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Adipose tissue is pivotal in the regulation of energy homeostasis
through the balance of energy storage and expenditure and as an
endocrine organ. An inadequate mass and/or alterations in the
metabolic and endocrine functions of adipose tissue underlie the
development of obesity, insulin resistance, and type 2 diabetes.
To fully understand the metabolic and molecular mechanism(s)
involved in adipose dysfunction, in vivo genetic modification of
adipocytes holds great potential. Here, we demonstrate that
adeno-associated viral (AAV) vectors, especially serotypes 8 and 9,
mediated efficient transduction of white (WAT) and brown adipose
tissue (BAT) in adult lean and obese diabetic mice. The use of
short versions of the adipocyte protein 2 or uncoupling protein-1
promoters or micro-RNA target sequences enabled highly spe-
cific, long-term AAV-mediated transgene expression in white or
brown adipocytes. As proof of concept, delivery of AAV vectors
encoding for hexokinase or vascular endothelial growth fac-
tor to WAT or BAT resulted in increased glucose uptake or
increased vessel density in targeted depots. This method of
gene transfer also enabled the secretion of stable high levels of
the alkaline phosphatase marker protein into the bloodstream
by transduced WAT. Therefore, AAV-mediated genetic engi-
neering of adipose tissue represents a useful tool for the study of
adipose pathophysiology and, likely, for the future development
of new therapeutic strategies for obesity and diabetes. Diabetes
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O
besity has become an alarming growing health
problem, with more than 700 million people
affected worldwide (1). Obesity increases the
risk of mortality and is very strongly associated

with insulin resistance and type 2 diabetes (2). Moreover,
obesity is also an important risk factor for heart disease,
immune dysfunction, hypertension, arthritis, neurodegen-
erative diseases, and certain types of cancer (3). Despite
the clinical significance of obesity, no effective treatments
are available, and additionally, antiobesity drugs often
display important side effects due to their systemic actions
(4). Hence, there is urgent need for novel and safe thera-
peutic approaches to block and reverse the current obesity

epidemic. Unraveling of the pathological processes un-
derlying obesity will be crucial for the development of new
antiobesity therapies.

Deregulation of metabolic and endocrine functions of
white adipose tissue (WAT), as well as impaired brown
adipose tissue (BAT) activity and/or decreased mass, are
considered among the main contributors to obesity and
type 2 diabetes in experimental animal models and in
humans (5–7). Genetic engineering of adipose cells offers
great potential as a tool to study the molecular mecha-
nisms underlying these pathogenic processes. However,
immortalized white and brown murine adipocyte pre-
cursor cell lines, such as 3T3-L1, 3T3-F442A, BFC-1, and
HB2, the most prominent cellular models used to study
adipocyte differentiation and fat cell function in vitro,
cannot easily be manipulated for efficient transfection (8),
and adenovirus vector–mediated transduction of these
cells is not efficient (9). Primary cultures of murine adi-
pocytes are also refractory to transfection and electro-
poration (10), and cellular integrity is often compromised
by the exposure to adenoviral vectors (11). Moreover, the
transcriptional profile and the metabolic state of cultured
immortalized precursor cell lines and primary adipocytes
may differ substantially from those of adipocytes in vivo
(12–15).

These facts highlight the need for a technology allowing
for the genetic modification of adipose tissue in vivo. Nu-
merous conventional and Cre-Lox and/or tetracycline-
dependent genetically engineered mouse models in which
transgene expression/deletion has been targeted specifi-
cally to WAT and/or BAT have been generated and con-
stitute very useful experimental models (16). However,
a main limitation of these models is that the gene of
interest is normally overexpressed or downregulated
throughout embryonic development and life span, which is
not physiological (17–19). In addition, the technology
required to obtain these animal models is complex, time-
consuming, and costly because large cohorts of mice need
to be generated.

Efficient in vivo gene transfer to WAT and BAT of adult
mice could represent a solution to the issues of avoid-
ing undesired effects on the embryo development and
restricting transgene expression to a specific temporal
window. This goal has not been achieved to date. Nonviral
methods, such as electroporation, are very inefficient for
in vivo gene transfer to white and brown adipocytes
(20,21). Adenoviral vectors are able to transduce white
adipocytes in vivo, but their high immunogenicity pre-
cludes long-term expression of the transgene (22). Long-
term expression has been obtained with defective herpes
simplex virus–derived vectors, although these vectors proved
to be cytotoxic for preadipocytes and adipocytes (23).
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Adeno-associated viral (AAV) vectors have emerged as
one of the vectors of choice for many gene transfer
applications in vivo because of their low immunogenicity
and excellent safety profile (24). AAV vectors transduce
dividing and nondividing cells, driving long-term gene ex-
pression (up to several years) in small- and large-animal
models of disease in tissues with very low proliferation
rates (24). Several AAV serotypes with a different cell
tropism have been identified. AAV vectors of serotype 1
(AAV1) have been shown to modestly transduce mouse
WAT in vivo when combined with nonionic surfactants
and/or a proteosome inhibitor (25,26). The efficacy of
other AAV serotypes in transducing WAT and BAT has not
been explored yet.

