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Cell nutrition, detoxification, signalling, homeostasis and response to drugs,

processes related to cell growth, differentiation and survival are all mediated

by plasma membrane (PM) proteins called transporters. Despite their dis-

tinct fine structures, mechanism of function, energetic requirements,

kinetics and substrate specificities, all transporters are characterized by a

main hydrophobic body embedded in the PM as a series of tightly

packed, often intertwined, a-helices that traverse the lipid bilayer in a

zigzag mode, connected with intracellular or extracellular loops and hydro-

philic N- and C-termini. Whereas longstanding genetic, biochemical and

biophysical evidence suggests that specific transmembrane segments,

and also their connecting loops, are responsible for substrate recognition and

transport dynamics, emerging evidence also reveals the functional impor-

tance of transporter N- and C-termini, in respect to transport catalysis,

substrate specificity, subcellular expression, stability and signalling. This

review highlights selected prototypic examples of transporters in which

their termini play important roles in their functioning.
1. Transporters and their tails
Transporters are membrane proteins that mediate the selective passage of

nutrients, metabolites or drugs across cellular membranes. Their activity is

essential for cell survival, division and differentiation and consequently for

the life of all organisms. This is reflected in the high number of corresponding

genes in all genomes (approx. 5–15%) and in several associated genetic or

other diseases caused by transporter malfunction (e.g. cystic fibrosis, diabetes,

neurodegeneration, etc.). The great majority of solute transporters are either

facilitators, not requiring energy for downhill transport, or secondary active

transporters, which need energy coupling provided by the co-transport

(symport) or exchange (antiport) of ions or other solutes down their electro-

chemical gradients. Two other types of transmembrane proteins involved in

transport, ATP-dependent primary active transporters and ion channels, are sig-

nificantly distinct in structure, function and evolution from secondary active

transporters and facilitators. This review will discuss aspects concerning the

roles of cytosolic tails specifically in secondary active transporters.

Secondary active transporters consist of 10–14 hydrophobic or amphipathic

mostly a-helical transmembrane segments (TMSs), connected through hydro-

philic loops (L), and mostly hydrophilic N- or C-terminal regions of variable

length, which in the majority of cases are cytoplasm facing. These transporters

bind their substrates at a single binding site from one side of the membrane and

transport it to the opposite side by a translocation mechanism that requires sig-

nificant reversible conformational alterations. Surprisingly, transporters of

distant evolutionary families and of distinct function and energetic requirement

might share a common architectural fold, one among the four currently ident-

ified, namely the LeuT, the major facilitator superfamily (MFS), the GltPh and

the NhaA fold [1–3]. Notably, however, while different folds are associated

with distinct mechanisms of transport, known as the rocking-bundle (LeuT),

rocker-switch (MFS) or elevator-like sliding (GltPh, NhaA and distantly related
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Figure 1. Cytosolic N- and C-termini play a crucial role in transporter expression, function and turnover. The figure highlights in a simplified manner how the
topology of cytosolic termini alters depending on the overall conformation of the transporters (i.e. outward facing, occluded, inward facing) and this altered con-
formation is crucial for regulating both intramolecular events (i.e. transport activity, allosteric regulation) and intermolecular interactions (i.e. ubiquitination,
endocytosis, sorting, signalling, etc.). Notice that in the outward-facing conformation the N- and C-tails are in closer contact with other domains of the transporter
than in the inward-facing conformation. For more details see main text.
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LeuT-like transporters), the function of all transporters is

based on a common mechanism which drives the alteration

from an outward- to an inward-facing topology [4–9]. This

common mechanism is elicited by substrate binding, translo-

cation and release. In addition to this major conformational

alteration imposed by substrate binding and release, gating
by specific short segments or residues at the entrance or

exit, or along the substrate translocation trajectory, controls

substrate access to and from the major binding site and

thus finely regulates transport [1,10,11]. Overall, the current

view is that transporters alternate in at least five structurally

distinct conformations during transport: outward-facing

open (substrate reception), outward-facing occluded (sub-

strate oriented in the major binding site and closure of the

outer gate), fully occluded (substrate stabilized in a major

binding site), inward-facing occluded (substrate binding

induces inward conformation) and inward-facing open

(inner gate opens and substrate released) [6–9]. A relatively

novel concept concerning transporters is that substrate speci-
ficity is not solely determined by the interactions taking

place in the major binding site. Instead, genetic, biochemical

and structural evidence showed that specificity is mostly

regulated via proper functioning of the gates or other

amino acid residues that are located along the substrate trans-

location trajectory, and which do not constitute part of the

bona fide major substrate binding site [10–17].

The generally accepted idea that substrate recognition and

transport are carried out by synergy of specific transmem-

brane segments, and also by specific dynamic loops, left an

open question of what the role is of domains that seem not

to be involved, at least directly, in transport catalysis. A pro-

minent case is that of the N- and C-termini of transporters.

These are, in the majority of cases, cytoplasmic. Unlike func-

tional domains essential for transport activity, transporter

termini are usually extremely variable with respect to their

length and amino acid composition, even among paralogues

or orthologues that have practically identical transport

activity and specificity (G. Diallinas 2019, unpublished obser-

vations originating from multiple sequence alignments; see

also http://www.tcdb.org/). In several cases termini have

been shown to be important for recruiting cytoplasmic
effectors involved in subcellular sorting, targeting, stability,

cell-specific modification or regulated turnover, or to be criti-

cal for homo-oligomerization and interaction with membrane

lipids, and thus indirectly essential for transporter function.

Termini have also been shown to be critical for transport

activity and substrate specificity via allosteric regulation of

the transport mechanism. These emerging functional ‘tales’

of transporter termini are the subject of this review (figure 1).
2. Evidence that transporter tails have
important functional roles

When primary amino acid sequences of homologous trans-

porters are compared using standard multiple sequence

alignments it becomes apparent that eukaryotic transporters

have, in general, longer termini than prokaryotic ones. In

fact, in some families, prokaryotic members have practically

no or only very short termini of a few amino acids. This is

exemplified by members of the two largest, ubiquitously con-

served and well-characterized transporter families, the amino

acid–polyamine–organocation (APC) superfamily and the

MFS [18]. Below we describe selected cases of members of

the APC and APC-related families.

