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Abstract

The environmental DNA (eDNA) method is a detection technique that is rapidly gaining

credibility as a sensitive tool useful in the surveillance and monitoring of invasive and threat-

ened species. Because eDNA analysis often deals with small quantities of short and de-

graded DNA fragments, methods that maximize eDNA recovery are required to increase

detectability. In this study, we performed experiments at different stages of the eDNA analy-

sis to show which combinations of methods give the best recovery rate for eDNA. Using Ori-

ental weatherloach (Misgurnus anguillicaudatus) as a study species, we show that various

combinations of DNA capture, preservation and extraction methods can significantly affect

DNA yield. Filtration using cellulose nitrate filter paper preserved in ethanol or stored in a

-20˚C freezer and extracted with the Qiagen DNeasy kit outperformed other combinations in

terms of cost and efficiency of DNA recovery. Our results support the recommendation to

filter water samples within 24hours but if this is not possible, our results suggest that refriger-

ation may be a better option than freezing for short-term storage (i.e., 3–5 days). This infor-

mation is useful in designing eDNA detection of low-density invasive or threatened species,

where small variations in DNA recovery can signify the difference between detection suc-

cess or failure.

Introduction

The past decade has seen a remarkable growth and interest in the use of the environmental

DNA (eDNA) method as a tool for targeted species detection and biodiversity assessments.

While earlier research focused on the isolation of microbial DNA from environmental samples

[1, 2], subsequent studies directed at isolating plant and animal DNA from such samples has

opened up diverse fields of application of the method including surveillance of rare, threat-

ened, or invasive species [3–5] and assessment of past and present biodiversity [6–8]. Many

eDNA studies have been in aquatic ecosystems, and have proven effective in the detection of

aquatic/semi-aquatic vertebrates and invertebrates [9–14]. Although the application of this

non-invasive genetic technique is increasingly expected to influence environmental manage-

ment [15], basic studies are encouraged to further explore its possibilities and limitations [16].

PLOS ONE | https://doi.org/10.1371/journal.pone.0179251 June 12, 2017 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Hinlo R, Gleeson D, Lintermans M, Furlan

E (2017) Methods to maximise recovery of

environmental DNA from water samples. PLoS

ONE 12(6): e0179251. https://doi.org/10.1371/

journal.pone.0179251

Editor: Hideyuki Doi, University of Hyogo, JAPAN

Received: February 1, 2017

Accepted: May 27, 2017

Published: June 12, 2017

Copyright: © 2017 Hinlo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This project was funded by the Invasive

Animals Cooperative Research Centre through

Project 1.W.2. The funder had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0179251
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179251&domain=pdf&date_stamp=2017-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179251&domain=pdf&date_stamp=2017-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179251&domain=pdf&date_stamp=2017-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179251&domain=pdf&date_stamp=2017-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179251&domain=pdf&date_stamp=2017-06-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179251&domain=pdf&date_stamp=2017-06-12
https://doi.org/10.1371/journal.pone.0179251
https://doi.org/10.1371/journal.pone.0179251
http://creativecommons.org/licenses/by/4.0/


The eDNA method relies on the detection of DNA in environmental samples such as water,

soil or air to infer species presence [17]. Its analysis involves a series of steps, which includes

eDNA capture, preservation, extraction, amplification and sequencing to ensure match to tar-

get species. Efficiency at each step is expected to affect the recovery of DNA and subsequently,

its detection. Indeed, previous research found that eDNA recovery varied depending on the

protocols or combinations of protocols used [18–21]. Researchers often choose methods based

on cost, ease of sampling, availability of materials and equipment or personal preferences [18,

21]. Different combinations of methods are likely to vary in efficiency but because eDNA anal-

ysis often relies on detecting small quantities of highly degraded DNA, methods that maximize

eDNA recovery (thus, increasing detection) in a cost-efficient manner are ideal.

A crucial first step in the eDNA workflow is DNA capture. Filtration and precipitation are

the two most commonly used methods to capture eDNA from aquatic environments. Filtra-

tion requires passage of water samples through a filter to trap the DNA whereas the precipita-

tion method uses ethanol to precipitate nucleic acids in the water sample [3, 22]. Comparisons

of these two methods found that filtration recovered more eDNA from water samples [18, 19,

21]. The precipitation method limits the amount of water volume that can be processed, and

thus filtration has been suggested to be more advantageous when dealing with larger bodies of

water [23]. A few studies have also investigated how different DNA capture and extraction

combinations affect eDNA yield [18, 19, 21]. These studies however did not look at preserva-

tion/storage method along with capture and extraction methods which may also affect DNA

recovery.

After filtration, DNA has to be preserved prior to DNA extraction. Cold storage of filter

papers is commonly employed [3, 10], although this may be impractical in some field applica-

tions. Ambient temperature storage has been successfully employed using ethanol [24–26] and

Longmire’s solution [20, 27]. Ambient temperature storage is useful when maintaining a cold

chain in field conditions is difficult. Of these two alternatives, ethanol is likely to be the pre-

ferred alternative as it is widely available, inexpensive and can be used straightaway with no

preparations needed. Studies comparing eDNA recovery rates from filters stored under cold

storage and those stored in ethanol, however, are limited [27, 28].

In studies using filtration as a capture method, water samples are taken from the field,

brought to the laboratory in ice chests, and filtered within 24 hours or are frozen before pro-

cessing [14, 29]. There may be instances, however, when water samples cannot be processed

within 24h of collection. In this case, it is important to know how long samples can be stored

without significantly affecting detection or DNA concentration. Previous studies have shown

that eDNA degrades exponentially with time [8, 30]. Storing water samples in freezers seem to

be the preferred option but access to freezers are not always available and the freeze-thaw cycle

has been found to affect DNA detection [31]. The current published study measured the

eDNA concentration after one freeze-thaw cycle only [31] but no other study has investigated

the effect of several freeze-thaw cycles on eDNA over a period of time. The effect of sample

processing (time and method of storage before filtration) on eDNA recovery has previously

been investigated [30], but using only limited storage methods (ambient temperature, frozen)

and within a relatively short time frame (up to four hours) [30, 31]. Our study aims to address

these gaps by investigating the effect of three storage methods (room temperature, refrigerated

and frozen) on eDNA across a longer period of time (28 days).

The type and pore size of filter papers used during filtration in eDNA studies also vary.

These are important considerations in eDNA analysis as filter material and pore size directly

influence flow rate and particle retention. Many eDNA studies use pore sizes ranging from

0.45μm– 3 μm [9, 10, 32–34]. For highly turbid water however, such as in the tropics, even

3 μm filter papers are easily blocked, necessitating the use of larger pore size filters or pre-
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filtration to significantly minimize filtration time [35]. Glass fibre (GF), cellulose nitrate (CN),

polycarbonate (PC), nylon, polyethersulfone (PES) and cellulose acetate (CA) filters have been

used in eDNA studies [36]. Because filter papers are made from different materials, we expect

that DNA would bind to each filter paper type differently. Indeed, Liang and Keeley [37]

found that DNA had different binding affinities to different filter papers. Results from previous

studies suggest an interaction effect of filter paper type and extraction method on DNA yield

[19, 20]. These studies however used a limited number of filter papers and with different pore

sizes, making direct comparison of DNA yields difficult. One of the aims of this study is to

compare different types of filter paper with similar pore sizes so that direct comparisons on

eDNA yield can be made.