In this study, we assessed the ability of AAV vectors of
serotypes 1, 2, 4, 5, 6, 7, 8, and 9 to transduce murine WAT
and BAT in vivo. Our results show that AAV8 and AAV9
vectors mediated long-term, efficient gene transfer to WAT
and BAT after administration to adult mice, allowing for
the induction of functional changes in adipocytes. This
work demonstrates the value that AAV vectors hold as new
tools for the genetic engineering of adipose tissue, which
could be used in metabolic and pathophysiology studies as
well as in the development of new therapies for obesity
and type 2 diabetes.

RESEARCH DESIGN AND METHODS

Animals. Male ICR mice (8–12 weeks old), C57Bl/6J mice (9–13 weeks old),
and B6.V-Lepob/OlaHsd (ob/ob) and BKS.Cg-+ Leprdb/+ Leprdb/OlaHsd (db/db)
mice (8 weeks old) were used. Animal care and experimental procedures in
this study were approved by the Universitat Autònoma de Barcelona Ethics
Committee in Animal and Human Experimentation.
Recombinant AAV vectors. Single-stranded AAV vectors were produced by
triple transfection of human embryonic kidney 293 cells and purified by a CsCl-
based gradient method (27). Transgenes used were:

A. Enhanced green fluorescent protein (GFP) driven by 1) the cytomeg-
alovirus (CMV) early enhancer/chicken beta actin (CAG) promoter; 2)
the CAG promoter with the addition of four tandem repeats of the
mirT122a sequence (59CAAACACCATTGTCACACTCCA39), the mirT1
sequence (59TTACATACTTCTTTACATTCCA39) or both, cloned in the
39 untranslated region of the expression cassette; 3) the short version
of the adipocyte protein 2 (mini/aP2) promoter (28,29); or 4) the short
version of the uncoupling protein-1 (mini/UCP1) promoter (30,31);

B. Hexokinase 2 (HK2) driven by 1) the CMV promoter, 2) the mini/aP2
promoter, or 3) the mini/UCP1 promoter;

C. Placental-derived secreted alkaline phosphatase (SeAP) driven by the
mini/aP2 promoter;

D. Vascular endothelial growth factor (VEGF)-164 driven by the mini/
UCP1 promoter; and

E. Red fluorescent protein (RFP), driven by the CMV promoter.

A noncoding plasmid carrying the CMV promoter, the mini/aP2 promoter, or the
mini/UCP1 promoter and a multicloning site was used to produce null particles.
Administration of AAV vectors. Mice were anesthetized with ketamine (100
mg/kg) and xylazine (10 mg/kg). For the intraepididymal (intrae) WAT delivery,
a laparotomy was performed. To distribute the vector in the whole depot, each
epididymal fat pad was injected twice with 50 mL AAV solution. For intra-
interscapular (intrai)BAT and intrainguinal (intrai)WAT administrations,
a longitudinal incision in the skin at the interscapular or inguinal area was
performed, respectively. To distribute the vector in the whole depot, each
interscapular BAT (iBAT) or inguinal WAT (iWAT) received four injections
of 10 mL AAV solution using a Hamilton syringe. For the systemic adminis-
tration, AAV vectors were diluted in 200 mL saline and injected into the lateral
tail vein.
Immunohistochemistry. Tissues were fixed for 12–24 h in 10% formalin,
embedded in paraffin, and sectioned. Sections were incubated overnight at
4°C with a goat anti-GFP antibody (Abcam, Cambridge, MA), with a rabbit
anti-RFP antibody (Abcam), with a goat anti-CD105 antibody (R&D Systems
Inc., Minneapolis, MN) or with a mouse anti–a-smooth muscle actin (SMA)
antibody (Sigma-Aldrich, Saint Louis, MO). A biotinylated donkey anti-goat
antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), a biotinylated