Eukaryotic APC proteins, in general, possess significantly

longer N- and C-terminal hydrophilic regions than their bac-

terial homologues. APC termini are little conserved, except

for some short motifs shared among close homologues. How-

ever, experimental work has revealed that specific elements,

which might not always be well conserved, are indeed critical

for APC function. For example, the N-termini of yeast APCs

possess relatively short motifs and specific Lys residues

necessary for regulated turnover via ubiquitination, endocytic

internalization and sorting in endosomes and vacuoles

[19–21]. The C-terminus of yeast APCs, which in general

seems more conserved than the N-terminus, is predicted to

form specific secondary structures and also contains motifs

critical for sorting, turnover, palmitoylation or partitioning

to plasma membrane (PM) microdomains [21–26]. Most sur-

prisingly, the termini of specific APC-related transporters

control transport activity and substrate specificity via
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allosteric interactions with other cytosolic loops [27,28].

Selected examples of N- or C-tails of APC transporters that

play functional roles will be discussed in more detail later.

Two nucleobase-specific transporter families structurally

related to APC [29] provided evidence that cytosolic tails

have important functional roles. These are the NCS1 (nucleo-

base cation symporter 1; [30,31]) and the NAT (nucleobase

ascorbate transporters, also known as NCS2; [32–36])

families. In NCS1, the N-termini of both prokaryotic and

eukaryotic members contain a well-conserved motif conform-

ing to the consensus N-X-D/S-F-X-P (absolutely conserved

residues in bold, F is a hydrophobic amino acid). Despite

the fact that the prokaryotic homologues have relatively

shorter termini than the eukaryotic ones, all NCS1 members

possess this motif at the same distance (approx. 10 amino acid

residues) from TMS1, as delimited by crystallography or mol-

ecular modelling of members of the family. Since this

sequence has remained conserved for millions of years of

evolution it might be an element serving a basic biochemical

property of transporters, such as proper folding or transport

activity or both. This sequence proved to be redundant for

transporter folding or function [31,37], but surprisingly was

found to be critical for finely determining substrate specifici-

ties in NCS1 transporters ([31]; see below). Unlike the

N-terminus, the C-tail of members of NCS1 does not include

any ubiquitously conserved motif. However, the acidic

sequence E/D-X-E-E has been shown to be absolutely essen-

tial for endocytic regulation via specific ubiquitination of

the purine-related FurE transporter of the fungus Aspergillus
nidulans [17]. Versions of such short poly-acidic motifs are

present in the tails of different transporters, but their posi-

tioning related to the last TMS or the C-end differs. It will

be interesting to investigate whether this element acts as an

autonomous functional motif determining the endocytic

sensitivity of different NCS1 paralogues.

In contrast to NCS1, the termini of NAT proteins do not

contain ubiquitously conserved motifs, but rather are variable

in length and amino acid composition [11,13]. An apparent

redundancy of NAT termini for transport activity is sup-

ported by that fact that several prokaryotic members

possess practically no or only extremely short terminal seg-

ments (e.g. 2–4 residues; [34]). In simple eukaryotes, such

as slime moulds and protists, the N- and C-termini of

NATs (15–50 and 28–91 residues, respectively) are definitely

longer than in prokaryotes, but extremely variable, contain-

ing no prominent conserved motifs. In fungi, the NAT

N- and C-termini are 71–120 and 15–70 residues long,

respectively, and, interestingly, the N-terminus contains a

nearly absolutely conserved sequence. This motif (G-D-Y/F-

D-Y/W/F), which is not present in NATs of prokaryotes,

slime moulds, protists, plants or metazoa, has been shown

to be essential for proper endoplasmic reticulum (ER) exit

and PM sorting, and might also be critical for oligomerization

of UapA, a uric acid–xanthine NAT transporter in A. nidulans
[11,38]. The C-terminus of fungal NATs has no absolutely

conserved motifs, but in dikarya (higher fungi) a well-

conserved di-acidic motif E-X-E (or in its more extended

version E/D-E/D-X-E/D-E/D) is present just neighbouring

the TMS14 (last membrane segment). In the case of the

UapA this motif proved absolutely essential for ubiquitina-

tion and endocytosis in response to various physiological or

stress signals [33,39]. This motif has been proposed to be

essential for recognition of UapA by the a-arrestin
adaptor–ubiquitin ligase complex ArtA/HulA, which is

responsible for ubiquitination of a specific Lys (K572) residue

in the distal part of the C-tail [39]. In line with these findings,

deletion of the entire C-terminal region of UapA leads to total

block in endocytosis in response to various physiological or

stress signals [40], and notably does not affect transport

activity and kinetics. In plants, the N-terminus of NATs can

be quite variable in different phylogenetic sub-clades, ran-

ging in length from 33 to 240 amino acids. In the most

abundant and canonical sub-clade of plant NATs (i.e. the

one that includes characterized nucleobase transporters and

known functional motifs within specific TMSs) the N-tail

(33–50 residues) includes the well-conserved motif D/E-Q-

L/F-X-X-F-X-Y-C-I-X-S, just upstream of TMS1, while the

C-terminus has two conserved motifs, D/E-R-G-X-X-W-W,

5–8 residues downstream from TMS14, and D/E-X-R/A-X-

X-E-F-Y-X-L-P-X6-F, at the most distal segment of the

C-tail. No studies have addressed the role and functional

importance of these motifs.

In metazoa the cytosolic termini of NATs are of variable

lengths, ranging from 12 to 142 residues for the N-terminus,

and from 28 to 98 for the C-terminus. In general, shorter tails

are found in the most primitive animals, while fish, amphi-

bians and mammals have the longest. No N-terminal

conserved motif is shared by all animals or even among evol-

utionary related groups (i.e. among fish, amphibia, reptiles,

birds, arthropods, mammals, etc.) or even among related

sub-groups (e.g. insects, primates, etc.). Only true ortholo-

gues share significant similarity in their cytosolic tails, but

even this is not always the case. For example, the L-ascorbate

mammalian transporters of the SVCT2 group have quite con-

served N-termini, while their functionally very similar

paralogue group, SVCT1, shows significant sequence vari-

ation in its tails. This difference might be related to their

distinct tissue- or cell-specific expression profiles, which

also seem to be controlled by distinct subcellular sorting

pathways. In line with this, the N-terminus of SVCT2 seems

also critical for redirecting apical SVCT1 to the basolateral

membrane [41,42]. The C-terminus of metazoan NATs is

more conserved than the N-tail, including three sequence

motifs. The first is the absolutely conserved sequence E/Q-

R-G-F-X-X-W, located 5 residues downstream from TMS14.