It is apparent that the combinations of capture, storage and DNA extraction methods influ-

ence the final detection/quantity of eDNA. In this study, we performed experiments to com-

pare eDNA recovery at different stages of the eDNA analysis in order to determine which

methods are most cost-efficient. We used a rapidly-expanding invasive species in Australia,

the Oriental weatherloach (Misgurnus anguillicaudatus) as a study species. Although there are

many methods available, we chose to compare methods and materials that are widely available

and will not require specialized equipment or unnecessarily increase processing costs. Specifi-

cally, we investigate DNA recovery obtained from: different combinations of capture (filtration

and precipitation/centrifugation method), preservation (freezing vs ethanol) and DNA extrac-

tion (DNeasy and PowerWater) methods; 2) different combinations of commercial DNA

extraction kit and filter paper type, and; 3) different storage methods and time.

Methods

We performed experiments in controlled conditions in aquaria. Oriental weatherloach was

used as a study species because its small size and hardiness makes it amenable to aquarium

manipulation and because of its immediate management requirements in Australia. The

Oriental weatherloach is a pest fish that is expanding its range in the country [38]. Sensitive

detection using eDNA will assist management efforts, particularly during the early stages of

invasion.

The Oriental weatherloach used for the experiments were obtained from Ginnindera

Creek, Australian Capital Territory (ACT), through the ACT government scientific license

LT2013661 and LT2014755 (granted to Elise Furlan). The fish were kept in a 60L plastic hold-

ing tank (*15 individuals per container) at the Animal House facility at the University of

Canberra (UC). The tank was continuously filtered and aerated and the fish were fed a com-

mercial diet (bloodworms) once a day. The temperature was held at 20˚C under a 12 h∶12 h

light-dark cycle. This study was performed in compliance with the Australian code for the care

and use of animals for scientific purposes (8th edition 2013). The primary author was granted

the authorization to conduct experiments using animals by the UC Animal Ethics Committee

(Auth 14–09).

Experiment 1: Comparison of different DNA capture, preservation and

extraction combinations

We compared the DNA yield of five different combinations of capture, preservation and DNA

extraction methods (Fig 1). For DNA extraction, we included two commonly used commercial

DNA kits. Although DNA kits are more expensive, they are advantageous in that they pro-

vide a standardised set of reagents and are easier and safer to handle compared to Phenol-

Chloroform-Isoamyl alcohol (PCI) extraction reagents. Three 2-L water samples were taken

from an aerated 40-L aquarium tank containing five adult Oriental weatherloach (Misgurnus
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anguillicaudatus). The water samples were inverted several times to ensure mixing and even

distribution of contents before taking five 250mL aliquots. This created a total of 15 x 250mL

water samples that were then randomly allocated across five treatment groups, permitting

three technical replicates per treatment. For treatments requiring filtration, the 250ml aliquots

were filtered through 47mm, 0.8um cellulose nitrate filter paper using a filter funnel manifold

(Pall Australia Pty Ltd) and a peristaltic pump (Geopump1, Geotech, Colorado, USA). The

filter papers were then either preserved in 100% ethanol at room temperature, or placed inside

a -20˚C freezer (depending on the treatment). For the treatment requiring precipitation, a 15

ml aliquot was obtained from each 250mL water sample and treated according to the method

of Ficetola, Miaud [22]. Briefly, 1.5 ml of 3M sodium acetate and 33 ml absolute ethanol were

added to the 15-ml aliquot and stored in a -20˚C freezer prior to extraction. Four days after

sample collection, DNA extraction was conducted on samples using either Qiagen’s DNeasy

Blood and Tissue kit (Qiagen GmbH, Hilden, Germany) or PowerWater DNA Isolation Kit

(Mo Bio Laboratories, Carlsbad, CA). DNA extraction with the DNeasy kit followed Renshaw

et al.’s (2015) modification except we eluted the DNA in 200 μl buffer AE (Qiagen). Extraction

with the PowerWater kit proceeded according to the kit’s protocol, including elution of the

DNA in 100 μl of PW 6 (MoBio).

Experiment 2A: Comparison of different combinations of filter paper and

extraction method using water samples from aquaria with tap water

The eDNA yield from five types of filter papers of similar pore size (0.8um) and extracted with

two types of DNA extraction kits were compared. The filter paper types investigated include

cellulose nitrate (CN), mixed cellulose ester (MCE), polyethersulfone (PES), polycarbonate

track-etched (PCTE), and glass fibre (GF). The filter papers were extracted with either Qia-

gen’s DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany) or PowerWater DNA Isolation

Kit (Mo Bio Laboratories, Carlsbad, CA). DNA extraction with the DNeasy and the Power-

Water kits proceeded in the same manner as Experiment 1.

We took five 2-L surface water samples from an aerated 40-L aquarium tank containing

five adult Oriental weatherloach. From each of these water samples, ten 200-ml aliquots were

Fig 1. Experimental design used to compare five different combinations of capture, preservation and DNA extraction methods. N is the number of

technical replicates and each replicate represents one 250 ml water sample. DNeasy and PowerWater (PW) refer to the two DNA extraction kits used in the

experiment.

https://doi.org/10.1371/journal.pone.0179251.g001
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taken and randomly allocated to a filter paper-DNA kit combination. This gave five replicates

for each combination. The aliquots were filtered through 47mm, 0.8 μm pore size filter papers

(Fig 2).

Experiment 2B: Comparison of the best performing extraction kit-filter

paper combinations using stream water

We took the top three performing DNA extraction kit-filter paper combinations from Experi-

ment 2A and compared them using stream water to validate our findings. Because stream

water would potentially contain more particulate matter compared to tap water and sample fil-

tration time can differ depending on the filter paper types, we also recorded the time it took to

filter 500ml of stream water on each filter paper type. We used 47mm, 1.2 μm pore size filter

papers so that we can include 1.2 μm glass fibre (GF) filter papers since the thickness of the

0.8 μm GF caused samples to leak from the filter funnels during filtration. Briefly, we took 20 L

of water from a natural stream (Gibraltar Creek, ACT, Australia). We then transferred this

water to a 50L plastic tank and placed five adult Oriental weatherloach therein. After one day,

we took 15 1-L samples from the tank and assigned the samples randomly to an extraction kit-

filter paper combination (Fig 3). DNA extraction proceeded in the same manner as Experi-

ment 1.

Fig 2. Experimental design for Experiment 2A to investigate which DNA extraction kit-filter paper combination would give the best DNA yield. N

refers to number of technical replicates. CN, MCE, PES, PCTE and GF refer to the types of filter papers whereas DNeasy and PowerWater (PW) refer to the

two DNA extraction kits used in the experiment.

https://doi.org/10.1371/journal.pone.0179251.g002
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Experiment 3A: Effect of storage method and time on eDNA

concentration of water samples from aquaria with tap water

We compared the eDNA concentration of water samples stored under three different condi-

tions (room temperature ~20˚C, refrigerated at 4˚C, frozen at -20˚C) over a 28-day period.