goat anti-rabbit antibody (Pierce Biotechnology, Inc., Rockford, IL), or a bio-
tinylated horse anti-mouse antibody (Vector Laboratories, Burlingame, CA) was
used as a secondary antibody. Streptavidin Alexa Fluor 488 (Molecular Probes;
Life Technologies Corp., Carslbad, CA) was used as fluorochrome, and Hoechst
(Sigma-Aldrich) was used for nuclear counterstaining. Alternatively, an ABC
peroxidase kit (Pierce) was used, and sections were counterstained in Mayer’s
hematoxylin. Neutrophils were stained using a Naphthol AS-D Chloroacetate
(Specific Esterase) kit (Sigma-Aldrich).
Measurement of GFP content. Tissues were disrupted in 1 mL lysis buffer
(50 mmol/L Tris, 1% Nonidet P40, 0.25% sodium deoxycholate, 150 mmol/L
NaCl, 1 mmol/L EDTA, in PBS, pH 7.4, sterile filtered) with a tissue
homogenizer and incubated for 10 min at room temperature. After incubation,
samples were centrifuged at 14,000 rpm for 10 min. GFP content was mea-
sured by luminescence in 100 mL supernatant using a 488-nm excitation
wavelength and 512-nm emission wavelength (Flx800; BioTek Instruments,
Inc., Winooski, VT). GFP content values were corrected by total protein
content of the sample.
Isolation of adipocytes. AAV-transduced adipocytes were isolated using
a modification of the Rodbell method (32). Isoflurane-anesthetized mice were
killed by decapitation, and epididymal WAT (eWAT) was minced and digested
at 37°C in Krebs-Ringer bicarbonate HEPES buffer (KRBH) containing 4% BSA
(fatty acid-free), 0.5 mmol/L glucose, and 0.5 mg/mL collagenase type II
(C6885; Sigma-Aldrich) during 35–45 min. Fat cells were isolated by gentle
centrifugation and washed three times with fresh collagenase-free KRBH
without glucose.
RNA analysis. Total RNA was obtained from isolated adipocytes or adipose
tissue samples using QIAzol Lysis Reagent (Qiagen, Hilden, Germany) and
RNeasy Lipid Tissue Minikit (Qiagen). To eliminate residual viral genomes (vg),
total RNAwas treatedwith DNAseI (Qiagen). For RT-PCR, 1 mg RNAwas reverse-
transcribed using the Transcriptor First Strand cDNA Synthesis kit (Roche Di-
agnostic GmbH, Roche Applied Science, Mannheim, Germany). Quantitative
PCR was performed in a LightCycler 480 II (Roche) using the LightCycler 480
SYBR Green I Master kit (Roche). The sequences of the sense and antisense
oligonucleotides primers used were: GFP, 59AAGTTCATCTGCACCACCG39,
59TCCTTGAAGAAGATGGTGCGC39; RFP, 59GCGGCCACTACACCTGCGAC39,
59TCGGCGTGCTCGTACTGCTC39; HK2, 59GAAGGGGCTAGGAGCTACCA39,
59CTCGGAGCACACGGAAGTT39; SeAP, 59CGGCTGTTGGGCACTGA39,
59GGAAGGTCCGCTGGATTGA39; VEGF164, 59AGACAGAACAAAGCCAGAAA-
TCAC39, 59CACGTCTGCGGATCTTGGAC39; platelet endothelial cell adhesion
molecule 1 (PECAM1), 59CTGGTGCTCTATGCAAGCCTC39, 59CGGTGCTGA-
GACCTGCTTT39; adiponectin, 59TGTTCCTCTTAATCCTGCCCA39, 59CCAAC-
CTGCACAAGTTCCCTT39; leptin, 59GAGACCCCTGTGTCGGTTC39, 59CTGC
GTGTGTGAAATGTCATTG39; resistin, 59AACTCCCTGTTTCCAAATGC39, 59AGCA
GCTCAAGACTGCTGTG39; interleukin (IL)-6, 59CATGGATGCTACCAAACT
GGAT39, 59CCAGGTAGCTATGGTACTCCAGA39, IL-1b, 59TGTAATGAAAGA
CGGCACACC39, 59TCTTCTTTGGGTATTGCTTGG39; and monocyte chemoat-
tractant protein-1 (MCP-1), 59CCCAATGAGTAGGCTGGAGA39, 59TCTGGAC
CCATTCCTTCTTG39. Data were normalized with 36B4 values (33).
Glucose uptake ex vivo in isolated adipocytes. Glucose uptake in isolated
adipocytes was measured at different insulin concentrations. Isolated adipo-
cytes were obtained by collagenase digestion of eWAT from fed mice, as de-
scribed above. The adipocyte suspension (250 mL) was incubated with KRBH
plus 4% BSA (fatty acid-free), 10 mmol/L of the deoxy-D-glucose, 0.4 mCi of
2-[1-3H]deoxy-D-glucose (2DG) (PerkinElmer, Waltham, MA), and different
insulin concentrations for 5 min. Afterward, adipocytes and incubation me-
dium were separated through silicon oil (Sigma-Aldrich) in polypropylene
tubes, and radioactivity in the adipocyte samples was assessed by liquid
scintillation counting. The results were expressed as picomoles of 2DG per
106 cells per min.
Glucose uptake in vivo. The in vivo basal glucose utilization index was de-
termined as previously described (34). Briefly, 4 mCi 2DG (PerkinElmer) was
mixed in BSA-citrate buffer. A flash injection of radiolabeled mix was ad-
ministered into the jugular vein of anesthetized (ketamine and xylazine) fed
mice at time zero. The specific blood 2DG clearance was determined by the
Somogyi procedure in 25 mL blood samples (tail vein) obtained 1, 15, and
30 min after injection. Tissue samples were removed 30 min after injection.
The glucose utilization index was determined by measuring the accumulation
of radiolabeled compounds. The amount of 2DG-6-phosphate per milligram of
protein was divided by the integral of the concentration ratio of 2DG to un-
labeled glucose measured. Because values were not corrected by a “discrimi-
nation constant” for 2DG in glucose metabolic pathways, the results are
expressed as the index of glucose utilization, in picomoles per milligram of
protein per minute.
Measurement of SeAP and adiponectin serum levels. Circulating human
SeAP was quantified in 5 mL serum using the Tropix Phospha-Light System
(Applied Biosystems, Inc.). Serum adiponectin was measured with a mouse/rat
RIA Kit (Millipore, Billerica, MA).
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Flow cytometry. eWAT and iBAT stroma vascular fraction, hepatic non-
parenchymal cells, and peripheral blood mononuclear cells were isolated as
previously described (35,36). F4/80 (BioLegend, San Diego, CA), CD3em, and
NK-1.1 (BD Pharmigen, Franklin Lakes, NJ) antibodies were used. Flow
cytometric analyses were performed on a FACSCanto flow cytometer (BD
Biosciences, Franklin Lakes, NJ).
Statistical analysis. All values are expressed as mean 6 SEM. Differences
between groups were compared by the Student t test. Differences were con-
sidered significant at P , 0.05.