In all vertebrates, except fish, this motif is even more con-

served, being extended to E-E-R-G-F-X-X-W. The second

motif conforms to the sequence Y-D/N-X-P-F-G-F, found

27–37 residues downstream from TMS14. The third motif is

the sequence F-F-P-F/F-X-P, 48–59 residues distal from

TMS14. Noticeably, the last motif is less conserved in a diver-

gent clade of NAT, the SVCT3 group, which includes

members of unknown specificity, rather than being nucleo-

base or L-ascorbate transporters. We predict that these

motifs will be important for the stability, turnover and/or

the subcellular trafficking of metazoan NAT transporters.

Another APC-related family which presents an interest in

respect to the role of its cytosolic termini is the neurotransmit-

ter sodium symporter (NSS) family. NSS transporters include

several biomedically important transporters, such as the well-

studied dopamine (DAT) and serotonin (SERT) transporters,

all conforming to the LeuT-like 5þ5 inverted repeat fold

[6,43]. This family has members in all major animal groups,

but distant members also exist in prokaryotes and fungi.

The N-terminus of NSS, which is variable in length (21–179

residues) and amino acid sequence, does not show any
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ubiquitous motif. However, there are very well-conserved

motifs in transporters with similar substrate specificity in

evolutionarily closely related groups. For example, there is

a well-conserved sequence, P-K-E-V-E-L-I-L-V-K-E-Q/H-N-

G-V-Q-F/Y-T, in DAT-like homologues of mammals, fish,

amphibians, birds and reptiles (i.e. in vertebrates), 16 residues

upstream from TMS1. This motif is however absent in other

chordates (e.g. Ciona intestinalis) and protostomes (e.g. arthro-

pods, insects, etc.). The C-terminus of NSS (40–45 residues) is

in general more conserved than the N-terminus, and contains

the motif A-I-Y-K-X4-P-G-X-F-X-D/E/Q-K/R-X7-P just

downstream (2 residues) from TMS12. This motif does not

seem to be directly related to specificity as it is present in

several animal transporters recognizing distinct neuro-

transmitters (e.g. DAT, SERT or glycine, less so in betaine

transporters). In the DAT of all vertebrates, the most C-terminal

segment is also extremely well conserved, including the

sequence L-F-X-X-G-X-V-R-Q-F-X-L-X-W-W-L (where most

X are polar residues). Additionally to the presence of short

sequence motifs, experimental evidence or ab initio structural

predictions have suggested that the N- and C-termini of NSS

contain partially conserved folds that seem to be extremely

important for function, via their interaction with each other

and cytosolic loops of the main body of the NSS transporters

[44–50]. The case of the DAT transport tails is discussed in

more detail later. The above-described terminal motifs and

other sequences experimentally proven to have an important

function in transporters are summarized in table 1.
3. Tails are essential for ER exit and sorting
of transporters to the PM

Eukaryotic transporters, being polytopic membrane proteins,

are co-translationally translocated from ribosomes into the ER

membrane, via the translocon complex [51,52]. The direct

translocation in the hydrophobic environment of membrane

lipids of the ER enables de novo transporters to fold properly

and acquire their functional conformation. The process of co-

translational translocation coupled with concurrent folding

provides an early quality control point, as misfolded mem-

brane proteins are retained within the ER membrane and

elicit mechanisms that lead to their degradation, such as

ER-associated degradation (ERAD) [53–55] or chaperone-

mediated selective autophagy [56]. In all cases, the ribosomes

which synthesize transporters (or other membrane proteins)

need to attach to the translocon complex in the ER (or the

PM in prokaryotes). Evidence has suggested that the first

translated TMS of polytopic membrane proteins interacts

with the signal recognition particle (SRP) and guides the

ribosome to the translocon [57,58]. Subsequently, other

TMSs seem to also act as signals for proper folding during

ER translocation [57,59]. Truncated versions of transporters,

missing TMS1 or several other TMSs, might also be inserted

into the ER, but never exit from it, and are often degraded by

ERAD [60,61]. It thus seems that while entering the ER might

not require specific cytosolic signals, but only the presence of

hydrophobic segment(s), exiting from the ER is much more

demanding, as it requires specific multivalent interactions

of transporter cargoes with proteins of the ER exit machinery

(e.g. the COPII coat complex) and specific membrane lipids,

necessary to promote ER membrane curvature, formation

and release of coated secretory vesicles [62–65]. It is more
than obvious that such interactions necessitate proper transpor-

ter folding, which in several cases is also necessary for proper

homo-oligomerization [38,66] and partitioning into specific

lipid bilayer domains [67], processes important for ER exit.

Additionally, ER exit, at least of some transporters, also requi-

res the presence of specific, autonomous or context-dependent,

sequence motifs, present nearly exclusively in cytosolic termini.

As will be shown below, transporter termini might have

important roles in ER exit directly or indirectly.

ER exit sequence motifs are essential for the recognition of

transmembrane proteins by specific components of an ER exit

mechanism, basically by the COPII adaptor coat protein

Sec24 or its paralogues [68–71]. Sec24-recognized ER export

signals are usually variable short sequences, such as di-

acidic (D/E-X-D/E), hydrophobic and aromatic (FF, YY, LL,

FY, FXFXF), or other more variable short motifs [72–78].

Notably, some similar short motifs are also recognized by

AP-1 and AP-2 adaptor complexes that regulate clathrin

assembly at the trans-Golgi network (TGN) or the PM, respect-

ively, or by the AP-3 adaptor complex that is implicated in

endosome to lysosome trafficking [79]. A D-I-D tripeptide

located in the C-terminus of the general amino acid transporter

Gap1 of Saccharomyces cerevisiae, just next to the last TMS

(TMS12), was probably the first motif in transporters shown

to be necessary for loading into COPII vesicles [80]. It should

be noted that, in several cases where mutations that map in

TMSs or internal loops lead to ER retention, this seems to be

an indirect effect due to partial misfolding, rather than because

they define bona fide ER exit signals [56,81].

