriately quantified, an opportunity would arise to define a

universal method that can predict fitness for multiple species and
conditions.

In this study we generate and analyze a substantial tran-
scriptomic dataset for the bacterial pathogen Streptococcus
pneumoniae. To validate our dataset, existing gene-panel
approaches are replicated and scrutinized as a point-of-
comparison. Thereby, we first demonstrate that bacterial fitness
under antibiotic or nutrient stress can be predicted by expression
profiles from small gene-panels, while a separate panel can pre-
dict an antibiotic’s mechanism of action. We highlight the lim-
itations of these existing approaches by showing that gene-panels
are sensitive to model parameters and the data they are trained
on, and are limited to strains and species that share the same
genes. With the goal to develop a general approach, we explore
the observation that global transcriptional disorder seems to be a
common stress feature in bacteria. It turns out that increasing
disorder stems from an increasing loss of dependencies among
genes (e.g., regulatory interactions). These dependencies manifest
as correlations in gene expression patterns, and by accounting for
these dependencies, the statistical definition of entropy can be
used to accurately quantify the amount of disorder in the system.
First, we show that when entropy is calculated using time-series
RNA-Seq data and dependencies amongst genes are accounted
for, stress-sensitive strains have higher entropy than stress-
insensitive ones. This enables fitness predictions using a simple
decision rule, where if entropy is either above or below a
threshold, fitness is respectively low or high. Importantly, this
entropy-based method achieves better performance in predicting
fitness outcomes compared to existing gene-panel approaches. In
order to simplify the approach, we show that entropy can be
calculated using a single time-point, and does not necessarily
require time-series data to achieve high accuracy. To highlight the
universality of entropy, in addition to evaluating performance on
a previously unseen test set, validation experiments are performed
for seven Gram-negative and -positive pathogenic species, and
the approach is applied to multiple published datasets. Moreover,
we show that transcriptional entropy is correlated with the level
of antibiotic sensitivity, enabling MIC predictions. Overall, we
develop a large new experimental dataset, and a species-
independent fitness prediction method based on entropy. By
carefully defining entropy, we illustrate that entropy does not
simply capture large changes in expression, but instead builds
upon an intuitive notion of disorder, and enables predictions on
bacterial fitness. We present gene-panel based methods as a
baseline for comparison, and demonstrate that entropy-based
methods perform better, are robust to parameter tuning, and can
accommodate different amounts of data to enable fitness pre-
dictions. Most importantly, unlike gene-panels, entropy-based
predictions generalize to previously unseen settings, and to
multiple pathogenic bacteria.

Results
Existing methods have several limitations, and do not gen-
eralize. Previously, the expression levels of specific genes have
been used to predict susceptibility of a specific species under a
specific antibiotic stress8,11,23. In contrast, the goal here is to
identify a general predictor of fitness (presence or absence of
growth) that does not only work for a specific stress or species,
but instead extends to as many previously unseen settings (i.e.,
species and conditions) as possible. We hypothesized that, in line
with existing approaches, a gene-panel that predicts fitness could
be generated. This panel, when trained on expression data com-
ing from multiple stress conditions, would then predict bacterial
fitness for any condition (rather than a specific condition).
Importantly, we would thereby also be able to assess how sensitive
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such models are to input data and model parameters. Below we
first show that gene-panel models indeed are highly sensitive to
these factors and thereby have limited generalizability. Subse-
quently, we develop an alternative approach using entropy, that is
generalizable, robust, and condition-agnostic (i.e., applicable to
many conditions).

To test the first hypothesis, whether a gene-panel model can be
trained that predicts fitness for many different conditions, a large
RNA-Seq dataset was generated for the human pathogen
Streptococcus pneumoniae. To produce transcriptomic response
profiles from multiple stress conditions, S. pneumoniae strains
TIGR4 (T4) and Taiwan-19F (19F) were grown in the presence or
absence of 1× the minimum inhibitory concentration (MIC) of 16
antibiotics representing four mechanisms of action (MOA). These
include, cell wall synthesis inhibitors (CWSI), DNA synthesis
inhibitors (DSI), protein synthesis inhibitors (PSI), and RNA
synthesis inhibitors ((RSI); Fig. 1a, Supplementary Tables 1 and
2). Each strain was exposed to each antibiotic for 2–4 h and cells
were harvested for RNA-Seq at various time points. As T4 and
19F are susceptible to most antibiotics used, the transcriptional
profiles in the presence of antibiotics mostly represent cases of
low fitness (Fig. 1a, sensitive strain, 1× MICWT). In order to find
patterns that differentiate fitness outcomes, we generated adapted
strains with increased fitness in the presence of antibiotics by
serial passaging wildtype T4 and 19F in the presence of increasing
amounts of antibiotics. Four independent adapted populations for
each strain were selected on individual antibiotics. These adapted
strains could grow in the presence of antibiotic at 1.5xMIC of the
wildtype strain, albeit with a small growth defect (Supplementary
Fig. 1a, b). In parallel, RNA-Seq was performed on S. pneumoniae
strains D39 and T4 in a chemically defined medium, and media
from which either uracil, glycine, or L-valine was removed, which
are essential for D39 but not T4. This enabled the potential
identification of a common stress signature that is shared between
antibiotic exposure and nutrient deprivation, and across multiple
strains. Lastly, D39 was adapted to grow in the absence of each
individual nutrient, after which RNA-Seq was repeated for
adapted clones (Supplementary Table 1 lists all 24 strains, 67
populations and 267 RNA-Seq experiments; RNA-seq data is
provided in Supplementary Data 1, and it is possible to visualize
and explore all data using a ShinyOmics24 based app online at
http://bioinformatics.bc.edu/shiny/ABX).

Transcriptome data were separated into a training set for
parameter fitting, and a test set. The test set includes a completely
different set of antibiotic conditions, to enable proper evaluation
of model performance on previously unseen data (Supplementary
Table 1). A condition-agnostic predictor of fitness was developed
by fitting a regression model on the training set, which includes
high and low fitness outcomes from five antibiotics (representing
four MOAs), three nutrient depletion conditions, and from three
S. pneumoniae strain backgrounds. Lasso-regularization was used
in order to limit the number of features, thereby lowering the risk
of overfitting the model (there are over 1500 genes in common
for the three strains, therefore there are as many potential features
that could be used)25. In order to avoid any bias in the selection of
features, the regularization strength (λ) was automatically
determined using crossvalidation analysis on the training data
(Fig. 1b)25,26. The resulting model (which contains 28 genes and
an intercept, Supplementary Table 3) has an accuracy of 0.93 and
0.77 on the training and the unseen test set, respectively (Fig. 1c,
Supplementary Fig. 2, full performance statistics are in Supple-
mentary Data 6).