Twenty litres of water were taken from a 50-L tank containing five adult Oriental weatherloach

and placed in a large plastic container with a tap. The container was shaken several times to

mix the contents before dispensing into nine 2-L plastic bottles. The bottles were randomly

Fig 3. Experimental design for Experiment 2B investigating DNA yields in five different DNA extraction kit-filter paper combination from stream

water. N refers to number of technical replicates. CN, MCE, PES, PCTE and GF refer to the types of filter papers whereas DNeasy and PowerWater (PW)

refer to the two DNA extraction kits used in the experiment.

https://doi.org/10.1371/journal.pone.0179251.g003
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assigned to each of the three storage conditions (three bottles per storage condition treated

as technical replicates). A 200ml aliquot from each replicate was filtered through 47mm,

1.2 μm glass fibre filter papers at 1 (within 24h), 2, 3, 5, 7, 10, 14, 21 and 28 days after collec-

tion of water samples (Fig 4). DNA from the filter papers was extracted using PowerWater

DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA) according to the manufacturer’s

recommendations.

Experiment 3B: Effect of storage method and time on eDNA

concentration of stream water samples

Stream water was used to validate the findings of Experiment 3A for Day 1 and Day 2. As most

eDNA methodologies recommend filtering water for eDNA studies within 24 hours, this ex-

periment investigated the difference in eDNA yield between samples filtered on Day 1 (within

24h of water collection) and Day 2 (after 24h of collection). Twenty litres of stream water was

placed inside a 50L plastic tank into which five adult Oriental weatherloach were added. After

two days, nine 1-L surface water samples were taken from the tank and randomly distributed

among the three storage conditions (room temperature, refrigerated, frozen). Filtration and

DNA extraction followed the same procedures as that of Experiment 3A. Filtration of water

samples on Day 1 was done within four hours after sample collection and filtration of Day 2

samples occurred 24 hours after the filtration of Day 1 samples.

qPCR protocol. DNA extraction and PCR preparation were done in a designated trace

DNA laboratory, which is spatially separated from any PCR product. The presence of Oriental

weatherloach eDNA for each sample was tested using qPCR primers and probes previously

developed for the species [39]. Quantitative PCR reactions were performed in a separate

Fig 4. Flow diagram of the experiment investigating the effect of storage method and time on eDNA concentration. N refers to number of technical

replicates.

https://doi.org/10.1371/journal.pone.0179251.g004
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laboratory using the ViiaTM 7 Real-Time PCR System (Applied Biosystems1, Vic., Australia).

PCR reaction mixes consisted of 2μl of DNA template, 1 μl of TaqMan assay, 10 μL of TaqMan

Environmental Master Mix (Life Technologies, Carlsbad, CA, USA), 1 μl of Exogenous Inter-

nal Positive Control (IPC) Reagent (Applied Biosystems1), 0.2 μL of IPC DNA, and 5.8 μL of

PCR water to make a total volume of 20μL. Real-time PCR cycling conditions were set at 50˚C

(2 min), 95˚C (10 min), followed by 55 cycles of 95˚C (15 s), 60˚C (30 s). Three replicates of

synthetic oligonucleotides of the target sequence (details of the synthetic oligonucleotides pub-

lished in [39]) in a series of 10-fold dilutions with known concentrations ranging from 106 to

102 copies per μL were included in each plate. We quantified the amount of eDNA present

in each sample by comparison to these standards. Three PCR replicates were done for each

sample. Positive and negative controls, including IPC negatives in three replicates were also

included in each run. We considered a reaction positive if an exponential phase was detected

during the 55 reaction cycles. We checked for inhibition by looking for delayed or no IPC

amplification. A Ct shift of� 3 cycles beyond the blank was regarded as significant inhibition

[40].

Data analysis. We tested for variation in eDNA recovery across the various treatment

groups. The data was assessed for normality of distribution and homogeneity of variances

through the Shapiro-Wilk test and Levene’s Test of Equality of Error Variances, respectively

[41, 42]. Outliers were determined by inspection of boxplots. Analysis of Variance (ANOVA)

was used to test the null hypothesis that all group population means are equal. We used one-

way ANOVA for experiments 1 and 2B, two-way ANOVA for experiment 2A and a two-way

mixed ANOVA for experiment 3A and 3B. We tested for simple main effects and did post-hoc

analyses when a significant interaction was obtained. Epsilon (ε) was calculated according to

Greenhouse & Geisser (1959), and was used to correct the mixed ANOVA results when the

assumption of sphericity was violated.

The data was log transformed when needed to meet the assumptions of the statistical test.

Technical replicates were averaged. When outliers were present, we compared the result of the

ANOVA with and without the outliers to see if the outliers substantially affected the result. We

kept the outliers in the data set if the results were similar. The significance of all statistical tests

was set to α = 0.05. Statistical analyses were conducted using SPSS 21.0 (SPSS Inc., Chicago,

USA).

Results

All positive and negative controls performed as expected. Inhibition was not encountered in

any sample. Water sample PCR replicates amplified except for the following: 3 out of 9 PCR

wells under the PW-Ethanol treatment in Experiment 1; 2 out of 9 wells under room tempera-

ture treatment (Day 28) in Experiment 3A. No inhibition was encountered in all samples.

Analyses of synthetic oligonucleotides standards showed that the TaqMan assay performed

efficiently: R2 ranged from .994 to .999 and PCR efficiency from 86–101%. All data shown

below are mean DNA concentration (copies/2μl DNA extract) ± standard deviations, unless

otherwise stated.

Experiment 1: DNA capture, preservation and extraction

All PCR replicates amplified except for 3 out of 9 PCR wells under the PW-Ethanol treatment.

DNA concentrations obtained for experiment 1 produced no outliers and all treatment groups

were normally distributed except for one group (PW-Ethanol, p < .0005). Homogeneity of

variance as assessed by Levene’s test for equality of variances was violated (p = .007) and thus

the data was log-transformed to meet the assumptions of the statistical test. The method which
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recovered the highest yield (mean DNA copy number in the DNA extract) was the DNeasy-

Freeze combination (9629 ± 6563), followed by DNeasy-Ethanol (8920 ± 2276) combination,

and the PW-Freeze method (2178 ± 151) (Fig 5). The two methods which recovered the least

amount were the Precipitation-Freeze (495 ± 275) and the PW-Ethanol methods (11 ± 9) (Fig

5). DNA copy number was significantly different for the different eDNA methods, F (4, 10) =

83.467, p< .0005, ῶ2 = 0.956. Tukey’s post-hoc test revealed no significant difference between

the eDNA yield of the top three performing methods (p < .05) but significant differences in

yield was observed in all comparisons with the Precipitation-Freeze method and PW-Ethanol

(S2 Table).