The involvement of specific chaperones for ER exit has

also been supported in several transporter families [82–84].

However, no conserved sequence motif in the cytosolic ter-

mini of transporters has been shown to be essential for

direct interactions with the relative membrane-localized cha-

perones. Rather surprisingly, no mutation or condition has

been shown to block PM transporters in the Golgi or in

other post-ER compartments (secretory vesicles or endo-

somes). It seems that specific, de novo transporters, such as

the CFTR channel involved in cystic fibrosis or the UapA

purine transporter, exit the ER in COPII vesicles, but sub-

sequent sorting steps involve an unconventional mechanism

of trafficking that basically requires clathrin heavy chain

and proper actin organization [85–87].
4. Tails control transporter ubiquitination,
endocytosis, turnover or recycling

All fungal transporters and several mammalian transporters

that have been studied are downregulated in response to

physiological or stress signals, or in response to transport

activity in the presence of a continuous supply of substrates

[88–90]. This turnover control takes place at the level of the

PM, leading to internalization of the transporter by endocyto-

sis. Internalized endocytic vesicles are sorted in early

endosomes, which mature to late endosomes/multivesicular

bodies and eventually fuse with the vacuole/lysosome, the

site of their degradation. Some transporters, after endocyto-

sis, can be recycled back to the PM via sorting endosomes

or specialized transporter vesicles [91–94]. A common

theme in all cases of transporter endocytosis, and subsequent

vacuolar degradation or recycling, is ubiquitination and de-

ubiquitination of specific Lys residues [95,96]. Lys residues
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Figure 2. Generalized model of transporter endocytosis highlighting the crucial role of N- and C-tails, based mostly on data concerning the FurE purine transporter,
but also integrating critical findings from studies with Gap1 and Jen1 transporters (see text). The figure shows that in the outward-facing conformation the N- and
C-tails are in close contact with each other and with other cytoplasmic domains of the transporter (e.g. the inner gate shown in purple), while in the inward-facing
conformation the N- and C-tails separate to become more relaxed to recruit cytoplasmic effectors, such as those leading to ubiquitination and endocytosis. The figure
includes a HECT-type ubiquitin ligase (Rsp5), its a-arrestin adaptor (Art) and a 14-3-3 protein that inhibits Art association with Rsp5 via phosphorylation. Upon a
signal eliciting endocytosis (depicted by a blue-red star), Art is de-phosphorylated, acquires high affinity for Rsp5, which ubiquitylates Art, and the Art – Rsp5
complex is recruited to transporter tails. The relaxed topology of the cytosolic tails in the inward conformation permits more efficient recruitment of the Art –
Rsp5 complex than the ‘hidden’ tails in the outward-facing conformation. The specific lysine residues (KK) and acidic motifs (e.g. EXE) necessary for ubiquitination
are located either in the C-terminus (as in the figure) or in the N-terminus, but the interaction of termini is crucial for accessing these elements, so that both termini
are critical for endocytosis.
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modified by ubiquitination are present nearly exclusively in

transporter tails [89,97]. Transporter ubiquitination is carried

out by HECT-type ubiquitin ligases of the Nedd4/Rsp5 type

[97–100], recruited to transporter tails by adaptor proteins

called a-arrestins [101–105].

Importantly, increased ubiquitination and endocytic

turnover of transporters also depend on the conformational

dynamics of transporters themselves. Thus, several transpor-

ters are much more vulnerable to ubiquitination and

endocytosis when they actively transport their substrates, a

phenomenon known as activity-dependent or substrate-

dependent endocytosis [40,89,106]. Genetic and biochemical

evidence from a number of studies with fungal transporters

supports that particular conformations of the transporter,

triggered after substrate binding (e.g. substrate-occluded or

inward-facing topology acquired after substrate release),

increase transporter accessibility to arrestin adaptors

[40,89,107]. As will be shown later, transport tails are important

for conformation-dependent endocytosis.

In the purine-related UapA and FurE transporters of

A. nidulans a short acidic motif (E/D-X-E-E; see table 1)

located at the cytosolic C-terminus was shown to be essential

for ubiquitination and/or endocytosis [17,39]. In both UapA

and FurE, this acidic motif is located immediately next to the

last TMS and 23–25 residues upstream from the Lys residues

modified by ubiquitination. Arrestin sorting signals were also

recently described in the N-terminus of the methionine or

arginine transporters Mup1 and Can1 of S. cerevisiae
(table 1). Similarly to the A. nidulans examples, these motifs

include an extended acidic patch in close proximity to
TMS1 and are close to the ubiquitinated lysines [104]. These

findings suggest a common mechanism for recognition of

transporters by arrestins in ascomycetes, based on opposing

charge interactions of the arrestin C-terminal basic region

and the acidic patches present in either the N- or C-terminal

cytosolic regions of evolutionary and functionally distinct

transporters. However, although this interaction is necessary

for transporter ubiquitination and endocytosis, it might be

insufficient, as it is usually context dependent. In line with

this, in the case of Can1, Ala substitutions in the acidic

patch reduce, but do not abolish ubiquitination and endocy-

tosis, and, in addition, efficient arginine-elicited endocytic

turnover seems to require a shift to the inward-facing confor-

mation, which modifies the positioning of a distinct specific

tripeptide (E-L-K), just upstream from TMS1 (table 1) [107].

Interestingly, in the Gap1 transporter of S. cerevisiae, both

the N- and C-termini contain elements (table 1) necessary

for ubiquitination and endocytosis by distinct arrestins

[108], in response to different signals, but the Lys residues

shown to be ubiquitinated are present solely in the N-tail

[109,110]. This is in line with some other cases, where

mutations blocking ubiquitination and endocytotic turnover

are located not only in the terminal segment that includes

the ubiquitination-specific Lys residues and a nearby arrestin

target, but also in the opposite cytosolic terminus. This is

nicely exemplified in studies concerning the Fur purine-

related transporters of A. nidulans ([16,17]; figure 2). In this

case, relatively short specific truncations or triple Ala substi-

tutions in either terminus of the FurE transporter block its

turnover. The C-terminus of FurE contains the Lys residues
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and the arrestin acidic target sequence necessary for ubiquiti-

nation, but the N-terminus has no obvious sequence that

could be predicted a priori to participate in endocytic turn-

over. Independent in vivo bifluorescence complementation

(BiFC) assays have shown that the N- and C-termini of

FurE come into close contact during transport of substrates.