Fitness predictions that rely on the expression of specific genes
are potentially influenced by the data used during training23. A
model robust to input data would recover mostly the same
features (i.e., genes) when small subsets of input are omitted

during parameter fitting. In order to test the sensitivity of the
regression model to input data, the same type of regression model
was trained on five different subsets of the training dataset, each
time omitting a different 20% of the data. The features included
and their coefficients varied greatly in these experiments (Fig. 1d),
with only 5 out of 28 genes in the model common to all iterations
of model fitting. To assess sensitivity of the gene-panel to the
regularization strength (i.e., λ), the same model was trained using
different values for λ. While the coefficients of individual genes
vary drastically (Fig. 1e), the performance at different values of λ
remains similar (Fig. 1b, Supplementary Fig. 2B). This indicates
that there are genes that contain similar information for
classification purposes, and are interchangeable. Thus, we
demonstrate that the gene-panel approach is sensitive not only
to input data, but also to model parameters. An implication of
this sensitivity is that the genes in a gene-panel that are selected in
an automatic fashion can be influenced by how the model is
trained. Therefore, interpreting these genes as the determinant
biological factors for fitness can be problematic. Furthermore,
enrichment analysis reveals there are no significantly enriched
functional categories in this gene-panel (Supplementary Fig. 2E).
This suggests that a gene-panel is not a suitable approach for
developing a condition-agnostic model, since no specific common
response to different stresses can be detected that separates low
fitness cases from high fitness ones.

While a condition-agnostic gene-panel is sensitive to input data
and model parameter λ, it remains to be seen whether condition-
specific models suffer from the same issue as well. For three
MOA’s for which we generated data for multiple antibiotics
(CWSI, DSI, and PSI), regularized regression models were trained
(Supplementary Table 4), and the models’ sensitivities to input
data and λ were evaluated. In all three cases, the models change
with input and λ, and show no enrichment for specific functional
categories (Supplementary Fig. 3). In contrast, some published
gene-panels11 have shown functional enrichment (Supplementary
Data 2). However, this is likely because the published gene-panels
have been developed for single antibiotics. Therefore, the genes in
those panels are highly selective for the species-specific response
that is triggered in a particular stress. In contrast, in this work, we
identify predictors that differentiate high and low fitness cases for
multiple stresses. The fact that there is no enrichment on our
gene-panels is suggestive of a lack of a general response,
characterized by a set of specific genes, that gets triggered under
many different circumstances.

Besides a lack of functional enrichment, neither the MOA-
specific nor the condition-agnostic gene-panels developed here
include genes that are known direct-targets of the antibiotics
used. Moreover, in addition to being sensitive to input data and
regularization strength, the condition-agnostic fitness gene-panel
is limited in its applicability to other species, as genes in this panel
lack homologs in other Gram-positive as well as Gram-negative
species (Fig. 1f, Supplementary Table 5). In fact, this homology
problem is a limitation of previously published gene-panels as
well (Fig. 1g, Supplementary Table 5). Gene-panel based models
therefore not only require re-training for each new condition, but
also when they are to be implemented for a new species. This
shows that gene-panel approaches in general not only need to be
applied and interpreted with caution, but there is also no good
evidence to expect that they can be turned into a generalizable
fitness predictor that is both species and condition-agnostic.

Gene-level transcriptional responses are unique to the type of
stress. We hypothesized that one of the reasons why it may be
nontrivial to produce a condition-agnostic model is because the
different conditions (i.e., MOA’s of different antibiotics) trigger
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such distinct responses that it is unlikely to identify a common
signature among them. To determine whether responses from
different antibiotics that fall under the same MOA cluster toge-
ther, principal component analysis (PCA) was performed on the
complete differential expression dataset. Each experiment is

presented as one trajectory, connecting individual timepoints
within that experiment (Fig. 2a). K-means clustering of all
experiments’ trajectories showed that transcriptional responses to
drugs within the same MOA tend to follow similar trajectories
over time (Fig. 2a, b).
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Fig. 1 Gene panel-based fitness predictions of S. pneumoniae under antibiotic and nutrient stress. a Project setup and overview. Wildtype and adapted
strains of S. pneumoniae are exposed to multiple antibiotics, belonging to four different classes, and their fitness outcomes in each condition is determined
by growth curves. Temporal RNA-Seq data is used to train models that predict the MOA of an antibiotic, and the fitness outcome of a strain using gene-
panel approaches. The concept of entropy is developed expanding predictions to MIC and fitness for other strains and species in the presence of antibiotics
and in non-antibiotic conditions. CWSI cell wall synthesis inhibitors: AMX amoxicillin, CEF cefepime, CFT ceftriaxone, IMI imipenem, PEN penicillin, VNC
vancomycin; DSI DNA synthesis inhibitors: CIP ciprofloxacin, COT cotrimoxazole, LVX levofloxacin, MOX moxifloxacin; RSI RNA synthesis inhibitor: RIF
rifampicin; PSI protein synthesis inhibitors: KAN kanamycin, LIN linezolid, TET tetracycline, TOB tobramycin; DAP daptomycin (a membrane disruptor). b A
gene-panel for fitness prediction is generated by a regularized logistic regression model fit on differential expression data from the training set. The
selected value of λ= 0.0428 is shown as a dashed line, resulting in 28 genes in this panel. Red points and error bars represent mean ± standard deviation of
error across n= 5 crossvalidation folds. c Prediction performance of the fitness gene-panel is shown as confusion matrices for the training (top) and test
(bottom) datasets. The gene-panel generates 10 and 4 false positives, and an overall accuracy of 0.93 and 0.77 in the training and test data sets
respectively. d Coefficients of individual features (i.e., genes) are plotted for the model trained on the full dataset, and five crossvalidation training folds,
where 20% of the data is omitted during model fitting. The gene-panel is highly affected by training data, indicated by many genes having nonzero
coefficients on some folds, but not others. Only 5 out of the 28 genes in the fitness gene-panel are maintained as predictors in the regression models
across all folds. e Each gene’s coefficient is plotted as an individual line, against varying values of λ. The gene panel is highly affected by λ, indicated by the
nonmonotonic increase or decrease in the coefficient in each gene. In fact, there are many genes that have nonzero coefficients only for a small range of λ.
Dashed line depicts the selected value of λ as in (b). f The presence and absence of each of the 28 genes in the S. pneumoniae fitness panel is highly variable
across 5 Gram-positive and Gram-negative species. g A published E. coli ciprofloxacin sensitivity panel11 also suffers from a lack of conservation across the
same group of species. Gene identifiers can be found in Supplementary Table 5.
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To further analyze whether different MOA’s trigger different
responses, a multi-class logistic regression model was fit on the
training dataset, and evaluated on the test set. If a simple classifier
can successfully distinguish between different MOA’s, this would
imply that there are discriminating signals specific to each MOA.
Similar to the fitness prediction, the regularization parameter was
selected via a principled automatic procedure (without making
any arbitrary decisions) to avoid overfitting (Supplementary
Fig. 4A). This simple regression model is able to classify MOA’s
with an accuracy of 1 on the training set, and with only a single
misclassification in the test set (Fig. 2c, Supplementary Fig. 4D).
Similar to our fitness panel, enrichment analysis of the 34 genes
in this MOA panel reveals no significantly enriched functional
categories (Supplementary Fig. 4E). While some of the genes in
the panel are relevant to the action of specific antibiotics, it is not

immediately evident how each individual gene is relevant for the
classification. For instance, DNA gyrase A (SP_1219) appears in
the MOA panel (Supplementary Data 4), and is a direct target of
fluoroquinolones LVX and CIP, belonging to the class DSI.
However, it is downregulated to a higher extent under both RSI
compared to DSI stress, and thus does not have much
discriminating power on its own (Supplementary Fig. 4D).
Compared to the fitness prediction panel, the features in the
MOA panel are more robust to parameter tuning (Supplementary
Fig. 4B), and to input data (Supplementary Fig. 4C). This suggests
that MOA prediction is an easier task than fitness prediction
using existing gene-panel approaches. Previous studies have
demonstrated it is possible to train a classifier that predicts MOA
from whole transcriptome data27,28. However, it was unclear
whether MOA could be predicted from the expression of a few
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18134-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4365 | https://doi.org/10.1038/s41467-020-18134-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


genes. Our model could therefore, for instance, be implemented
to classify the MOA of novel antimicrobials, without having to
profile the entire transcriptome.