There was a variation in the volume of water sample processed for the Precipitation-Freeze

method (15ml) compared to the other methods (250ml). Table 1 shows the results as DNA

copies per unit water volume, in addition to copies per DNA extract. When presented as num-

ber of DNA copies per ml of water sample processed, the Precipitation-Freeze method gave a

mean DNA yield comparable to the yield of the DNeasy-Freeze and DNeasy-Ethanol methods

(Table 1).

Experiment 2: Comparison of different combinations of filter paper and

DNA extraction method

A. Samples from tap water. The thickness of the 0.8μm GF filter papers caused leakage of

water samples during filtration, thus, data for the GF filter papers were not included in the

analysis. The data exhibited homogeneity of variances (p = .088) and all DNA extraction kit-fil-

ter paper groups exhibited normal distributions except for PW-MCE (p = .010). We kept

Fig 5. Differences in DNA yield from five different combinations of DNA extraction and storage

methods. DNA yield was log10 transformed and error bars show the ±2 standard deviation of the mean.

https://doi.org/10.1371/journal.pone.0179251.g005
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outliers in the data set since running the ANOVA with and without outliers gave similar

results. There was a significant interaction effect between filter paper and extraction kit on

DNA copy numbers, F (3, 32) = 14.265, p< .0005, partial ƞ2 = .572. Calculation of simple

main effects for DNA extraction kit revealed that extraction kit had a significant effect on

DNA yield when paired with the filter papers CN, MCE and PES. For CN, mean DNA yield

for samples extracted with DNeasy was 16409 ±5643 and 5796 ±3953 for samples extracted

with the Power Water kit, a statistically significant mean difference of 10,613 (95% CI, 5157 to

16069), F (1,32) = 15.697, p< .0005, partial ƞ2 = .329. For MCE, DNeasy-extracted samples

had a mean yield of 16160 ±4983 copies compared to Power Water-extracted samples with

mean yield of 5636 ± 6122. This was a significant mean difference of 10524 (95% CI, 5068 to

15980), F (1, 32) = 15.435, p< .0005, partial ƞ2 = .325. For PES, DNA yield was higher in sam-

ples extracted with the Power Water kit (12598 ± 5548), a significant mean difference of 10809

(95% CI, 5352 to 16265), F (1, 32) = 16.281, p< .0005, partial ƞ2 = .337 (Fig 6, S3 Table).

Simple main effects for filter paper showed that filter paper type had a significant effect on

DNA yield when extracted with either DNeasy (F(3,32) = 14.623, p< .0005, partial ƞ2 = .578)

Table 1. Results of Experiment 1 presented as number of copies per unit DNA extract and number of copies per unit water volume. The volume of

processed water samples, DNA extraction kits and final DNA elution volumes are also given.

Volume of water

sample

processed (ml)

DNA

extraction kit

DNA elution

volume (μl)

DNA concentration from

qPCR (DNA copies in 2 μl

DNA extract)

Equivalent number of DNA

copies in entire DNA

extract (or entire water

sample)

Equivalent number of

DNA copies per ml of

water sample

DNeasy-Freeze

Sample 1 250 DNeasy 200 3921 392100 1568

Sample 2 250 DNeasy 200 8166 816600 3266

Sample 3 250 DNeasy 200 16800 1680000 6720

Mean 9629 962900 3852

DNeasy-

Ethanol

Sample 1 250 DNeasy 200 6303 630300 2521

Sample 2 250 DNeasy 200 10020 1002000 4008

Sample 3 250 DNeasy 200 10436 1043600 4174

Mean 8920 891967 3568

Precipitation-

Freeze

Sample 1 15 DNeasy 200 299 29900 1993

Sample 2 15 DNeasy 200 809 80900 5393

Sample 3 15 DNeasy 200 376 37600 2507

Mean 495 49467 3298

PowerWater-

Freeze

Sample 1 250 PowerWater 100 2036 101800 407

Sample 2 250 PowerWater 100 2336 116800 467

Sample 3 250 PowerWater 100 2161 108050 432

Mean 2178 108883 436

PowerWater-

Ethanol

Sample 1 250 PowerWater 100 22 1100 4

Sample 2 250 PowerWater 100 6 300 1

Sample 3 250 PowerWater 100 6 300 1

Mean 11 567 2

https://doi.org/10.1371/journal.pone.0179251.t001
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or Power Water (F(3,32) = 3.566, p = .025, partial ƞ2 = .251). When DNeasy extraction kit was

used, samples filtered on CN and MCE yielded significantly higher DNA copies compared to

PES and PCTE. The differences in mean yield between CN and MCE and between PES and

PCTE were not significant. For the Power Water Kit, a significant mean difference in DNA

yield was only seen between PES and PCTE, with a higher mean copy number extracted on

PES samples compared to PCTE. Pairwise comparisons for the simple main effect for filter

paper including 95% confidence intervals and statistical significance for all DNA extraction

kit-filter paper combinations are in S4 Table.

B. Samples from stream water. The data exhibited homogeneity of variance (p = .314)

and normality except for one extraction kit-filter paper combination (PW-PES, p = .006). No

outliers were observed. DNA yield was significantly different among the DNA extraction kit-

filter paper combinations, F (4, 10) = 26.872, p< .0005, ῶ2 = 0.873. The combinations which

gave the highest DNA yields were: DNeasy-CN (49497 ±1027), DNeasy-MCE (43160 ± 6550),

and PW-PES (21472 ± 4264). DNeasy-GF (18777 ± 8073) and PW-GF (8433 ± 7455) had the

lowest DNA yield (Fig 7). Tukey post hoc analysis revealed significant differences in mean

DNA yield when DNeasy-CN was compared with PW-PES (p = .001), DNeasy-GF (p = .001)

and PW-GF (p< .001). Significant differences in mean DNA yield were also seen when

DNeasy-MCE was compared with PW-PES (p = .007), DNeasy-GF (p = .003) and PW-GF

(p< .001). Differences in mean DNA yield did not differ significantly when PW-PES, PW-GF

and DNeasy-GF were compared to each other (Fig 7).

We found significant differences in the time it took to filter 500ml of samples through the

different filter paper types, Welch’s F(3, 3.564) = 41.632, p = .003. The filter paper with the

Fig 6. DNA yield from eight DNA extraction kit-filter paper combinations from samples in aquaria with

UV-sterilized water. Clear bars used DNeasy extraction kit while shaded grey bars used the PowerWater kit.

CN = Cellulose Nitrate, MCE = Mixed Cellulose Ester, PES = Polyethersulfone, PCTE = Polycarbonate track-

etched. Error bars show the ±2 standard deviation of the mean.

https://doi.org/10.1371/journal.pone.0179251.g006
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fastest filtration time is GF (0.8 ± .1 min), followed by CN (1.6 ± 0.4 min) and PES (18.2 ± 3

min). Filtration through MCE took the longest time at 175 ± 38 min. Table 2 gives a summary

of DNA yield, filtration time, flow rates and cost per sample for Experiment 2B.