One extensively studied case of transporter recycling is

the insulin-stimulated glucose transporter GLUT4 in mam-

malian cells. GLUT4 traffics through several distinct

intracellular compartments, including early endosomes,

intermediate transport vesicles, recycling endosomes and/

or the TGN, and insulin-responsive vesicles (IRVs) (also

called GSVs for glucose transporter storage vesicles). Initially,

two distinct motifs have been identified, a phenylalanine-

based motif (F-Q-Q-I) in the N-terminus and a di-leucine

motif (L-L or R-T-P-S-L-L-E-Q) in the C-terminus, which

function autonomously as internalization motifs, and so pre-

sumably interact with AP-2 at the PM [111,112]. Additional

terminal motifs seem to regulate the subcellular trafficking,

recycling or targeting of GLUT4. For example, the sequence

T-E-L-E-Y-L-G-P (or L-X-X-L-X-P-D-E-X-D), 8 residues down-

stream from the L-L motif in the C-terminus, is critical for

sorting, via the endosome, to the TGN [113]. C-terminal

motifs seem also to play an important role in respect to the

final targeting of GLUT transporters. The C-terminal sequence

D-R-S-G-K-D-G-V-M-E-M-N is an example of autonomous

apical targeting [114].

The vesicular glutamate transporters 1 and 2 (VGLUT1

and VGLUT2) of the Naþ/Pi co-transporter family, expressed

in the neuron-rich regions of the brain, also show a differen-

tial functional dependence on their cytosolic termini owing to

variable motifs. VGLUT1 contains two polyproline domains

that interact with the endocytic protein endophilin for recruit-

ing VGLUT1 to a fast recycling pathway. Additionally, both

VGLUTs contain multiple di-leucine similar trafficking

motifs that direct trafficking by distinct pathways that use

different clathrin adaptor proteins [115–117].

Reuptake of synaptically released neurotransmitters by

NSS transporters is the primary mechanism to control dur-

ation and strength of neurotransmission. In most cases,

differential internalization rates and post-endocytic sorting

of NSS transporters are controlled by different elements in

their termini. For example, the norepinephrine (NET) and

DAT transporters have distinct trafficking properties, and

exchange of domains revealed that this difference was

determined by non-conserved structural elements in the

N-terminus, while the C-terminus had no effect [118].

In table 1 we describe an N-terminal conserved motif

(P-K-E-V-E-L-I-L-V-K-E-Q/H-N-G-V-Q-F/Y-T) that might

be critical for DAT trafficking properties. DAT also encodes

a C-terminal PDZ-binding motif (L-K-V), which seems to

be important for DAT PM stability, but also for exit from

the retromer complex and recycling back to the PM [119–121].

Similar to DAT, SERT is mainly sorted to late endosomes

and lysosomes, and if recycled (an issue under strong

debate) seems to follow the Rab4 recycling pathway [122].

In contrast to the importance of the C-tail of DAT in PM stab-

ility recycling, mutations in the C-terminal region of SERT

affect ER exit by either abrogating putative SEC24-binding

motifs (P-G or R-I-I) or by impairing folding of the transpor-

ter. The R-I-I motif of SERT might be homologous to the

sequence R-L found to be critical for ER exit of other NSS

transporters [123]. Differential targeting of NET and DAT to
the basolateral and apical membranes has also been found to

be due to differences in their N-termini [124]. An apical local-

ization signal for GAT1 (GABA transporter 1) also appeared to

reside in the N-terminus, although a basolateral localization

signal for GAT2 was located to the C-terminus [125].
5. Tails allosterically affect transport activity
and substrate specificity

One of the most interesting novel concepts concerning

transporter tails is their role in regulating transport function

and substrate selection, apparently via complex allosteric

interactions with each other and cytosolic loops of transpor-

ters. Emerging evidence supports that the N- and/or C-tails

of LeuT-like transporters are crucial in the rocking-bundle

mechanism of transport [47,126,127].

In the outward conformation of LeuT and DAT an

important salt bridge is formed between the N-terminal

tail and TMS8, which is well conserved in the NSS family

[128]. It concerns the pairs Arg5–Asp369 in LeuT and

Arg27–Asp435 in dDAT. It has been suggested that this

interaction forms the cytoplasmic inner thin gate of the

transporter. Studies on the human dopamine transporter

(hDAT), further suggested that there is a network of inter-

actions, including the salt bridge Arg60hDAT–Asp436hDAT

and interactions with the cytoplasmic end of TMS6, stabil-

ized by a cation-p interaction between Arg60hDAT and

Tyr335hDAT, and with Val259 (L4) and Glu428 (TMS8)

[129,130]. Indeed, in the crystal structure of Drosophila
dDAT (Protein Data Bank (PDB) 4m48) residue Tyr334dDAT

(TMS6) forms hydrogen bonds with five other residues,

namely Glu427 and Thr431 in TMS8, and Arg27, Glu28

and Thr29 in the N-tail. Additionally, two other salt bridges

are formed between the N-tail and L2, namely Glu26–Arg92

and Asp25–Lys93 (figure 3b). These interactions reveal the

possible role of the N-terminal cytosolic segment as a barrier

between the substrate and the intracellular environment

[131]. In the recent crystal structure of SERT the correspond-

ing inner thin gate is also formed as a salt bridge between

Arg79 and Asp452 [132]. Another salt bridge between the

C-terminal Glu615 and Arg152, belonging in the cytosolic

L2 loop, has been proposed to be crucial for the folding

and probably trafficking of SERT, but this was not confirmed

in the crystal structure of the C-terminus [133–136]. Overall,

it appears that disruption of such networks of interactions

might initiate the conformational conversion of NSS trans-

porters from outward to inward topologies, regulating

access and facilitating permeation through propagation of

motions. Furthermore, as has been mentioned above, the

N-terminal domains of the mammalian neurotransmitter

transporter are longer than the prokaryotic, probably

enabling other functions except gating. Molecular dynamics

(MD) studies on hDAT have indicated that the distal seg-

ment of the N-terminus forms coulombic interactions with

negatively charged lipids of the membrane bilayer, sustaining

transport specifically in eukaryotic environments [50,137].