Entropy as a measure of transcriptional disorder predicts fit-
ness. While the practical application of the MOA model may be
useful, the main goal of this work is to build a versatile toolbox for
fitness predictions that does not have many parameters to tune,
does not rely on specific genes, and therefore possibly has
improved generalizability compared to gene-panel models. To
accomplish this, we focused on the following observation that we
made in the data presented in this work, as well as in previously
published studies11,12,23,29: bacteria with low-fitness in a given
condition trigger larger, and seemingly more chaotic gene
expression changes than those with high fitness (Fig. 3a, b).
Specifically, the temporal response of the wildtype strain with low
fitness shows an escalating response over time, with increasing
and fluctuating transcriptional changes. In contrast the response
of the adapted strain, with high fitness, is contained with only
small changes in expression (Fig. 3a). Since these characteristics
can be observed for many different stress-types and species, it
could possibly be turned into a generalizable predictor of fitness if
appropriately captured. Importantly, these types of patterns in the
data evoke statistical entropy, which is a well-established concept
that captures the amount of disorder in a system (Fig. 3b, Sup-
plementary Fig. 5). Figure 3b shows three hypothetical scenarios.
Genes in scenarios 1 and 2 have some sort of regulatory inter-
action, for instance because they are in the same operon. In
scenario 2, the individual genes’ expression patterns have differ-
ences in magnitude and direction, but all genes still have similar
overall expression trajectories that co-vary. Therefore, the first
2 scenarios are illustrative of strong dependencies among genes.
In contrast, scenario 3 highlights a more disordered pattern, and a
lack of dependencies between genes, which results in this sce-
nario’s entropy being the highest. We hypothesized that with
increasing amounts of stress (i.e., when the fitness of the bac-
terium is lowered), the bacterium experiences increasing amounts
of dysregulation, resulting in a loss of dependencies in expression
among genes. A loss of such dependencies results in more and
more genes changing in expression independently (and perhaps
seemingly randomly), resulting in an increase in entropy. Based
on this idea, we aimed to quantify the amount of disorder in a
transcriptomic response by computing entropy. To predict fit-
ness, we then use a simple decision rule on a single feature, which
avoids overfitting, where entropy higher than a threshold t pre-
dicts low fitness, and entropy lower than t predicts high fitness.

To calculate entropy on a transcriptomic dataset with multiple
timepoints, we redefine the classical statistical concept of entropy
(H) as follows:

H ¼ lnðjΣρjÞ; ð1Þ

Where Σ is the empirical covariance matrix (Σp is the empirical
covariance of genei and genej computed from the time series
data), and |Σ| denotes the determinant of Σ30–33. Σp is a graphical-
lasso regularized Σ, where ρ denotes the regularization strength.

Entropy is computed from experiments with multiple time-
points as follows. (1) The temporal differential expression (DE)
data is used to compute a gene–gene empirical covariance matrix
Σ. (2) Graphical lasso34 is applied to Σ to obtain a regularized
inverse of this covariance matrix (Σp−1). The matrix Σp−1

represents a network of dependencies of the regulatory interac-
tions of the genes. (3) The inverse of this matrix (Σp) can then be
used in Eq. (1) to compute entropy (Supplementary Fig. 5).

It is important to note that, with the described approach, a high
entropy response reflects large changes in magnitude in the

transcriptome that come from independently responding genes.
This means that large changes in magnitude can still result in low
entropy, when changes in expression are synchronized among
genes (Fig. 3b). Synchronization thus comes from dependencies
between genes, for instance due to regulatory interactions, which
can vary based on the condition. Here, it is assumed that there is a
sparse network of such dependencies (i.e., regulatory interac-
tions), which are specifically determined for each experimental
condition. These regulatory interactions for each experiment
are inferred by computing a covariance matrix Σ from temporal
DE data. The inverse of this covariance matrix (Σ−1) is
interpretable as the (condition-specific) regulatory interaction
network, where gene pairs have a zero value on Σ−1 when their
expression patterns are not directly dependent on each other. Like
most biological networks, the condition-specific regulatory
interaction network is expected to be sparse35–37. However, raw
values on Σ−1 empirically measured using RNA-Seq data, are
mostly nonzero, resulting in a dense network, potentially due to
noise in data collection. Regularization is thereby applied on Σ−1

to estimate a de-noised, sparse network of interactions Σp, more
likely to represent real, biologically relevant regulatory
dependencies.

Training of this multi time-point entropy model includes the
determination of two parameters: regularization strength ρ and
threshold t. This is accomplished by first determining ρ by
fivefold crossvalidation (on the training set), and then determin-
ing t for this selected ρ. ρ at 1.5 minimizes crossvalidation error
(Fig. 3c), and using this value of ρ on the full training set, results
in a threshold t of 1066.25. This in turn yields an accuracy of 0.97
and 0.84 in the training and test sets respectively (Fig. 3f,
Supplementary Datas 5 and 6), which are both higher accuracies
than the corresponding values obtained with the gene-panels
(Fig. 1, Supplementary Data 6). Receiver–operator characteristic
(ROC) curve analysis shows that entropy can effectively separate
high and low fitness cases, with an area under the ROC curve of
0.99 and 0.91 for the training and test sets, respectively (Fig. 3d).
Precision-recall (PR) curve analysis reveals that entropy can
detect high-fitness cases, with an area under the PR curve of 0.99
and 0.98 for the training and test sets, respectively (Fig. 3e). Both
ROC and PR analyses thus show much better performance of
entropy compared to the gene-panel on the test set (Supplemen-
tary Data 6). Moreover, entropy of each cellular function is
similar for a given experiment (Supplementary Fig. 6), suggesting
that transcriptome-wide entropy is not dominated or influenced
by a certain set of genes. Unlike the gene-panel based fitness
prediction models, the entropy model is robust to the selection of
regularization strength ρ. It is possible to set ρ to be an extreme
value and still get comparable performance to the model above
(Supplementary Fig. 7). Here, two such extreme values are
considered. For instance, if ρ=∞ (i.e., the co-variances among
genes are ignored and genes’ responses are assumed to be
independent), entropy can be computed as the average of the
logarithm of variances of all genes (see “Methods”). In this case,
the training and test set accuracies are 0.94 and 0.74, respectively
(Supplementary Data 6), which is comparable to the fitness gene-
panel. If, on the other extreme, ρ= 0, i.e., entropy is computed
directly on the non-regularized covariance matrix, the model will
over-correct for a dense network. In this case, the training and
test set accuracies are 0.86 and 0.32, respectively (Supplementary
Data 6). In this case, the poor performance on the test set is likely
due entropy being sensitive to the number of experimental
timepoints used. The training set (which is used for determining
t) contains mostly experiments with seven timepoints or more,
whereas the test set contains experiments with only two
timepoints (Supplementary Table 1). Using fewer timepoints
changes entropy in the same direction for most experiments,
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while maintaining a separation between high and low-fitness
cases: for ρ= 0 or ρ=∞ entropy in most experiments is increased
when more timepoints are used, whereas for ρ= 1.5 entropy in
most experiments is decreased when more timepoints are used
(Supplementary Fig. 8). For ρ=∞ or ρ= 1.5 this effect does not
negatively impact predictive performance drastically (Fig. 3,