Experiment 3A. Effect of storage method and time before filtration on

DNA yield

A. Samples from UV-sterilized tap water. Data for Day 1 (all storage conditions) and

Day 2 (room temperature) were excluded from analysis due to a DNA extraction error which

affected downstream applications. The data for the rest of the samples under the three storage

conditions exhibited homogeneity of variances and normal distributions after log transforma-

tion, except for two groups (Day 10- refrigerated and Day 28-room temperature) which still

exhibited non-normality after transformation. The assumption of sphericity was violated for

Fig 7. DNA yield from five different extraction kit-filter paper combinations from stream water

samples. Clear bars used DNeasy extraction kit while shaded grey bars used the PowerWater kit. Error bars

show the ±2 standard deviation of the mean.

https://doi.org/10.1371/journal.pone.0179251.g007

Table 2. Performance and cost of filter paper-DNA extraction kit combinations in Experiment 2B. CN = Cellulose Nitrate, MCE = Mixed Cellulose

Ester, PES = Polyethersulfone, GF = Glass Fibre filter paper.

Filter

Paper

DNA Extraction

Kit

eDNA

yield

Flow rate Cost per filter paper

(US$)

Cost per DNA extraction

(US$)

Combined cost of filter paper &

extraction (US$)

CN DNeasy High Moderate 0.44 4.5 4.9

MCE DNeasy High Very

Slow

2.0 4.5 6.5

PES PowerWater Medium Slow 1.9 8.5 10.4

GF DNeasy Medium Fast 0.25 4.5 4.7

GF PowerWater Medium Fast 0.25 8.5 8.7

https://doi.org/10.1371/journal.pone.0179251.t002
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the two-way interaction, x2(20) = 44.879, p = .005, thus, a Greenhouse-Geisser correction was

used. There was a significant interaction between storage method and time, F (4.430, 13.291) =

10.117, p< .001, partial ɳ2 = .771. Simple main effects for storage method revealed a signifi-

cant difference in copy numbers between methods across time points in the experiment. DNA

copy numbers for all storage methods were significantly different from each other on days 2, 3,

5 and 21 (p< .001) (Fig 8). For days 7, 10, 14 and 28, significant differences in DNA yield were

seen only when room temperature samples were compared with refrigerated and frozen sam-

ples (S5 Table).

Testing for the simple main effect for time showed a significant effect of time on copy num-

ber for samples stored under room temperature F(1.239, 2.478) = 36.436, p = .015, partial ɳ2 =

.948, and refrigeration F(1.277, 2.554) = 53.088, p = .009, partial ɳ2 = .964, but not for frozen

samples. For room temperature samples, a significant reduction in copy numbers were seen

between day 3 and all subsequent time points, day 5 and days 21 and 28, and day 7 and days 14

and 21. For refrigerated samples, significant differences were seen between day 2 and days 5, 7,

10, 14, 21 and 28, between day 3 and the rest of the time points, day 5 and days 14, 21 and 28,

day 7 and days 21 and 28, and finally day 10 and days 21 and 28. P-values of significant pair-

wise combinations for the simple main effects of time are in S6 Table.

B. Samples from stream water (Day 1 and Day 2). The data met all the assumptions for

the mixed ANOVA. There was no significant interaction between storage method and time on

DNA yield for Day 1 and 2, F (2,6) = 1.831, p = .237, partial ɳ2 = .379. The main effect of time

showed a significant difference in mean DNA copy number between day 1 and day 2 for all

the storage methods, F(2,6) = 2.54, p = .784, partial ɳ2 = .848 (Fig 9). The main effect of storage

methods showed that there was no significant difference in mean DNA copy number between

different storage methods, F(2,6) = .254, p = .784, partial ɳ2 = .078.

Fig 8. Changes in DNA yield across time for tap water samples stored under three different

conditions: Room temperature (blue line), refrigerated (green line) and frozen (brown line). Error bars

show the ±2 standard deviation of the mean.

https://doi.org/10.1371/journal.pone.0179251.g008
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Discussion

Our laboratory experiments revealed that choice of capture, preservation, filtration and extrac-

tion methods can significantly affect DNA yield. In addition, we demonstrated how storage

method and time prior to filtration affected the number of target DNA copies retrieved. PCR

detection of eDNA relies on the number of copies in the DNA extract, thus, maximizing yield

is the best way to increase detection.

We found that the filtration method, combined with either ethanol or freezer storage, and

extracted with either Qiagen’s DNeasy or MoBio’s PowerWater kit (except samples stored in

ethanol and extracted with PowerWater) yielded better results compared to the precipitation

method, which is consistent with previous studies [19, 21]. It is highly probable that the reason

we obtained this result is because we filtered 250 ml of water compared to just 15ml for the

precipitation and centrifugation method, which is likely to contribute a disproportionate

amount of eDNA between samples. However, a previous study that compared filtration and

the precipitation method using 15ml water samples still found that filtration recovered more

DNA than the precipitation method [18]. In Table 1, we adjusted the eDNA concentration

hypothetically should the entire 250-ml undergo the precipitation method and the results were

comparable to those obtained by filtration. Nevertheless, the precipitation method could only

process a limited volume at one time, and processing the same amount of water as that of

other methods to get the same amount of DNA would be impractical. Thus our results support

the use of the filtration method when larger volumes of water samples for eDNA analysis are

available. We also found that eDNA yield was higher for samples extracted with the DNeasy

kit compared to the PowerWater kit, although this was not statistically significant in our study.

Previous studies, however, found that Qiagen DNeasy kits extracted a significantly greater

Fig 9. Changes in DNA yield from Day 1 to Day 2 for stream water samples stored under three

different conditions. Blue line represents room temperature (20˚C), green line represents refrigerated (4˚C)

and brown line represents frozen (-20˚C). Error bars show the ±2 standard deviation of the mean.

https://doi.org/10.1371/journal.pone.0179251.g009
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amount of eDNA compared to the PowerWater kit [19, 43]. We used manufacturers’ recom-

mendations in eluting DNA in this study (200 μl buffer for DNeasy samples, 100 μl for Power-

water), thus the difference in elution volumes could have led to the non-significant difference

in DNA yield between the two extraction kits. Nevertheless, the information that DNA yield

was still higher with the DNeasy kit despite a higher elution volume is useful, particularly for

researchers who would like to get the maximum amount of DNA extract without sacrificing

DNA concentration. In applied situations where attempts are made to detect species at

extremely low-densities, variability in recovery of just a few target molecules may signify the

difference between failed or successful detection. In this instance, the higher DNA yield in

DNeasy-extracted samples could play an important role in eDNA’s application to inform on-

ground management.

Our results reveal that the preservation of filter papers using 95% ethanol and extracted

with the Qiagen DNeasy kit is comparable to frozen storage. Filters stored in ethanol and

extracted with the PowerWater kit recovered significantly less eDNA suggesting that ethanol-

stored samples are not compatible with the PowerWater kit. The storage of filters in ethanol is

advantageous in field situations where access to ice is restricted or when samples cannot be fro-

zen immediately. Other ambient temperature buffers, such as cetyl trimethyl ammonium bro-

mide (CTAB) and Longmire’s solution, have also been successfully used to preserve eDNA [20,

44]. Compared to these buffers however, ethanol is widely available, inexpensive and can be used

straightaway whereas the other solutions have to be prepared using several ingredients. A recent

eDNA study [45] also found no significant difference in eDNA copies from filter papers stored

for up to six days in ethanol. Our study suggests that ethanol preservation can be a practical alter-

native when other buffers are not available. Studies looking at long-term preservation of filter

papers in ethanol and other ambient temperature buffers for eDNA studies are recommended.