Apparently, evolution has added further regulatory roles at

both the N- and C-termini of eukaryotic transporters [138].

A crucial role in the mechanism of transport of the C-tail

segment was found in members of the APC family, namely

the AdiC and GadC amino acid antiporters, which conform

to the LeuT fold [27]. AdiC (arginine–agmatine exchanger)
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Figure 3. Structural insights into LeuT-fold transporters with emphasis on the functional role of cytosolic terminal domains. (a) LeuT dynamic topology depicting
the tilt of the ‘bundle’ domain (TMS 1,2,6,7) from the outward (blue) to the inward (gold) conformation. Notice also the displacement of TMS1a and TMS5 (PDB
entries 3tt1, 3tt3). (b) Interactions of the cytosolic N-tail (deep blue) with internal loops in dDAT (PDB entry 4m48). (c) Mhp1 dynamic topology showing the rocking
movement of the ‘hash’ domain (TMS 3,4,8,9) from the outward (gold) to the inward (blue) conformation. Notice also the displacement of TMS5 (PDB entries 2jln,
2x79). (d ) Interactions of the cytosolic N-tail (deep blue) with internal loops and TMS6 and TMS8 in Mhp1 (PDB entry 2jln). All snapshots were generated by
Chimera 1.10.
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exists as a homodimer with TMS11 and TMS12 mediating the

interaction between protomers. GadC (glutamine–GABA

antiporter) shares sequence homology with AdiC and

adopts the same fold [139]. AdiC has been crystalized in

the outward and outward-occluded conformations, while

GadC has been crystallized in an inward-open conformation

[28,140]. Comparison between these two structures showed

that switching from outward to inward is correlated with a

structural rearrangement of the ‘bundle’ consisting of TMSs

1, 2, 6 and 7, similar to LeuT, while the ‘hash’ TMSs 3, 8

and 9 exhibit smaller conformational changes. Interestingly,

in the inward topology of GadC the C-terminal is folded

within the open binding cavity, thus blocking the substrate-

binding site. Substrate transport should necessarily include

C-terminal displacement, which has been correlated with

the multiple interactions formed by several basic residues.

The C-terminal of AdiC is shorter than GadC and notably,

in the outward-facing conformation of the transporter,

seems to interact with the cytosolic domains of the opposite

protomer of the dimer in the crystal [28,141,142]. Apart

from the C-terminal interactions found in the AdiC/GadC

structures, the N-terminal regions of APC transporters do

not seem to form any of the interactions described for the

NSS family. Only a weak interaction between His8 and

Ala320 in L8 can be encountered, while no salt bridge or

hydrogen bond network is observed.
In the case of the benzyl-hydantoin–sodium symporter

Mhp1 three structures, representing the conformational

changes from outward to outward-occluded and to inward,

have been crystallized. Based on these, Cameron, Henderson

and co-workers [7,31,143,144] have proposed a somehow

different model of transporter conformational change

during ligand translocation, compared with LeuT and NSS.

It appears that, in Mhp1, after ion and substrate binding in

the outward-open structure TMS10 bends over the cavity in

the occluded state, thus triggering the rotation of 308 of the

hash motif relative to the bundle. Then TMS5 flexes in

order to open the cavity to the intracellular side (figure 3c;

[7,143,144]). The N-terminal region of Mhp1 expands over

the cytoplasmic surface interacting with L2, L6, L8 and L10

loops, as well as with the C-terminal region. The shape of

the N-terminal fragment seems to remain stable from the out-

ward- to the inward-facing structure curved in the vicinity of

Pro15. Interactions between the N-terminus and L8 are

encountered in the inward-facing structure, namely Asn14–

Phe334 (backbone), Arg332–Leu13 (backbone), Asn17–

Cys327 (backbone), Asn14–Pro331 (backbone) and Ser16–

Phe336 (backbone) (figure 3d); however no salt bridge, similar

to that shown in NSS members, is formed. Interestingly,

another network of hydrogen bonds is also formed between

Thr20–Glu233(TMS6)–Lys232(TMS6)–Tyr324 (TMS8), linking

the N-terminus, TMS6 and TMS8, as was observed with DAT.



1
out

in

6

rocking bundle

scaffold

10

F

3

5 11

EN EC

12

LID

8 royalsocietypublishing.org/journa

10
All the above interactions are disrupted in the inward-facing

conformation following the rearrangement of the hash motif

of TMS3, 4, 8 and 9, although the N-terminal fragment is

shown to be quite rigid with a relatively small-scale reorienta-

tion of the segment between Pro15 and Glu8. This suggests

that although important differences are observed between

Mhp1 and LeuT in the conformational changes related to the

mechanism of substrate translocation it appears that the inter-

ruption of the contacts between the N-terminus and L8 in the

inward-facing structure is similar in both cases, supporting the

concept of the thin inner gate.

F: folding and ER exit
EN and EC: N- and C-tail endocytic turnover

Figure 4. The multiple roles of both termini of FurE in folding, ER exit, endo-
cytosis and substrate specificity. The figure is based mostly on data concerning
the FurE transporter, which contains a LeuT-like fold. Details are described in
the text and in [17]. LID stands for the central part of the N-tail that is specifi-
cally involved in interactions with several other cytosolic internal loops and
thus allosterically regulates the functioning of the outer and inner gates
and substrate specificity. EN and EC are the distal parts of the tails that interact
dynamically with each other during transport, and thus recruit ubiquitination
and endocytosis factors, but also the positioning of the LID, which, in turn,
affects the function and specificity of the transporter. F is the part very prox-
imal to TMS1 that is critical for the correct folding of TMS1 and of the
transporter, and thus affects packaging to COPII vesicles and ER exit.

l/rsob
Open
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6. Tails affect fine gating and substrate
specificity in NCS1 transporters

In the course of analysing the roles of the cytosolic C- and

N-termini of members of the Fur group of the NCS1 family

in A. nidulans it became apparent that terminal segments

host elements necessary not only for endocytic turnover

and subcellular sorting, but surprisingly also for substrate

specificity [16,17]. In particular, the 38-amino-acid-long

N-tail of FurE, an allantoin–uric acid–uracil transporter,

has been shown to include distinct segments critical for endo-

cytosis (residues 1–11), substrate specificity (residues 12–29)

and ER exit (residues 30–32, 36–38). The C-tail also contains

elements important for endocytic turnover and substrate

specificity, the first corresponding to a di-acidic motif Glu–

Glu, 11 residues upstream from the end of the protein, and

the second concerning the last 29 residues of the transporter.