Supplementary Fig. 7). However, for ρ= 0 it appears that the
value of t determined on the training set is inappropriate for the
test set. Yet the low-fitness experiments in the test set still have
higher entropy than high-fitness experiments (Supplementary
Fig. 7C). Thus, a lower threshold for entropy could perform better
on experiments with fewer timepoints. While the model is
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sensitive to extreme changes in regularization, this sensitivity is
not as severe as the gene-panels, since the extreme value of ρ=∞
also yields a test set accuracy of 0.74, which is comparable to the
gene-panel method with a 0.79 test set accuracy. The entropy-
based model thus operates with highest accuracy when biologi-
cally realistic assumptions are made.

A simpler model of entropy predicts fitness from a single
timepoint. The time course experiments accurately capture a
bacterium’s survival in a test environment, but they are labor
intensive and potentially expensive. In cases where temporal
information may not be available or is prohibitively expensive to
generate, computing covariance across genes is not possible.
However, entropy can still be determined for a single-timepoint
transcriptome profile as follows38:

Hstp ¼ ln σ2
� �

; ð2Þ
where σ2 is the variance of the distribution of DE across genes for
a single timepoint (Fig. 4a, b). This simpler definition of entropy
enables the approach to be applied even in settings where tem-
poral transcriptional information cannot be obtained. Similar to
the temporal models, a threshold for entropy was determined
automatically (in this case 2.08), which is the value that max-
imizes classification accuracy in the training set which contains
data from multiple timepoints. Analogous to the temporal
models, low fitness is associated with higher entropy compared to
high fitness conditions (Fig. 4, Supplementary Data 3). The
single-timepoint variant of entropy outperforms gene-panels: on
the test set, the area under ROC curve is 0.88 for entropy, and
0.75 for the gene-panel (Fig. 4d, Supplementary Data 6). Simi-
larly, for the test set, the area under the PR curve is 0.96 for
entropy, whereas for the gene-panel, it is 0.32 (Fig. 4e, Supple-
mentary Data 6). Moreover, the single timepoint variant of
entropy can classify low and high fitness cases with an accuracy of
0.81 and 0.61 in the training and previously unseen test sets
respectively (Fig. 4f, Supplementary Data 6). However, our data
shows that different antibiotics trigger responses in a time
dependent manner, which may lead to ambiguities in the
entropy-based prediction of fitness for early timepoints for anti-
biotics that cause a slower response (e.g., KAN, Fig. 4c). There-
fore, predictions based on (slightly) later timepoints might result
in improved accuracy. To test this, the training and test datasets
were split into early (≤45 min of stress exposure) and late (≥60
min of exposure) timepoints. Two new thresholds for entropy

were determined: tearly= 0.94 on the early timepoints and tlate=
2.11 on the late timepoints within the training data. On the early
timepoints, tearly achieves an accuracy of 0.75 and 0.63 on the
training and test sets, respectively. On the later timepoints, tlate
yields a high accuracy of 0.88 and 0.84 on the training and test
datasets, only including three false-positive predictions in the test
data set (Fig. 4g). This shows that entropy computed on data
from later time points results in a higher predictive accuracy of
fitness outcome than earlier time points (Fig. 4g). Biologically this
also makes sense, because while only some antibiotics trigger a
clear response within 30–60 min after exposure, all antibiotics
trigger an increasingly pronounced response as exposure times
progress past 60 min. The time dependency of an antibiotic
response thus makes it more difficult to accurately predict fitness
using data from early timepoints. This time dependency would
affect the gene-panel for fitness predictions as well. Even though
the gene-panel is trained and tested on only the later timepoints
and has far poorer performance compared to entropy trained and
tested on the same (late) timepoints. Moreover, entropy trained
on early timepoints does only slightly worse than gene-panels
trained on late timepoints, with only three additional mis-
classifications (Supplementary Data 6). This highlights that
despite the time dependency of an antibiotic response, our new
entropy-based approach can make predictions on at least two
time frames, unlike gene-panels.

Overall, the entropy model (and its variants) has several
advantages. First, it is based on a simple, and intuitive principle:
large and independent changes in the transcriptome are indicative
of dysregulation, and beyond a threshold predictive of low fitness.
Second, it is possible to simplify the entropy-based model to
accommodate less data (i.e., single timepoint transcriptome).
Third, an entropy-based model has few parameters (at most two
parameters need to be determined), and is therefore less likely to
be overfit to data. Fourth, the model does not depend on the
identity of specific genes, who may or may not be present in
different strains/species. Fifth, the model could be easily applied
to other data types (e.g., proteomics and metabolomics). There-
fore, an entropy-based model is more likely than a gene-panel
based approach to be generalizable to previously unseen
conditions and species.

Entropy-based predictions generalize across species and con-
ditions. To test if the entropy-based approach is indeed gen-
eralizable and successfully predicts fitness for other S.

Fig. 3 Transcriptomic disorder can be quantified by entropy, which predicts fitness. a Depiction of the transcriptomic response of wildtype T4 and VNC-
adapted T4 in response to 1× MIC-wt of Vancomycin. Differential expression (DE) of each gene over time is represented as a line. The response of the wild
type is more disordered than the adapted-response, and has higher entropy. b Entropy captures disorder in a transcriptome and not simply high-magnitude
changes. The top panel shows three hypothetical scenarios, where DE of four individual genes are tracked over time. In scenarios 1 and 2, the individual
genes are dependent on each other and follow similar transcriptional trajectories. In scenario 3, dependencies are largely absent and the overall changes in
DE seem much more disordered. In the bottom panel, magnitude changes (blue, quantified as the sum of absolute DE), and entropy (red) for the three
scenarios are compared. While the largest changes in magnitude are in scenario 1, both scenario 1 and 2 have relatively low entropy, due to dependencies
among genes. In scenario 3, overall DE is similar to the other two scenarios, but the magnitude changes have lost much of their dependency and have
become disordered, resulting in high entropy. c Selection of regularization parameter ρ. Fivefold crossvalidation was used to determine the best choice of ρ.
Error (1-accuracy) is reported as the mean ± standard deviation across n= 5 folds. The value of ρ that minimizes the mean crossvalidation error is
determined to be 1.5 (red dashed line). d Performance of temporal entropy-based fitness prediction is shown as receiver-operator characteristic (ROC)
curves plotting the sensitivity against the false-positive rate across a range of thresholds for training (black) and test (red) datasets. The area under the
ROC (AUROC) curve shows how well the predictor can separate high and low fitness. The AUROC is 0.89 and 0.94 for the training and test set
respectively. e Performance of temporal entropy-based fitness prediction is shown as precision-recall (PR) curves plotting precision against recall across a
range of thresholds for training (black) and test (red) datasets. The area under the PR curve (AUPRC) shows how well the predictor can detect high fitness
cases. The AUPRC is 0.88 and 0.98 for the training and test set respectively. f Entropy of all experiments in the training (top panel) and test (bottom
panel) sets. Each experiment is represented as an individual bar, colored according to the experimentally determined fitness outcome. Bars above the
entropy threshold (Entropy= 1066.25) are predicted to be low fitness and bars below the threshold are predicted to be high fitness. Both training and test
sets score very well with an accuracy of 0.97 and 0.84, respectively.
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pneumoniae strains and other species, a new RNA-Seq dataset
was generated under ciprofloxacin exposure for Salmonella
typhimurium, Staphylococcus aureus, E. coli, Klebsiella pneumo-
niae, and two additional S. pneumoniae strains representing
serotypes 1 and 23F (Supplementary Table 1). These five species
represent both Gram-negative and Gram-positive bacteria and
cover a wide range of ciprofloxacin MICs (Fig. 5a). Since the
single-timepoint variant of entropy is the most practical (in terms
of data collection and cost), the generalizability of entropy to
previously unseen species was evaluated using this model. RNA-
Seq was performed at 120 min post exposure to 1 µg per mL of
CIP. The overall response characteristics are similar to what was
observed for S. pneumoniae, with 120 min exposure to 1 µg per