A previous study found no significant difference in DNA copy numbers between CN and

PES filter papers of the same pore size (0.8μm) [20]. In contrast, we found statistically signifi-

cant differences in DNA yield between CN and PES extracted with the DNeasy kit in our

study. The difference in the results between the two studies is likely due to the different combi-

nations of DNA storage/preservation and extraction methods used. Renshaw, Olds [20] stored

samples in CTAB and used the PCI extraction protocol, whereas we stored the filter papers

in a -20˚C freezer prior to DNA extraction using the DNeasy kit. As the results of this study

reveal, there is a significant interaction effect between the type of filter paper and the extraction

method on DNA copy numbers. The storage/preservation method also affects DNA yield. It is

clear from our study that different combinations of storage, extraction, and choice of filter

paper can have a significant impact on DNA yield.

Our results agree with the findings of Liang and Keeley [37] who examined the effect of fil-

ter paper type on the recovery of spiked DNA plasmid. They found that DNA had different

binding affinities to different types of filter paper. MCE recovered the most DNA, followed

by Polyvinylidene Fluoride (PVDF—not trialled in the present study), PES and polycarbonate

filter papers [37]. Liang and Keeley [37] used the PowerSoil1 DNA Isolation Kit to extract

DNA from the filter papers. In our study, we also found that for DNeasy-extracted samples,

MCE gave a significantly higher DNA yield compared to PES and Polycarbonate filters. How-

ever, if PowerWater is used for DNA extraction, a significant difference in DNA yield was only

seen between PES and PCTE. It is worthwhile to note that although our results agree with the

findings of Liang and Keeley [37], the main difference between the studies was that they used

purified DNA while our study dealt with eDNA which consists of both extra- and intracellular

DNA, and even small tissue fragments or feces. Thus, while we could not calculate the effi-

ciency of the methods compared, our experimental methodology enabled us to potentially cap-

ture eDNA in all its forms from the water samples.
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The different binding affinities of DNA to various filter material could in part be explained

by the inherent properties of the filter itself. For instance, filter papers can be categorized as

depth filters (particles retained on the surface and within the filter matrix, i.e. GF, CN, MCE)

or surface filters (particles trapped on filter’s surface, i.e. PES, PCTE) (GE Healthcare, 2013). A

possible explanation why CN and MCE yielded significantly more DNA than the other filter

papers (for DNeasy-extracted samples only) could be because DNA was also trapped within

the matrix itself and not only on the surface. Another explanation could be the inherent high

DNA and protein binding capacity of cellulose nitrate filters [46, 47]. Further investigation is

required to determine the factors that allow eDNA to bind to some filter types more than oth-

ers. Testing the performance of other filter papers not included in this study (e.g. nylon,

PVDF) is also recommended.

Differences in the extraction methodology could explain the higher DNA yield we saw

when CN and MCE were extracted with the DNeasy kit compared to the PowerWater kit. For

instance, the DNeasy extraction process we used involved one hour incubation in tissue lysis

buffer and Proteinase K. This step could have resulted in the release of more nucleic acids

from within the filter matrix. The DNeasy method relies on a biochemical method to lyse cells

compared to the PowerWater method which uses a mechanical method (bead beating) [18].

The PowerWater extraction process also involved several transfers of the supernatant to differ-

ent collection tubes. Gaillard and Strauss [48] found that significant amounts of DNA can

stick to the walls of polypropylene tubes resulting in loss of DNA. This could have contributed

to the lower yield in the PowerWater extracts.

It is of interest that the DNeasy-GF and PowerWater-GF combinations gave the lowest

DNA yield particularly because these are two of the most widely used extraction-filter paper

combinations in eDNA studies (e.g. [3, 9, 29, 39, 49–52]). Several studies have found that the

PCI or the CTAB method yield more eDNA compared to commercial DNA extraction kits

[18, 20, 53]. The DNA kits are convenient and simple to use but are more expensive. In contrast,

the PCI and CTAB methods are inexpensive but require careful preparation and handling of

toxic chemicals. This study, along with several others, provides guidance for researchers to

choose their method depending on research objectives, personal preference, ease of use and

availability of resources.

Flow rate is also important when choosing filter papers for eDNA studies. Filter papers with

higher flow rates can significantly decrease filtration time (potentially contributing to eDNA

degradation during long filtration) and associated labour costs. Filtration time can be a crucial

factor when using highly turbid samples. For example, we have experienced filtration times of

up to 3 hours for 2L samples from highly turbid waterways (>200 nephelometric turbidity

unit (NTU)), despite using multiple 1.2 μm glass fibre filter papers. Previous work by Robson,

Noble [35] suggested increasing filter pore size (10 or 20 μm) or using pre-filters to decrease

filtration time particularly when using water with high sediment load or algae. This could

mean though that higher water volumes must be filtered in order to get the same quantity of

eDNA if one is to use smaller pore sized filters. Turner, Barnes [54] found that using 0.2μm fil-

ter paper maximized DNA capture but could only filter very small volumes due to clogging.

They recommended calculating pore size and water volume isoclines to attain identical

amount of carp DNA. Our study shows that choosing filter papers with higher flow rates can

also decrease filtration time.

Aside from DNA yield and flow rate, cost of filter papers is another factor to consider in fil-

ter paper choice. The filter paper type can significantly increase eDNA processing costs, not

only because of the price of the filter paper but also because filters with low flow rates increases

filtration time and labour costs. Our study suggests cellulose nitrate filter papers extracted

with Qiagen’s DNeasy kit as the most cost-efficient combination. We recognize however that
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eDNA methods vary depending on the objectives of the study. If large quantities of water sam-

ples are to be filtered, then perhaps using glass fibre filters or CN filter paper of larger pore size

would be more appropriate. For limited sample volumes, the CN-DNeasy combination could

be more cost-efficient.

A common practice for many eDNA studies is to filter water samples within 24 hours. Our

results support this practice as we have observed a significant decrease in DNA copy numbers

from Day 1 to Day 2 in stream samples regardless of storage method. If samples cannot be fil-

tered within 24 hours, our results suggest that refrigeration at 4˚C for a few days would yield

higher DNA copies compared to freezing. For long-term storage, water samples should be

placed inside a -20˚C freezer. While this study looked at the effect of storage temperature on

eDNA, it is also important to note that eDNA degradation is affected by a range of other phy-

siochemical factors such as light, pH, conductivity and enzymatic activity [34, 37]. These fac-

tors can interact in a synergistic or antagonistic manner in relation to DNA degradation [37].