RESULTS

In vivo transduction of WAT by local delivery of AAV
vectors. To asses the in vivo transduction efficiency of
WAT by AAV vectors, AAV of serotypes 1, 2, 4, 5, 6, 7, 8 or
9 encoding the GFP under the control of the ubiquitous
promoter CAG were injected into the eWAT in adult mice.
Transduction efficiency of WAT was evaluated 2 weeks
postinjection, given that at this time point AAV vectors
have been reported to mediate robust transgene expres-
sion in most tissues. AAV8 and AAV9 vectors transduced
the vast majority of adipocytes in eWAT, outperforming
AAV1, 2, 4, 5, 6, and 7 vectors (Fig. 1A and B and Sup-
plementary Fig. 1A). Similarly, local administration of
AAV8 and AAV9-CAG-GFP vectors into the iWAT mediated
extensive transduction of white and beige adipocytes in
this depot (Fig. 1C and D).

The intraeWAT and intraiWAT administration of AAV8
or AAV9 vectors also resulted in transduction of the liver
and heart (Supplementary Fig. 1B and data not shown). To
restrict transgene expression to adipose tissue, we used
murine mini/aP2, which allowed overcoming the limited
cloning capacity of AAV vectors (4.7 kb). This promoter
comprises the basal promoter and adipocyte-specific en-
hancer of aP2 (28,29). The intraeWAT administration of
AAV8 or AAV9-mini/aP2-GFP vectors mediated specific
transduction of white adipocytes (Supplementary Fig. 1C),
with no detectable GFP expression in the liver and heart
(Supplementary Fig. 1D) and iBAT (data not shown).

To demonstrate that in vivo AAV-mediated transduc-
tion of adipocytes may be a suitable model to study adi-
pose function, AAV9 vectors encoding the murine HK2,
the main glucose phosphorylating enzyme in fat cells,
under the control of the ubiquitous CMV promoter (AAV9-
CMV-HK2) or an equal dose of the AAV9-CMV-null vector,
were delivered intraeWAT. Adipocytes isolated from
AAV9-CMV-HK2–treated mice showed overexpression
of HK2 compared with adipocytes obtained from AAV9-
CMV-null–injected mice (Fig. 1E). Accordingly, in vitro
insulin-stimulated 2DG uptake was increased in AAV9-
CMV-HK2–transduced adipocytes compared with adipo-
cytes from AAV9-CMV-null–treated animals (Fig. 1F).
Furthermore, animals injected intraeWAT with AAV9-mini/
aP2-HK2 vectors showed a greater increase (about three-
fold) in 2DG uptake in vivo than AAV9-mini/aP2-null–
treated animals (Fig. 1G). As expected, no differences in
2DG uptake were detected between groups in iBAT and
heart (Fig. 1G).