The specificity changes obtained were of two kinds. Either

they enlarged the set of substrates transported by FurE to

include xanthine, in addition to uracil, allantoin and uric

acid, or, instead, they restricted specificity to uracil and

allantoin. Mutations enlarging specificity concerned Ala sub-

stitutions in the N-tail conserved motif N-X-D-F-D-P

(residues 24–29). The ones that restricted specificity were

deletions either of the most distal part of the N-tail (residues

1–21) or of the C-tail (last 29 residues), as well as Ala

substitutions of N-tail residues 15–17.

The similarity of phenotypes obtained by mutations in the

N- and C-termini (i.e. block in endocytosis and changes in

specificity) was suggestive of an involvement in a common

mechanism controlling FurE function. Indeed, intramolecular

BiFC analysis showed that the FurE cytoplasmic N- and C-

termini interact dynamically, and this interaction is transport

activity dependent. It was thus proposed that in the absence

of substrates FurE is found in a rather stable outward-facing

conformation, which brings the cytoplasmic N- and C-ter-

mini into close contact, and this permits the reconstitution

and detection of a fluorescence signal. In the presence of sub-

strates, the transporter is ‘forced’ to continuously alternate

from the outward- to inward-facing conformation, and thus

the termini become dynamic and do not reconstitute a

stable fluorescence signal [16]. The interaction of the N- and

C-termini is not essential for transport activity, as FurE ver-

sions truncated in either one or both termini can still

function, but show modified specificities. Independent gen-

etic evidence supported that the interaction of the FurE

termini is critical for the opening and closing of the substrate

translocation pathway, and thus controls the gating process.

This evidence concerns the finding that genetic suppressors

restoring specificity changes (i.e. loss of uric acid transport)
of N- or C-terminal mutants are located at a tentative external

gate, along the substrate translocation path, or in flexible

loops that act as dynamic hinges during transport catalysis

[16,17]. Additionally, MD and further mutational analysis

supported that specific polar residues of the N-terminus

(Asn24, Asp26 and Asp28) interact dynamically with resi-

dues of several internal cytosolic loops of FurE, and this

interaction controls the opening and closing of the outer

and inner gates [17]. Given that the positioning of the N-ter-

minus also depends on its interaction with the C-terminus,

both termini are thus involved in a dynamic molecular

cross-talk with the internal loops of FurE (figure 4).
7. Tails in transporter – lipid interactions
and oligomerization

It is now well established that many transporters form

dimers or oligomers that are important for effective

trafficking to the membrane, function and/or regulation of

function [13,14,145]. A well-studied case of transporter

dimerization is that of UapA, where evidence based on domi-

nant negative mutations, light scattering, pull-downs, BiFC

assays, and eventually crystallization confirmed that dimeri-

zation occurs in vivo and is required for function and

specificity [13,14,38,40]. In addition to UapA and its struc-

tural homologues [146–151], other transporters, mostly

those of the LeuT or 5þ5 fold, also seem to form oligomers.

In several of these cases, approaches such as fluorescence

resonance energy transfer (FRET) [152], cross-linking [153],

pull-downs [154], co-immunoprecipitation [155] and size-

exclusion chromatography–multiangle light scattering

(SEC–MALS) [156] have been employed to prove functional

oligomerization [13,14,145]. Evidence also supports that

some members of the NSS transporter family are dimers,

while others are monomers, and still others can be oligomeric
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depending on their localization [157–161]. Other transporters

that oligomerize are members of the SWEET transporter

family, the ammonium transporter/MEP/Rh transporter

family and the MFS ([13,14] and references therein). In all

the above cases the role of membrane lipids in the formation

of oligomers is emerging as a critical issue. Two types of

interactions of membrane proteins and lipids are recognized.

The so-called annular membrane lipids form a ring around

individual transporter units and thus stabilize them via

H-bonding with lipid head groups and hydrophobic inter-

actions. Additionally, membrane lipids might interact with

high affinity with specific residues present deep in the

transporter body, often in the interface of dimers. Such inter-

actions regulate membrane protein structure and function

[13,14,145,162].

Are transporter tails critical for oligomerization or is this

information encoded solely in the main transmembrane

body of transporters? Recently, mass spectrometry was

used to relate the presence of interfacial lipids and oligomeric

stability, and discover how lipids act as key regulators of

membrane protein association [163]. This approach showed

the absence of interfacial lipids in the mass spectra of mem-

brane proteins with high oligomeric stability. However, in

proteins with the lowest oligomeric stability, lipids were pre-

sent within the dimer interface, and delipidation or mutation

of lipid binding sites abrogated dimer formation. Interest-

ingly, in the NapA Naþ/Hþ antiporters from Thermus
thermophilus, an additional N-terminal helix, not present in

the orthologous Escherichia coli NhaA transporter, strength-

ens interface interactions, removing the requirement for

lipids to stabilize dimer formation. This N-terminal helix

seems to interact with a subset of annular lipids as further

structural support to facilitate large-scale conformational

changes within the membrane [164]. The trimeric betaine

transporter BetP is also a case where interactions of tails

with lipids seem critical for function. A dynamic interaction

between the C- and N-terminal domains of adjacent proto-

mers has been shown to modulate transport activation. In

brief, it has been proposed that the C-terminal domain

changes its interaction with the N-terminal domain of its

own promoter and negatively charged lipids to an interaction

with the N-terminal domain of an adjacent protomer and

lipids bound to the central cavity of the BetP trimer

[165,166]. Another paradigm of transporter tails involved in

functional interactions with PM lipids is that of the human

dopamine transporter hDAT, which contains long intracellu-

lar N- and C-terminal domains that seem to be implicated in

the transporter function, and possibly oligomerization, in vivo
[48,167]. Specifically, its N-terminus controls the efflux of the

substrate through hDAT, although it is not critical for dopa-

mine import per se. A computational model of the N-

terminus of hDAT obtained by an ab initio structure predic-

tion, in combination with MD simulations in the context of

a lipid bilayer, revealed that the N-tail is a highly dynamic

domain, but also contains secondary structure elements that

remain stable in the long MD trajectories of interactions

with the bilayer. These stable elements include specific resi-

dues that interact with charged PIP2 (phosphatidylinositol

4,5-biphosphate) or PS (phosphatidylserine) lipids and thus

seems to control the function, and possibly the stability, of

the DAT oligomers.