Thus, while our experiment produced such results, it is also possible that the superiority of the

storage conditions (room temperature, refrigerated, frozen) could vary depending on the char-

acteristics of the water samples.

Takahara, Minamoto [31] investigated the effect of freezing and thawing water samples on

eDNA detection and concentration of common carp (Cyprinus carpio) DNA. They found that

detection of common carp DNA was lower in samples that underwent freezing (frozen for 2–5

days) and thawing compared to samples that did not, although no significant difference in

DNA concentration was seen. In our experiment, we found no difference in detection rates

but found significantly more DNA copy numbers on Day 1 aliquots (unfrozen, filtered within

4 hours) compared to Day 2 aliquots (stored in freezer for 1 day) from stream water samples.

For our tap water aquarium samples, we measured eDNA yield after several freezing and thaw-

ing events and showed that the repeated freezing and thawing process from Day 2 to Day 28

did not significantly affect the DNA copy number, suggesting that the first freeze-thaw cycle is

the crucial factor which significantly affects eDNA concentration. Some studies have investi-

gated the effect of the freeze-thaw cycle on DNA in intact cells (such as spermatozoa) and have

found that the freezing–thawing process affects DNA integrity by causing strand breaks [55,

56]. Environmental DNA analysis however already deals with short DNA sequences and it

seems that subsequent freeze-thaw cycles after the first one do not significantly affect the DNA

concentration of these short fragments.

Our experiments were set-up in the laboratory and thus represented ideal conditions for

eDNA analysis. Although we were able to validate our filter paper-DNA extraction kit experi-

ment with stream water samples, we were only able to test Day 1 and Day 2 for the storage

method and time experiment. We recommend exploring the same experimental set-up using

actual field samples for the entire duration of the experiment to see if similar results will be

obtained.

There are also many other possible combinations of eDNA methods that we have not tested

here. In particular, this study was not able to include other commonly-used extraction and

preservation methods used in eDNA studies such as PCI extraction and preservation with

Longmire’s solution. We also acknowledge that our methods comparison study investigates

variation in DNA yield only up to the DNA extraction stage and that subsequent variation in

PCR reagents, assay design and set-up procedures could also affect DNA quantity and detec-

tion [36, 57]. For instance, we did not encounter inhibition in our samples when using any of

the two DNA extraction kits; however, Eichmiller, Miller [19] observed more inhibition in

DNeasy-extracted samples compared to Power Water-extracted samples in a previous study. It

may be that our samples were free of inhibitors or, alternatively, the use of the TaqMan1

Environmental Master Mix in the PCR master mixes in this study have reduced any effect of
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inhibitors as it has been reported that this reagent can effectively release inhibition in eDNA

samples [57, 58].

Conclusion

The choice of eDNA methods should consider efficiency, reliability and comparability in addi-

tion to cost and ease of use. In this study, we have provided further evidence that the choice of

eDNA capture, storage, extraction method and filtration materials can substantially affect

DNA yield. By using similar pore-sized filters, we were able to directly compare eDNA yield

from different filter papers using two extraction kits. We recommend filtration with cellulose

nitrate filter paper and extraction with the Qiagen’s DNeasy kit for commercial DNA kit users.

Filters can either be stored frozen before extraction or placed in ethanol for up to four days

without significantly affecting DNA copy numbers. Our results support the recommendation

to filter water samples within 24hours but if this cannot be done, our results suggest short-

term refrigeration for up to five days may be a better storage option than freezing. The infor-

mation provided in this study has practical implications for eDNA field studies and is useful in

designing eDNA studies while considering resource costs and available resources. The result

of this study is likely to be of particular importance to eDNA detection of low-density invasive

or threatened species, where small variations in DNA recovery can signify the difference

between detection success or failure.
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18. Deiner K, Walser J-C, Mächler E, Altermatt F. Choice of capture and extraction methods affect detec-

tion of freshwater biodiversity from environmental DNA. Biological Conservation. 2015; 183(0):53–63.

http://dx.doi.org/10.1016/j.biocon.2014.11.018.

19. Eichmiller JJ, Miller LM, Sorensen PW. Optimizing techniques to capture and extract environmental

DNA for detection and quantification of fish. Molecular ecology resources. 2016; 16(1):56–68. https://

doi.org/10.1111/1755-0998.12421 PMID: 25919417

20. Renshaw MA, Olds BP, Jerde CL, McVeigh MM, Lodge DM. The room temperature preservation of fil-

tered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA

extraction. Molecular ecology resources. 2015; 15(1):168–76. https://doi.org/10.1111/1755-0998.

12281 PMID: 24834966

21. Piggott MP. Evaluating the effects of laboratory protocols on eDNA detection probability for an endan-

gered freshwater fish. Ecology and evolution. 2016; 6(9):2739–50. https://doi.org/10.1002/ece3.2083

PMID: 27066248

22. Ficetola GF, Miaud C, Pompanon F, Taberlet P. Species detection using environmental DNA from water

samples. Biology Letters. 2008; 4(4):423–5. https://doi.org/10.1098/rsbl.2008.0118 PMID: 18400683.

23. Turner CR, Barnes MA, Xu CC, Jones SE, Jerde CL, Lodge DM. Particle size distribution and optimal

capture of aqueous macrobial eDNA. bioRxiv. 2014.

24. Goldberg CS, Pilliod DS, Arkle RS, Waits LP. Molecular Detection of Vertebrates in Stream Water: A

Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders. Plos One. 2011; 6

(7). https://doi.org/10.1371/journal.pone.0022746 PMID: WOS:000293175100047.

25. Pilliod DS, Goldberg CS, Arkle RS, Waits LP. Estimating occupancy and abundance of stream amphibi-

ans using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic

Sciences. 2013; 70(8):1123–30. https://doi.org/10.1139/cjfas-2013-0047 PMID:

WOS:000322528400001.

26. Goldberg CS, Sepulveda A, Ray A, Baumgardt J, Waits LP. Environmental DNA as a new method for

early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Science. 2013; 32

(3):792–800. https://doi.org/10.1899/13-046.1 PMID: WOS:000322828300009.

27. Spens J, Evans AR, Halfmaerten D, Knudsen SW, Sengupta ME, Mak SS, et al. Comparison of capture

and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage

of enclosed filter. Methods in Ecology and Evolution. 2016. https://doi.org/10.1111/2041-210X.12683

28. Minamoto T, Yamanaka H, Takahara T, Honjo MN, Kawabata Zi. Surveillance of fish species composi-

tion using environmental DNA. Limnology. 2012; 13(2):193–7. https://doi.org/10.1007/s10201-011-

0362-4 PMID: WOS:000306438900001.

29. Jerde CL, Chadderton WL, Mahon AR, Renshaw MA, Corush J, Budny ML, et al. Detection of Asian

carp DNA as part of a Great Lakes basin-wide surveillance program. Canadian Journal of Fisheries and

Aquatic Sciences. 2013; 70(4):522–6. https://doi.org/10.1139/cjfas-2012-0478 PMID:

WOS:000317750700002.