Finally, to test the ability of AAV-engineered eWAT to
secrete proteins of interest into the bloodstream, human
SeAP was used as reporter. AAV9-mini/aP2-SeAP vectors
were injected bilaterally intraeWAT, and a long-term follow-
up of circulating SeAP was performed. At 2 weeks after
AAV vector delivery, high levels of SeAP were detected in
serum. Levels rose progressively up to day 30 and thereafter
remained stable for the duration of the study (.140 days)
(Fig. 1H).

In vivo genetic engineering of BAT by local delivery
of AAV vectors. Upon intraiBAT administration of AAV8
or AAV9-CAG-GFP vectors, numerous GFP+ brown adi-
pocytes were detected throughout the depot (Fig. 2A).
Quantification of transduction efficiency showed that
AAV8 and AAV9 were as efficient as AAV7 and superior
to AAV1, AAV2, and AAV5 vectors in transducing iBAT
(Fig. 2B).

The intraiBAT administration of AAV7, AAV8, or AAV9
vectors also resulted in gene transfer to the liver and
heart (Supplementary Fig. 2A). To restrict transgene
expression to iBAT, the mini/UCP1 promoter was used.
The mini/UCP1 promoter comprises the basal promoter
and the adipose-specific enhancer of rat UCP1 (30,31).
The intraiBAT administration of AAV8 or AAV9-mini/
UCP1-GFP achieved efficient transduction of brown
adipocytes (Fig. 2C), abolished transgene expression in
the heart, and mediated very marginal liver transduction
(Supplementary Fig. 2B), in agreement with previous
reports (31).

Animals treated locally with AAV8-mini/UCP1-HK2
showed increased in vivo 2DG uptake in iBAT compared
with AAV8-mini/UCP1-null–treated animals (Fig. 2D). As
expected, no difference was found between groups in
the 2DG uptake in eWAT and heart (Fig. 2D). Similarly,
animals injected intraiBAT with AAV9 vectors encoding
the isoform 164 of murine VEGF (AAV9-mini/UCP1-
VEGF164) showed marked overexpression of VEGF164
(Fig. 2E) and increased vessel density in this fat depot,
as revealed by increased expression of PECAM1, a
commonly used endothelial cell marker (36,37) (Fig. 2E),
and increased immunostaining with CD105, a marker of
proliferating endothelial cells (38) or with the pericyte
marker a-SMA (39) (Fig. 2F and Supplementary Fig. 2C).
In vivo genetic engineering of WAT and BAT by
systemic administration of vectors. The systemic de-
livery of AAV8 or AAV9 vectors transduces a wide variety
of tissues (40,41). However, transduction of WAT and BAT
by intravascular administration of these serotypes has
never been reported before. After intravascular adminis-
tration of 5 3 1012 vg of AAV8 or AAV9-CAG-GFP vectors
to lean mice, white and brown fat depots of the whole
body were transduced although transduction efficiencies
in the different depots varied with mouse strain (Fig. 3A–D).
Lower systemic doses of vectors (5 3 1010 and 5 3 1011 vg)
also mediated gene transfer to WAT and BAT, although at
reduced efficiency (Supplementary Fig. 3A and B). No sex
differences were observed in AAV9-mediated trans-
duction of the different adipose depots, except for go-
nadal fat pads (Supplementary Fig. 3C). Importantly, the
intravascular administration of AAV8 or AAV9 vectors to
diabetic obese ob/ob mice (Fig. 4A and B) or db/db mice
(Fig. 4C and D) also resulted in the genetic engineering
of WAT and BAT, with efficiencies similar to those
attained in lean mice (Fig. 3C and D).

Noticeably, the intravascular administration of AAV8 or
AAV9 vectors did not result in infiltration of WAT, BAT, or
the liver with macrophages, T lymphocytes, or natural
killer cells (Fig. 5A, B and Supplementary Fig. 4A), nor was
neutrophilic infiltration detected in the liver (Supplemen-
tary Fig. 4B). Accordingly, no changes in the expression
profile of adipokines and proinflammatory cytokines were
detected in WAT (Fig. 5C), and circulating levels of adi-
ponectin remained normal in AAV8- and AAV9-treated
animals (Fig. 5D). Moreover, intravascular delivery of
AAV8 or AAV9 vectors did not lead to transduction of
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FIG. 1. Transduction of WAT after local administration of AAV vectors. A: Immunostaining against GFP (green) in sections of eWAT 2 weeks after
the intraeWAT administration of 2 3 10