mL ciprofloxacin triggering expression changes with higher var-
iance from bacterial cultures having low fitness (S. typhimurium
and S. pneumoniae serotype 1), compared to those with high
fitness (S. pneumoniae serotype 23F, E. coli and K. pneumoniae)
(Fig. 5b). Single-timepoint entropy was computed for the tran-
scriptome of each of these previously unseen isolates. Impor-
tantly, with the original threshold of 2.08, which was determined
during model training with data from S. pneumoniae in Fig. 4,
fitness outcomes could be predicted for the new organisms with
100% accuracy, indicating that the single-timepoint entropy
measure, which uses the least amount of data compared to other
variants of entropy, is a species-independent generalizable feature
for fitness outcome.
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Furthermore, the entropy measurement of each strain was
found to be inversely proportional to the MICCIP (Fig. 5c),
consistent with transcriptional disruption being proportional to
stress sensitivity. The correlation between entropy and cipro-
floxacin sensitivity in Fig. 5c (left panel) therefore implies that the
antibiotic sensitivity of other species could be predicted from its
transcriptomic entropy. To test this, entropy was calculated for
Acinetobacter baumannii isolates that are either low (ATCC
17978) or high (LAC-4) virulence, by collecting RNA-Seq profiles
after 120 min exposure to 1 μg per mL of ciprofloxacin. Using a
linear regression model, the ciprofloxacin MICs of the A.
baumannii strains were predicted to be 0.04 and 10.45 μg per
mL, which are proximate to the measured MIC’s of 0.07 and 8.5
μg per mL for ATCC 17978 and LAC-4, respectively (Fig. 5d;
Supplementary Fig. 1D). This demonstrates that entropy is not
simply a binary indicator of fitness outcomes. Even when using a
single timepoint, i.e., the least amount of transcriptomic
information, entropy can be applied to determine the antibiotic
sensitivity level for new unseen species that were not in any
training data.

To further validate the approach, data from Bhattacharyya
et al.11 was used. In this RNA-Seq dataset, susceptible and
resistant strains from three species were exposed to three different
antibiotics (two of which were not present in our dataset). Again,
by using the entropy threshold of 2.08 (obtained above through
training on the S. pneumoniae data) susceptible strains with low
fitness are successfully separated from resistant strains with high
fitness (Fig. 5e).

Finally, to explore the applicability of entropy beyond nutrient
and antibiotic stress, entropy-based fitness classification was
performed on a published collection of 193 M. tuberculosis
transcription factor overexpression (TFOE) strains39. Upon
TFOE, these strains exhibit fitness changes, ranging from severe
growth defects to small growth advantages40. Overexpression of a
single transcription factor can thereby exert stress on the
bacterium that can result in different fitness outcomes. By
calculating entropy from whole-genome microarray data col-
lected from each TFOE strain, it is possible to distinguish strains
based on their fitness levels at an accuracy of 0.78, using a newly
trained entropy threshold for this dataset (Fig. 5f). This result
compares favorably with a much more complicated approach
involving the integration of each TFOE transcriptional profile
into condition-specific metabolic models39. Overall, these data
clearly highlight the strength of entropy, which has the potential
to be utilized as a generalizable fitness prediction method for both
antibiotic and nonantibiotic stress, and a large variety of bacterial
strains and species.

Discussion
A major goal of this work is to determine if there is a quantifiable
feature that can accurately predict bacterial fitness in an envir-
onment, independent of strain, species or the type of stress. To be
generalizable, the selected feature needs to be common across
species and environments. By generating a large experimental
dataset and analyzing published ones, we show that such a feature
exists, namely transcriptomic entropy, which quantifies the level
of transcriptional disorder while a bacterium is responding to the
environment. It is important to realize that entropy is not simply
a measure of large magnitude changes in the transcriptome.
Instead, entropy takes into account condition-specific transcrip-
tional dependencies among genes, and quantifies the amount of
independent changes. The underlying assumption is that gene
expression patterns lose underlying dependencies and become
more stochastic with increasing amounts of stress. The difference
between simple measures of magnitude changes and more con-
trolled measures of entropy is illustrated in Fig. 3b. We show that
entropy is a flexible, and generalizable predictor of bacterial fit-
ness in a variety of different environments, it can be used with
time-course data or single-timepoint data, and can even be used
to predict the MIC of an antibiotic. This study demonstrates how
entropy-based predictive models can be implemented in several
ways, by using different amounts of data, resulting in different
types of predictions. Even using a single timepoint, it is possible
to predict both fitness as a binary outcome, as well as the MIC of
an antibiotic (Fig. 5d), highlighting entropy as a very flexible
framework that can be adapted to different settings.

We use current gene-panel based approaches for two reasons:
(1) To search for a gene-panel that would capture a general
stress-response (if it exists), and thus would represent a set of
genes and associated regulatory changes coordinated by the same
mechanisms in response to different types of stress. The exis-
tence of such a general response has been mostly connected to
the manner in which rpoS responds to stress in E. coli and a small
number of other species. However, it is largely unclear which
genes respond downstream of rpoS, whether this response is
accompanied by stress-specific responses, to what extent these
transcriptional changes overlap across species and in response to
different types of stress16. Moreover, if such a general stress
response exists widely across species, it is unclear whether there
is any predictive information to be extracted from it. Impor-
tantly, we were unable to identify such a gene-panel within the
dataset we generated for S. pneumoniae and other species, as well
as in the published datasets we explored; (2) as a point of
comparison for our entropy-based approach. This comparison
highlights that an entropy-based approach yields better