30. Yamanaka H, Motozawa H, Tsuji S, Miyazawa RC, Takahara T, Minamoto T. On-site filtration of water

samples for environmental DNA analysis to avoid DNA degradation during transportation. Ecological

Research. 2016; 31(6):963–7.

31. Takahara T, Minamoto T, Doi H. Effects of sample processing on the detection rate of environmental

DNA from the Common Carp (Cyprinus carpio). Biological Conservation. 2015; 183(0):64–9. http://dx.

doi.org/10.1016/j.biocon.2014.11.014.

Environmental DNA methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0179251 June 12, 2017 20 / 22

https://doi.org/10.1111/j.1365-2664.2012.02171.x
https://doi.org/10.1111/j.1365-2664.2012.02171.x
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000306477000022
https://doi.org/10.1111/1755-0998.12180
https://doi.org/10.1111/1755-0998.12180
http://www.ncbi.nlm.nih.gov/pubmed/24119154
https://doi.org/10.1371/journal.pone.0088786
http://www.ncbi.nlm.nih.gov/pubmed/24523940
https://doi.org/10.1126/science.1251156
https://doi.org/10.1126/science.1251156
http://www.ncbi.nlm.nih.gov/pubmed/24970068
https://doi.org/10.1098/rstb.2013.0383
https://doi.org/10.1098/rstb.2013.0383
http://www.ncbi.nlm.nih.gov/pubmed/25487334
https://doi.org/10.1111/j.1365-294X.2012.05542.x
http://www.ncbi.nlm.nih.gov/pubmed/22486819
https://doi.org/10.1016/j.biocon.2014.11.018
https://doi.org/10.1111/1755-0998.12421
https://doi.org/10.1111/1755-0998.12421
http://www.ncbi.nlm.nih.gov/pubmed/25919417
https://doi.org/10.1111/1755-0998.12281
https://doi.org/10.1111/1755-0998.12281
http://www.ncbi.nlm.nih.gov/pubmed/24834966
https://doi.org/10.1002/ece3.2083
http://www.ncbi.nlm.nih.gov/pubmed/27066248
https://doi.org/10.1098/rsbl.2008.0118
http://www.ncbi.nlm.nih.gov/pubmed/18400683
https://doi.org/10.1371/journal.pone.0022746
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000293175100047
https://doi.org/10.1139/cjfas-2013-0047
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000322528400001
https://doi.org/10.1899/13-046.1
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000322828300009
https://doi.org/10.1111/2041-210X.12683
https://doi.org/10.1007/s10201-011-0362-4
https://doi.org/10.1007/s10201-011-0362-4
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000306438900001
https://doi.org/10.1139/cjfas-2012-0478
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000317750700002
https://doi.org/10.1016/j.biocon.2014.11.014
https://doi.org/10.1016/j.biocon.2014.11.014
https://doi.org/10.1371/journal.pone.0179251


32. Pilliod DS, Goldberg CS, Laramie MB, Waits LP. Application of environmental DNA for inventory and

monitoring of aquatic species: US Department of the Interior, US Geological Survey; 2013.

33. Takahara T, Minamoto T, Doi H. Using Environmental DNA to Estimate the Distribution of an Invasive

Fish Species in Ponds. Plos One. 2013; 8(2). https://doi.org/10.1371/journal.pone.0056584 PMID:

WOS:000315184200113.

34. Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderto WL, Lodge DM. Environmental conditions

influence eDNA persistence in aquatic systems. Environmental Science & Technology. 2014. https://

doi.org/10.1021/es404734p PMID: 24422450

35. Robson HL, Noble TH, Saunders RJ, Robson SK, Burrows DW, Jerry DR. Fine tuning for the tropics:

application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Molecular

ecology resources. 2016; 16(4):922–32. https://doi.org/10.1111/1755-0998.12505 PMID: 26849294

36. Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, et al. Critical considerations

for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and

Evolution. 2016; 7(11):1299–307.

37. Liang Z, Keeley A. Filtration Recovery of Extracellular DNA from Environmental Water Samples. Envi-

ronmental Science & Technology. 2013; 47(16):9324–31. https://doi.org/10.1021/es401342b PMID:

WOS:000323471700041.

38. Koster WM. Scoping study of the potential spread and impact of the exotic fish Oriental Weatherloach in

the Murray-Darling basin, Australia: a draft management strategy: Freshwater Ecology, Arthur Rylah

Institute for Environmental Research; 2002.

39. Furlan EM, Gleeson D, Hardy CM, Duncan RP. A framework for estimating the sensitivity of eDNA sur-

veys. Molecular ecology resources. 2015; 16(3):641–54. https://doi.org/10.1111/1755-0998.12483

PMID: 26536842

40. Hartman LJ, Coyne SR, Norwood DA. Development of a novel internal positive control for Taqman®
based assays. Molecular and cellular probes. 2005; 19(1):51–9. https://doi.org/10.1016/j.mcp.2004.07.

006 PMID: 15652220

41. Levene H. Robust tests for equality of variances. In ‘Contributions to probability and statistics: essays in

honor of Harold Hotelling’.(Eds Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB) pp. 278–292.

Stanford University Press: Redford City, CA, USA; 1960.

42. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965;

52(3/4):591–611.

43. Amberg JJ, McCalla SG, Monroe E, Lance R, Baerwaldt K, Gaikowski MP. Improving efficiency and reli-

ability of environmental DNA analysis for silver carp. Journal of Great Lakes Research. 2015.

44. Wegleitner BJ, Jerde CL, Tucker A, Chadderton WL, Mahon AR. Long duration, room temperature

preservation of filtered eDNA samples. Conservation Genetics Resources. 2015; 7(4):789–91.

45. Minamoto T, Naka T, Moji K, Maruyama A. Techniques for the practical collection of environmental

DNA: filter selection, preservation, and extraction. Limnology. 2016; 17(1):23–32.

46. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitro-

cellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences.

1979; 76(9):4350–4.

47. Thornton DJ, Carlstedt I, Sheehan JK. Identification of glycoproteins on nitrocellulose membranes and

gels. Molecular biotechnology. 1996; 5(2):171–6. https://doi.org/10.1007/BF02789065 PMID: 8734429

48. Gaillard C, Strauss F. Avoiding adsorption of DNA to polypropylene tubes and denaturation of short

DNA fragments. Technical Tips Online. 1998; 3(1):63–5.

49. Eichmiller JJ, Bajer PG, Sorensen PW. The relationship between the distribution of common carp and

their environmental DNA in a small lake. PloS one. 2014; 9(11):e112611. https://doi.org/10.1371/

journal.pone.0112611 PMID: 25383965

50. Wilcox TM, McKelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, et al. Robust Detection of Rare

Species Using Environmental DNA: The Importance of Primer Specificity. Plos One. 2013; 8(3). https://

doi.org/10.1371/journal.pone.0059520 PMID: WOS:000317418500042.

51. Schultz MT, Lance RF. Modeling the sensitivity of field surveys for detection of environmental DNA

(eDNA). PloS one. 2015; 10(10):e0141503. https://doi.org/10.1371/journal.pone.0141503 PMID:

26509674
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