11
vg of AAV-CAG-GFP vectors of serotypes 6, 7, 8, or 9. Blue, nuclei. Original magnification 3100 (upper

panel) and 3200 (lower panel). B: GFP content in eWAT treated with 2 3 10
11

vg of AAV-CAG-GFP vectors of serotypes 1, 6, 7, 8, or 9 at 2 weeks
postinjection (n = 5 mice/group). C: Immunostaining against GFP (brown) in sections of iWAT 2 weeks after the intraiWAT administration of 2 3
10

11
vg of AAV8 or AAV9-CAG-GFP vectors. Original magnification 3100. D: GFP expression levels in iWAT 2 weeks postinjection of 2 3 10

11
vg of

AAV8 or AAV9-CAG-GFP (n = 6). AU, arbitrary units. E: HK2 expression levels in adipocytes isolated 2 weeks after intraeWAT administration of 2
3 10

11
vg of AAV9-CMV-HK2 or AAV9-CMV-null vectors (n = 5). F: In vitro basal and insulin-stimulated 2DG uptake by adipocytes isolated 2 weeks

after intraeWAT administration of 2 3 10
11

vg of AAV9-CMV-HK2 or AAV9-CMV-null vectors (n = 5). G: In vivo 2DG uptake by eWAT, iBAT, and
heart 2 weeks after the intraeWAT injection of 1.4 3 10

12
vg of AAV9-mini/aP2-null or AAV9-mini/aP2-HK2 vectors (n = 7). H: Follow-up of cir-

culating levels of human SeAP in animals administered intraeWAT with 2 3 10
12

vg of AAV9-mini/aP2-SeAP or saline (n = 3). Values shown are
means 6 SEM. RLU, relative light units. *P < 0.05, **P < 0.01, and ***P < 0.001; # P < 0.05 vs. AAV9-CMV-null at the same insulin concentration.
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macrophages in eWAT, iBAT, the liver or peripheral blood
(data not shown).

We then tested whether the mini/aP2 and mini/UCP1
promoters could be used to restrict transgene expression

to white and/or brown adipocytes after systemic delivery
of AAV vectors. The intravascular administration of AAV9-
mini/aP2-GFP or AAV9-mini/UCP1-GFP vectors attained
highly adipose-specific GFP expression in white and/or

FIG. 2. Transduction of BAT after intraiBAT administration of AAV vectors. A: Immunostaining against GFP (brown) in sections of iBAT after
intraiBAT administration of 2 3 10

9
vg of AAV8 or AAV9-CAG-GFP. Original magnification 3200 and 3400 (insets). B: RFP expression levels in

iBAT after administration of 10
10

vg of AAV-CMV-RFP vectors of serotypes 1, 2, 5, 7, 8, or 9 (n = 3–5 mice/group). AU, arbitrary units.
C: Immunostaining against GFP (brown) in sections of iBAT administered with 2 3 10

11
vg of AAV8 or AAV9-mini/UCP1-GFP. Original magnifi-

cation3200 and3400 (insets). D: In vivo 2DG uptake by iBAT, eWAT, and heart after intraiBAT administration of 73 10
10

vg of AAV8-mini/UCP1-
HK2 (n = 6) or AAV8-mini/UCP1-null vectors (n = 10). E: VEGF164 and PECAM1 expression levels in iBAT after intraiBAT administration of 2 3
10

11
vg of AAV9-mini/UCP1-VEGF164 or AAV9-mini/UCP1-null vectors (n = 5). F: Immunostaining against CD105 (brown) in iBAT from the same

cohorts. Original magnification 3400 and 31,000 (insets). All analyses were performed 2 weeks after vector administration. Values shown are
means 6 SEM. *P < 0.05.
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brown adipocytes, respectively (Fig. 6A and B), with no
detectable transgene expression in the heart and very
marginal transduction of the liver, which presented only
a few scattered GFP+ hepatocytes (Supplementary Fig. 5A).
Similar results were obtained for the AAV8 serotype (data
not shown). However, the level of transgene expression
mediated by the mini/aP2 or mini/UCP1 promoters was
much lower than that afforded by the CAG promoter
(Supplementary Fig. 5B). Nevertheless, systemic adminis-
tration of AAV9-mini/UCP1-VEGF164 resulted in increased
expression of VEGF164 and PECAM1 (Fig. 6B and C) and
increased vessel density (Fig. 6D and E) in iBAT.

To further strengthen the potential of AAV vectors to
genetically modify adipose tissue when administered sys-
temically and given the reduced transgene expression
attained by the mini/aP2 and mini/UCP1 promoters, we also
investigated the use of the CAG promoter in conjunction
with tissue-specific micro-RNA target (miRT) sequences
in an attempt to obtain high expression levels in adipose
tissue and de-target transgene expression from off-target
organs. Upon intravascular administration of AAV9-CAG-
GFP vectors containing targets of the liver-specific miR122a
(AAV9-CAG-GFP-miRT122) (42), the heart-specific miR1
(AAV9-CAG-GFP-miRT1) (43) or both (AAV9-CAG-GFP-
doublemiRT), high levels of GFP expression were observed
in white and brown adipocytes, whereas GFP production in
the liver and/or heart, respectively, was nearly completely
abolished (Fig. 7).