Fig. 4 Fitness can be accurately predicted using a single time-point based definition of entropy. a Genome-wide differential expression (indicated as
log2FoldChange Antibiotic/NDC (no drug control)) shows significantly wider distributions in antibiotic-sensitive strains (wtTIGR4 and wt19F) compared to
antibiotic-adapted strains in the presence of vancomycin (a cell wall synthesis inhibitor; CWSI) and rifampicin (an RNA synthesis inhibitor; RSI),
respectively in a two-sided Kolmogorov–Smirnov test. **: 0.0001 < p < 0.001; ***: p < 0.0001. b Entropy for a single time point is defined as the log-
transformed variance of the distribution of differential expression across genes for a specific timepoint. c Single time point entropy is calculated from
differential expression of all genes in experiments in the training (left panels) and test (right panels) datasets at each time point and plotted against time
post-stress exposure (i.e., in the presence of antibiotics—AMX, CEF, CFT, CIP, COT, DAP, IMI, KAN, LIN, LVX, MOX, PEN, RIF, TET, TOB, VNC, or in the
absence of nutrients—Glycine-GLY, Uracil-URA, Valine-VAL). Dashed red line indicates the entropy threshold (2.08) for the single-timepoint entropy
predictions of fitness. The performance of the single time-point entropy-based fitness prediction (applied to all timepoints, ranging from 10′ to 240′) is
shown as receiver-operator characteristic (ROC, d) and precision-recall (PR, e) curves. The area under the ROC curve is 0.79 and 0.88 for training and test
sets, respectively. The area under the PR curve is 0.77 and 0.96 for training and test sets respectively. f Confusion matrix of single time-point entropy-
based fitness prediction of the training (top panel) and test (bottom panel) datasets, highlights a good performance, but shows that there are a relatively
large number of false positives. g Entropy values of individual experiments in the training (top) and test (bottom) sets, separated by time. Left and right
panels show early (≤45min) and late (>45min) timepoints, respectively. It turns out that most false-positive predictions in panel f come from early
timepoints due to a lack in transcriptional changes within the first 45′ after antibiotic exposure. In contrast, antibiotic exposure longer than 45′ (late
timepoints) leads to a clear separation of high and low fitness and high accuracy in training and test data sets.
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performance than a gene-panel based approach (Supplementary
Data 6), and has at least three additional advantages over existing
gene-panel approaches: (a) It is independent of specific genes,
whereas gene-panels focus entirely on specific genes. This might
lead researchers to interpret genes present in a particular panel as
those most relevant to the stress response. However, caution
should be taken in the interpretation of these gene panels,

because it turns out that the genes that appear in these panels are
strongly influenced by model parameters (λ) and input data
(Fig. 1). (b) An entropy-based method has few (at most 2)
parameters, and therefore does not risk overfitting (unlike gene-
based approaches, where there is at least one parameter per each
transcriptionally measured gene). (c) The entropy method gen-
eralizes across different antibiotic and non-antibiotic conditions,
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Fig. 5 Entropy-based predictions extend to multiple species under antibiotic or regulatory stress. a Six strains representing five species are ranked from
low to high ciprofloxacin minimal inhibitory concentrations (MICCIP) tested by growth curve assays (Supplementary Fig. 1). The multi-species CIP RNA-Seq
is performed at two CIP concentrations: (1) 1 µg per mL for all six strains corresponding to two low fitness outcomes (red squares) and four high fitness
outcomes (cyan squares); (2) MICCIP for strains that are insensitive to 1 µg per mL of CIP, i.e., S. pneumoniae serotype 23F, S. aureus UCSD Mn6, E. coli
AR538, and K. pneumoniae AR497, corresponding to four additional low fitness outcomes. The number of genes that change in expression upon exposure
to 1 µg per mL CIP (|log2FoldChange| > 1 and p-adj < 0.05) as well as their change in magnitude is inversely correlated to their CIP sensitivity (b) and their
entropy (c). In addition, strains with MICCIP higher than 1 µg per mL revert to triggering a large number of differential expression genes (b) and a high
entropy (c) at their respective 1× MICCIP. d Using a linear regression model (black line; error band: 95% confidence interval for the regression), MIC’s are
predicted for A. baumannii strains ATCC 17978 and LAC-4 based on their entropy at 1 µg per mL of ciprofloxacin. The predicted (green datapoint) and
measured (yellow datapoint) MIC for the two strains are highly accurate indicating that entropy can be used as a quantitative predictor. See Supplementary
Fig. 1D for MIC determination for A. baumannii ATCC17978 and LAC-4. e Further validation of the generalizability of the single time-point entropy approach
on published expression data11. The universal entropy threshold of 2.08 trained on our S. pneumoniae data, was successfully used to predict fitness
outcomes of susceptible and resistant strains from three species in the presence of three different antibiotics. Importantly, six of the species-antibiotic
combinations (GEN-A.b/E.c/K.p and MER-A.b/E.c/K.p) were not present in our datasets, which highlights the universality and generalizability of the
entropy based approach. GEN gentamicin, MER meropenem. A.b A. baumannii, E.c E.coli, K.p K. pneumoniae. f Entropy calculated from transcriptional profiles
of 193 M. tuberculosis transcription factor overexpression (TFOE) strains from reference35 separates strains with a >30% fitness defect upon TFOE
induction (red) from strains with a fitness advantage or <30% fitness defect upon induction (cyan). At the threshold of 0.71 (red dotted line), fitness
outcomes are correctly predicted at an accuracy of 0.78.
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and across different species. This is not the case for gene-panel
based methods, which can only make predictions on the same
conditions as the data they were trained on (i.e., one model is
predictive for a specific species and a specific antibiotic). And
even though a gene-panel may only use expression of a limited
number of genes to predict fitness, and may therefore seem to be
relatively easy to implement in a clinical setting, each new
antibiotic-species combination requires the collection of an
entirely new training dataset. This makes gene-panel approaches
costly. Although in this paper we focus mainly on accuracy of
fitness predictions, there are additional biological insights to be
gleaned from the data presented in this work. For instance, the
inverse covariance matrix from Eq. (1) represents a network that
reveals regulatory interactions among genes. The covariance
network inference using graphical-lasso regularization presented
here is to the best of our knowledge an improvement upon other
methods (e.g., WGCNA41), which will be explored in depth in
future work. Thus, it is possible that the networks generated in
this work will be applicable in other ways, e.g., in the identifi-
cation of novel regulators, their targets, or the prediction of
transcriptional changes that follow a perturbation.

By demonstrating the feasibility of predictions of fitness out-
comes and antibiotic sensitivity, we envision several possibilities
of integrating entropy-based predictions in a clinical diagnostic
setting. Currently, AST is often performed using culture-based
methods. These methods may take days and even weeks for slow-
growing species such as M. tuberculosis42, delaying diagnosis and
treatment in clinical settings. Therefore, it is desirable to be able
to predict the fitness outcome of such slow-growing species as
early as possible, for instance using RNA expression data.
Another potential application of our entropy-based fitness pre-
dictions is monitoring an active infection in vivo. Performing
transcriptome profiling and predicting the fitness of the infectious
agent directly in its host environment would allow for monitoring
of disease progression, and determining if and when treatment is
necessary. Simultaneously profiling the pathogen and the host
using dual RNA-Seq43,44, and predicting the fitness of both could
also be valuable in assessing the state and progression of an
infection.