DISCUSSION

In this study, we have shown that local or systemic ad-
ministration of AAV vectors, especially serotypes 8 and 9,
leads to robust genetic engineering of white and brown
adipocytes in adult mice. The systemic administration of
AAV8 or AAV9 vectors mediated transduction of whole-
body adipose depots in lean and obese diabetic mice.
However, depending on the strain, variable transduction
efficiencies among depots were observed. Distinct WAT
depots are not equivalent, because developmental, mor-
phological, molecular, and functional differences among
them have been reported for mice and humans (44,45).
The differences observed in transduction efficiencies be-
tween depots may be also due to their distinct degree of
vascularization. Indeed, retroperitoneal and inguinal
depots are less vascularized than the rest of the fat pads,
being that inguinal depots have the lowest density of blood
vessels (46). Although high vascular density and blood
flow have been described in the mesenteric depot (46), this
fat pad also contains a large amount of structural and
extracellular proteins that modulate cell–cell and cell–
matrix adhesion and endothelial permeability (47), which
may impair genetic engineering of this depot by systemic
administration of AAV vectors. Moreover, the delivery
route may also substantially influence transduction effi-
ciency. In this regard, when AAV vectors were adminis-
tered intradepot to eWAT, iWAT, and iBAT, efficient
transduction of adipocytes was observed.

FIG. 3. Transduction of WAT and BAT after systemic administration of AAV vectors to lean mice. Tail vein injection was used to deliver 5 3 10
12

vg
of AAV8- or AAV9-CAG-GFP vectors to lean mice, and samples were analyzed 2 weeks after vector administration. A: Immunostaining against GFP
(green) in eWAT. Blue, nuclei. Original magnification 3100 (left panels) and 3200 (right panels). B: Immunostaining against GFP (in brown) in
iBAT sections. Original magnification 3200 and 3400 (insets). Relative GFP expression levels in iWAT, retroperitoneal WAT (rWAT), mesenteric
WAT (mWAT), eWAT, and iBAT fat depots after intravascular administration of vectors to ICR mice (C) and C57Bl6 mice (D) (ICR: n = 3 for AAV8
and n = 5 for AAV9; C57Bl6: n = 4). Values shown are means 6 SEM. AU, arbitrary units.
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Local administration of AAV7, AAV8, and AAV9 vectors
also resulted in transduction of nonadipose tissues be-
cause these serotypes can cross endothelial barriers and
reach the bloodstream (41). The use of the mini/aP2 and
mini/UCP1 promoters or the liver and heart-specific mirT
sequences prevented to a great extent transgene expres-
sion in off-target organs and afforded long-term transgene
expression after local or systemic delivery of AAV vectors.
Moreover, overexpression of HK2 or VEGF164 mediated
by AAV-mini/aP2 or AAV-mini/UCP1 resulted in WAT- or
BAT-specific increased in vivo glucose uptake or vascular
density, respectively. Similar results have been observed
using transgenic mice overexpressing VEGF164 in BAT
(36,37) or the glucose phosphorylating enzyme glucoki-
nase in WAT (32), highlighting the potential of AAV vectors
to achieve genetic engineering of adipose tissue in adult
mice. Thus, this gene transfer methodology may be an at-
tractive alternative to the use of adipose-specific transgenic/
knock-out mouse models, especially when high-throughput
screening of genes is required. Furthermore, the aP2 pro-
moter, which is frequently used to achieve adipocyte-specific

expression of genes of interest in transgenic models,
conveys transcription in cell types other than adipo-
cytes, such as macrophages and cardiomyocytes (48).
Conversely, the mini/aP2 promoter precluded trans-
duction of the heart, and AAV8 and AAV9 vectors did not
mediate genetic engineering of macrophages, consistent
with the poor tropism of these serotypes for this cell
type (35,49). Additional advantages of the strategy pre-
sented here over the use of transgenic animals are that
AAV vector production can be done in a relatively short
period of time (a few weeks), discrete depots of choice
can be engineered by intradepot administration, and the
same vector construct can be tested in different animal
models of obesity and diabetes, including large-animal
models (50).