Admittedly, direct implementation of RNA-Seq in diagnostic
tests might not (yet) be practical, as RNA-Seq experiments still
remain relatively expensive, labor-intensive and time-consuming.
In particular, time-course experiments such as those included in
this study increase in cost linearly with an increasing number of
time points. However, the advances in technology are likely to
reduce cost much more drastically than a linear model, as is
observed for many sequencing approaches. To implement tem-
poral entropy, it is important to recognize that more timepoints
will yield better results. However, even two timepoints gives
robust results. The most economic approach would clearly be the
single-timepoint model, which has comparable performance to
the temporal models, with the only disadvantage that it lacks
possible insights that could be gleaned from the covariance net-
works temporal entropy is based on. With the advent of real-time
sequencing technologies, such as Nanopore, the speed of data
collection may soon be improved significantly. In addition, a
transcriptome can be sub sampled by monitoring conserved genes
across species. In this scenario, transcriptional entropy can be
obtained via more economical gene expression technologies, such
as NanoString nCounter45 or the Luminex platform46. To con-
clude, we present an approach that uses entropy to predicting
fitness independently of gene-identity, gene-function, and type of
stress. This approach can be applied as a fundamental building
block for generalizable predictors of fitness and MICs for Gram-
positive and negative species alike, and thereby possibly improve
clinical decision-making.

Methods
Bacterial strains, culture media, and growth curve assays. S. pneumoniae strain
TIGR4 (T4; NC_003028.3) is a serotype four strain originally isolated from a
Norwegian patient47,48, Taiwan-19F (19F; NC_012469.1) is a multi-drug resistant
strain49,50 and D39 (NC_008533) is a commonly used serotype 2 strain originally
isolated from a patient about 90 years ago51. Strain PG1 and PG19 were isolated
from adults with pneumococcal bacteremia infection and included in the Pneu-
mococcal Bacteremia Collection Nijmegen (PBCN)52. All S. pneumoniae gene
numbers refer to the T4 genome. Correspondence between homologous genes
among S. pneumoniae strains and gene function annotations are described in
Supplementary Data 1. Escherichia coli strain AR538, Klebsiella pneumoniae strain
AR497 and Salmonella enterica subsp Typhimurium strain AR635 were clinical
isolates obtained from the Center of Disease Control (CDC). Staphylococcus aureus
strain MN6 was kindly provided by George Sakoulas (Center of Immunity,
Infection & Inflammation, UCSD School of Medicine). Unless otherwise specified,
S. pneumoniae strains were cultivated in Todd Hewitt medium with 5% yeast
extract (THY) with 5 μL per mL oxyrase (Oxyrase, Inc) or on sheep’s blood agar
plates (Northeastern Laboratories) at 37 °C with 5% CO2. A. baumannii, E. coli. K.
pneumoniae, S. aureus, and S. Typhimurium were cultured in Mueller Hinton
broth II (Sigma) at 37 °C with 220 rpm constant shaking. RNA-Seq experiments of
S. pneumoniae under nutrient-depletion and antibiotic conditions were performed
in semidefined minimal medium (SDMM)20. RNA-Seq experiments for A. bau-
mannii, S. typhimurium, E. coli. K. pneumoniae, and S. aureus were performed in
Mueller Hinton broth II. Single strain growth assays were performed three times
using 96-well plates by taking OD600 measurements on a Tecan Infinite 200 PRO
plate reader.

Temporal RNA-Seq sample collection, preparation and analysis. In nutrient
RNA-Seq experiments, T4, D39, and adapted D39 were collected at 30 and 90 min
after depletion of D39-essential nutrients. In the training set antibiotic RNA-Seq
experiments, wild-type and adapted T4 or 19F were collected at 10, 20, 30, 45, 60,
90, 120 min post-vancomycin, rifampicin or penicillin treatment. Additional time
points at 150, 180, 210, and 240 min were collected in levofloxacin and kanamycin
experiments due to the slower transcriptional response. In the test set antibiotic
RNA-Seq experiments, wild-type T4 and 19F were collected at 30 and 120 min
post-cefepime, ciprofloxacin, daptomycin, or tetracycline treatment. Ciprofloxacin-
adapted T4 and 19F were collected at 30 and 120 min post-ciprofloxacin treatment.
T4 was collected at 30 and 120 min post-amoxicillin, ceftriaxone, imipenem,
linezolid, moxifloxacin, or tobramycin treatment. Wild-type strains were exposed
to 1× MIC antibiotics; antibiotic-adapted strains were exposed to 1× MIC (i.e.,
same concentration as wild-type) and 1.5-2× MIC of the respective antibiotic. Cell
pellets were collected by centrifugation at 4000 rpm at 4 °C and snap frozen and
stored at −80 °C until RNA isolation with the RNeasy Mini Kit (Qiagen). Totally,
400 ng of total RNA from each sample was used for generating cDNA libraries
following the RNAtag-Seq protocol53 as previously described17. PCR amplified
cDNA libraries were sequenced on an Illumina NextSeq500 generating a high
sequencing depth of ~7.5 million reads per sample54. Raw sequencing data were
converted to fastq files using the bcl2fastq software (v2.19, Illumina BaseSpace).
RNA-Seq data was processed using an in-house developed analysis pipeline. In
brief, raw reads are demultiplexed by 5′ and 3′ indices53, trimmed to 59 base pairs,
and quality filtered (96% sequence quality > Q14). Filtered reads are mapped to the
corresponding reference genomes using bowtie2 (v2.2.6) with the --very-sensitive
option (-D 20 –R 3 –N 0 –L 20 –i S, 1, 0.50)55. Mapped reads are aggregated by
featureCount and DE is calculated with DESeq2 (v1.10.1)56,57. In each pair-wise
DE comparison, significant DE is filtered based on two criteria: |log2foldchange| >
1 and adjusted p value (padj) < 0.05. All DE comparisons are made between the
presence and absence of the antibiotic or nutrient at the same time point. The
reproducibility of the transcriptomic data was confirmed by an overall high
Spearman correlation across biological replicates (R > 0.95). Furthermore, the
consistent patterns we observe in DE for the training, test and validation experi-
ments, as well as the similarity of DE from experiments using antibiotics with the
same MOA, point to the high quality and reproducibility of our dataset. NB:
comparison of experiments can be done using ShinyOmics (http://bioinformatics.
bc.edu/shiny/ABX).

Experimental evolution. D39 was used as the parental strain in nutrient-depletion
evolution experiments; T4 and 19F were used as parental strains in antibiotic
evolution experiments. Four replicate populations were grown in fresh chemically
defined medium (CDM) with a decreasing concentration of uracil or L-Val for
nutrient adaptation populations, or an increasing concentration of ciprofloxacin,
cefepime, levofloxacin, kanamycin, penicillin, rifampicin, or vancomycin for anti-
biotic adaptation populations. Four replicate populations were serial passaged in
CDM or SDMM as controls to identify background adaptations in nutrient or
antibiotic adaptation experiments, respectively. When populations were adapted to
their nutrient or antibiotic environment, a single colony was picked from each
experiment and checked for its adaptive phenotype by growth curve experiments.

Determination of relative MIC. Totally, 1–5 × 105 CFU of mid-exponential bac-
teria in 100 μL was diluted with 100 μL of fresh medium with a single antibiotic to
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achieve a final concentration gradient of cefepime (T4: 0.008–0.8 μg per mL; 19F:
0.6–2.4 μg per mL), ciprofloxacin (S. pneumoniae strains: 0.125–4.0 μg per mL;
other species: 0.0125–25 μg per mL), daptomycin (15–55 μg per mL), levofloxacin
(0.1–2 μg per mL), kanamycin (35–250 μg per mL), penicillin (T4: 0.02–0.055 μg
per mL, 19 F: 1–4 μg per mL), rifampicin (0.005–0.04 μg per mL), tetracycline (T4:
4–18 μg per mL; 19F: 19–22 μg per mL); amoxicillin (0.01–0.16 μg per mL), imi-
penem (0.0005–0.045 μg per mL), ceftriaxone (0.0005–0.009 μg per mL), linezolid
(0.05–0.65 μg per mL), tobramycin (35–255 μg per mL), cotrimoxazole (0.5–7.5 μg
per mL); moxifloxacin (0.05–0.70 μg per mL), and vancomycin (0.1–0.5 μg per mL)
in 96-well plates. Each concentration was tested in triplicate. Growth was mon-
itored on a Tecan Infinite 200 PRO plate reader at 37 °C for 16 h. MIC is deter-
mined as the lowest concentration that abolishes bacterial growth (Supplementary
Fig. 1).

Selection of a gene panel for fitness prediction. DE data from experiments from
all experimental timepoints with time ≥ 60 min were assembled in R (v3.6.2). The
data were split into training and test sets as described in Supplementary Table 1,
yielding a training set of 138 and a test set of 19 experiments. Genes with
incomplete data (e.g., genes unique to one strain) were omitted. The DE data was
then scaled such that the values for each gene had mean= 0 and variance= 1. A
binomial logistic regression model was fit to the training set with glmnet v3.0–2. In
order to determine the appropriate value of the regularization parameter λ, fivefold
crossvalidation was performed on the training set, and mean squared error (MSE)
of the crossvalidation set for each of the fivefolds was computed as a measure of
classification error. The value of λ was selected to be the largest at which the MSE is
within one standard deviation of the minimal MSE overall25,26. The heatmap of DE
for this gene panel was generated using heatmaply (v1.0).

Evaluation of the gene panel’s sensitivity to input data was done using another
fivefold crossvalidation strategy, where for each fold, the training portion includes
80% of the original training dataset. The model was fit with the same strategy as
above, selecting the best λ for each fold.

Evaluation of the gene panel’s sensitivity to λ was done using the standard
output of the glmnet function.

For gene panels specific to a single MOA, the training and test sets were filtered
to include only experiments from that MOA. The model fitting procedure was the
same for all gene panels that predict fitness. Performance statistics and
visualization were done using plotmo (v3.5.6), caret (v6.0-85), PRROC (v1.3.1),
and ggplot2(v3.2.1).

PCA and trajectory clustering. For PCA, DE (log2fold change of ±antibiotic
comparisons) data from all 255 experimental conditions (per time point per
antibiotic from all experiments excluding CIP-validation set with A. baumannii, E.
coli, K. pneumoniae, S. Typhimurium, S. aureus, S. pneumoniae serotype 1 and 23F
strains) were assembled in R (v3.6.2). The function “prcomp” was used for PCA.
Timepoints of the same experiment were connected to form trajectories. Since not
all experiments are on the exact same time scale (e.g., KAN experiments extend to
240 min whereas RIF experiments cover 120 min), equivalent timepoints for each
experiment were determined to be i ´ tmax

6 for i ¼ 1; 2; ¼ ; 6 and tmax being the latest
time point available for the corresponding experiment. If a timepoint did not
correspond to an existing RNA-Seq data point, this time point was inferred by
linear interpolation of the existing trajectories. To cluster these trajectories, a
trajectory-distance metric between two trajectories X and Y is defined as the sum of
Euclidean distances (“dist”, on the principal component coordinates)
Σ6
i¼1distðXi;YiÞ of all timepoints i. All pairwise distances are computed for all pairs

of trajectories included in the analysis (WT strains with low fitness, for PSI, DSI,
CWSI, and RSI). K-means clustering in MATLAB with K= 4 is used on the
pairwise distances to cluster the trajectories.

Selection of a gene panel for MOA prediction. DE (log2 fold change of drug/no
drug comparison) data from all antibiotic experiments with low fitness outcome
and time ≥60 min were assembled in R (v3.6.2). The data were split into training
and test sets as described in Supplementary Table 1, yielding a training set of 39
and a test set of 15 experiments. Similar to the fitness gene panel data preparation,
genes with incomplete data were omitted. A multinomial logistic regression model
was fit to the training set with glmnet v3.0-2. The appropriate value of λ was
selected using a similar crossvalidation scheme to the fitness gene panel: the largest
λ at which the corssvalidation error is within 1 standard deviation of the minimal
error overall.

Visualization, and evaluation of the model’s performance, sensitivity to input
and λ were done as described in the “Selection of gene panel for fitness prediction”
section above.

Gene set enrichment analysis. Gene panels for S. pneumoniae were evaluated for
enrichment of functional categories (the category annotation can be found in
Supplementary Data 1), using a hypergeometric test, and Benjamini–Hochberg
correction for multiple comparisons. For gene panels in Bhattacharyya et al.11,
enrichment for GO terms was evaluated using the same procedure. The GO term
annotation was acquired from Uniprot.

Quantifying entropy of transcriptomic data. Entropy (H) for a time-course
experiment is defined as in Eq. (1). The DE data for the time-course is assembles
into a single matrix S, where columns are individual genes, and rows are different
time points. The covariances across all pairs of columns (i.e., genes) is computed
using the “cov” function in R (v3.6.2) to generate the covariance matrix (Σ). Σ is
then used as input for the glasso function within the glasso package (v1.10), which
generates a regularized covariance matrix (Σρ). Multiple values of ρ are scanned
between 0 and 5, and for each value of ρ, the error on the training set was
computed. The value of ρ was determined to be that which minimized error. Using
this value of ρ, multiple values of threshold t were scanned within the range of
entropy values within the training set. The value of t was determined to be that
which maximized accuracy on the training set.

Entropy of a single timepoint (Hstp) is defined as in Eq. (2). The variance (σ2) of
the whole-transcriptome DE distribution is computed using the “var” function in R
(v3.6.2). The threshold value t was determined by scanning the range of Hstp values
in the training set, and finding the t that maximized accuracy on this dataset.

The predictive performance of all entropy models was evaluated on both the
training and test sets using caret (v6.0-85), PRROC (v1.3.1); and visualized using
ggplot2(v3.2.1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw RNA-Seq datasets are available at the Sequence Read Archive (BioProject accession
number PRJNA542628). Differential expression data used in all main figures can be
found in Supplementary Data 1. Results for gene set enrichment analysis on previously
published gene panels are in Supplementary Data 2. Entropy values and predictions
associated with Fig. 4 are in Supplementary Data 3. The previously published RNA-Seq
dataset used in Fig. 5 is available under the BioProject accession number PRJNA518730.
Gene homology across species was obtained from PATRIC [https://www.patricbrc.org/],
and gene functional annotation for enrichment analysis was obtained from UniProt
[https://www.uniprot.org/]. Source data are provided with this paper.

Code availability
Custom code used in the analysis and generation of figures can be found in the GitHub
repository named FitnessPrediction [https://github.com/dsurujon/FitnessPrediction].
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