Numerous experimental and clinical studies have docu-
mented that AAVs, in contrast to other types of vectors,
such as adenoviruses, have very mild proinflammatory
potential due to their inability to efficiently trigger innate
immune responses (51,52). One recent study, however,
reported infiltration and production of proinflammatory

FIG. 4. Transduction of WAT and BAT after systemic administration of AAV vectors to obese diabetic mice. Immunostaining against GFP (brown)
in eWAT, iWAT, and iBAT sections after intravascular administration of 3 3 10

12
vg of AAV8- or AAV9-CAG-GFP vectors to ob/ob (n = 4) (A) and

db/db (n = 4) mice (C). Original magnification3200. GFP expression in inguinal (iWAT), retroperitoneal (rWAT), mesenteric (mWAT), eWAT, and
iBAT depots from the same cohorts of ob/ob (B) and db/db mice (D). All analyses were performed 2 weeks after vector delivery. Values shown are
means 6 SEM. *P < 0.05 vs. AAV9. AU, arbitrary units.
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cytokines in the liver after intravascular administration
of AAV vectors in mice, although these responses were
boosted by double-stranded and not by single-stranded
AAV vectors (53). Our results clearly show that intra-
vascular administration of single-stranded AAV8 or AAV9
vectors does not lead to inflammation of the liver or ad-
ipose tissue.

Much of the research on fat cell function and differen-
tiation published to date has relied on the use of primary
adipocyte cultures and immortalized adipocyte precursor
cell lines in vitro. However, not all precursor cells undergo
differentiation, and mature adipocytes derived from these
cell lines present remarkable phenotypic differences
compared with wild-type adipocytes, such as aneuploidy,
altered pattern of fat deposition, aberrant gene expression,
and decreased insulin sensitivity (12–15). Gene transfer to
the vast majority of these in vitro models is also inefficient,
and primary adipocytes cannot be maintained in culture
for long periods of time. In our study, AAV8 and AAV9
vectors mediated efficient, long-term transduction of white
and brown adipocytes in vivo. Furthermore, the intra-
eWAT administration of AAV9-CMV-HK2 vectors led to
increased glucose uptake when measured in vitro in iso-
lated adipocytes. Thus, in vivo genetic engineering of ad-
ipose tissue by AAV vectors, followed by isolation of the
engineered adipocytes, may be a useful approach to per-
form gene function studies in fat cells in vitro, because it
would allow the use of efficiently transduced, bona fide
adipocytes. Moreover, the isolation of in vivo transduced
adipocytes weeks or months after vector delivery would

also allow in vitro studies that require long-term genetic
modification.

AAV-mediated genetic engineering of adipose tissue may
also open up new opportunities for the development of
future therapeutic strategies to treat obesity and type 2
diabetes. To this end, the safety and efficacy of AAV-
mediated gene transfer has been extensively studied in
humans, with encouraging results in the liver, muscle,
central nervous system, and retina (24). Thus, AAV-
mediated gene therapy approaches targeting obesity-
specific alterations, such as WAT inflammation and hypoxia
or thermogenesis, may constitute attractive therapeutic
strategies.

The high secretory capacity shown by AAV-modified
WAT may be exploited for the development of new gene
therapy strategies for diseases in which supply of the
therapeutic agent into the bloodstream is needed for
treatment/cure, such as hemophilia (24), diabetes (50) or
lysosomal storage diseases (40). Our data suggest that
AAV-modified WAT can act as a “therapeutic pump” and,
therefore, become an attractive target site in alternative to
the liver and muscle, given its accessibility and the possi-
bility of easy surgical removal of WAT if unexpected
events occurred. This possibility may be of significant
importance for patients who are not eligible for liver-
directed gene transfer because of underlying hepatic
disease, such as hemophilia patients with liver failure,
cirrhosis, or liver cancer due to hepatitis C.

In summary, our findings demonstrate that AAV vectors
offer great potential for the long-term postnatal genetic

FIG. 5. Assessment of adipose tissue inflammation after systemic administration of AAV vectors. Flow cytometric quantification of the
number of macrophages (mF), T lymphocytes (T cells), and natural killer cells (NK) in eWAT (A) and iBAT (B) 1 month after intravascular
administration of 3 3 10

12
vg of AAV8 or AAV9-CAG-GFP to C57Bl6 mice (n = 3–4). C: Relative expression of adipokines and proinflammatory

cytokines in eWAT at 2 weeks after intravascular administration of 2 3 10
12

vg of AAV8 or AAV9-CAG-null vectors to C57Bl6 mice (n = 7–8).
Lep, leptina; Adipoq, adiponectin; Retn, resistin. D: Serum adiponectin levels in the same cohorts. Values shown are means 6 SEM.
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modification of murine adipose tissue in vivo. AAV-
mediated genetic engineering of WAT and BAT represents
a technological advance that may prove useful for the
study of physiopathology of metabolic diseases as well as
for the development of new therapeutic approaches for
obesity and type 2 diabetes.
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