Still other reports have shown that lipids other than

phospholipids in particular sterols seem to play important
roles in the functioning of DAT and other NSS transporters

[168–170]. Recent crystal structures of DAT revealed the pres-

ence of two conserved cholesterol-like molecules bound to it.

Relative MD simulations suggested that outward-facing DAT

in the absence of cholesterol undergoes a conformational

modification that mimics the transition to an inward-facing

conformation. In the presence of bound cholesterol these con-

formational changes are inhibited by immobilization of the

intracellular interface of TMS1a and TMS5. Coarse grain MD

simulations further suggested that cholesterol binding sites

in DAT are conserved in other NSS transporters. Cholesterol

binding and control of transport function have also been

related to several other transporters, but in most cases the pro-

posed cholesterol binding sites (known as CARC–CRAC

sequences) are located in membrane-embedded segments,

rather than in the tails of transporters [171,172]. This however

does not exclude that tails might also be functionally involved

in the binding of sterols or other lipids (e.g. sphingolipids).
8. Tails of transceptors in signalling
Transceptors are functional transporters that possess both

solute transport and direct receptor-like signalling activities

[173,174]. These proteins sense nutrients by ligand-induced

conformational alterations recognized by downstream intra-

cellular effectors. Best-studied transceptors include yeast

transporters specific for amino acids (Gap1), phosphate

(Pho84), ammonium (Mep2), sulfate (Sul1 and Sul2), iron

(Ftr1) and zinc (Zrt1) [175–179]. All these high-affinity trans-

porters signal to cAMP-independent activation of the protein

kinase A (PKA) pathway. Transceptors are usually highly

induced upon relative nutrient starvation and rapidly down-

regulated by substrate-induced endocytosis. Transceptors for

nitrate, ammonium, sulfate or nucleosides have also been

identified, at least tentatively, in filamentous fungi (Neurospora
crassa and Ustilago maydis), plants (Arabidopsis thaliana), proto-

zoa (Leishmania mexicana) and in human cells [180]. The

concept of transceptors was based on evidence showing that

transport and signalling can be genetically uncoupled,

that is, maintenance of signalling in the absence of transport

or vice versa, or by the identification of competitive and

non-competitive inhibitors of transport that promote signalling.

What distinguishes a transporter that acts solely in trans-

port from a transporter that also acts as a signal receptor? Are

the cytosolic termini of transceptors, which in some cases are

particularly long (e.g. Sul1 and Sul2; [178]), critical for signal-

ling, as it is in bona fide receptors? Some evidence exists that

indeed the termini of transceptors are important for signal-

ling in addition to transport catalysis and turnover. In fact,

transport and signalling are interrelated and both are depen-

dent on substrate/ligand-elicited conformational changes.

It seems that different substrates or ligands bind and elicit

distinct substrate/ligand-specific conformational changes in

transceptors, thus promoting distinct interactions of termini

with downstream effectors. Although immediate downstream

transceptor-interacting proteins have not been identified, there

is evidence that cytosolic termini are important for transport,

and thus possibly for signalling too.

A well-studied case concerning the role of termini in

transceptors is that of the yeast Mep2 ammonium trans-

porters [177,181]. Under nitrogen-sufficient conditions,

non-phosphorylated Mep2 exhibits shifts in cytoplasmic



royalsocietypublishing.org/journal/rsob
Open

Biol.9:190083

12
loops and the C-terminus that occlude the cytoplasmic exit of

ammonium. Under nitrogen-depleting conditions, phos-

phorylation of Ser457 within the C-terminal region causes

Mep2 opening, via eliciting modifications of interactions of

the C-terminus with internal loops L1 and L3 (Mep2/Amt-1

proteins are trimeric assemblies in which each monomer

consists of 11 TMSs, an extracellular N-terminus and an intra-

cellular C-terminus). Additionally, phospho-mimicking

Mep2 versions also show large conformational changes of a

region of the C-terminus. Interestingly, the A. thaliana hom-

ologous ammonium transporter (Amt-1) is allosterically

regulated by phosphorylation, but in an opposite way [182].

Findings with Mep2 and Amt-1 have strongly supported

that the C-terminus mediates allosteric regulation of

ammonium transport activity, via phosphorylation. More

specifically, it has been proposed that close intra-monomeric

C-terminus interactions with L1 and L3 generate open trans-

ceptors, whereas weakening of these interactions leads to

inactivation of transport. The crystal structure of a homolo-

gous prokaryotic (Archaeoglobus fulgidus) ammonium

transporter further suggests that the C-terminus interacts

physically, in a phosphorylation-dependent manner, with

cytosolic loops of neighbouring subunits [183]. Such confor-

mational coupling between monomers might provide tight

regulation not only for the transporter but also for sensing

nutrients. These studies, however, have not addressed the

role of C-terminus interactions in signalling.

Truncation of the last 14 or 26 amino acids from the

C-terminus creates a constitutively active allele of the Gap1

transceptor that resides permanently in the PM and causes

constitutive over-activation of the PKA pathway, provided

it is expressed in a mutant strain that allows such truncated

alleles to be secreted to the PM. However, the specific Gap1

conformation that elicits signalling remains unknown

[184,185]. Further work is needed however to determine the

specific Gap1 conformation which elicits signalling, and

to elucidate the molecular mechanisms through which
this particular Gap1 conformation is sensed and the signal

transduced to downstream targets.
9. Conclusion
Current findings are consistent with the idea that the size of

eukaryotic transporter termini increased during evolution,

providing additional flexible elements that enabled the gener-

ation of novel transporter functions and specificities, as well

as specific mechanisms for controlled trafficking, turnover

and/or oligomerization elements not shared with their bac-

terial homologues. Distinct but interacting roles for distal

and proximal segments of the larger N- and C-termini in

folding, turnover, ER exit and trafficking to the PM, or in

transport function per se, have been identified in several

eukaryotic transporters. One of the most critical emerging

issues is the interaction of tails with membrane lipids and

other cytosolic domains of the transporter main body. The

case of the FurE transporter serves as an instructive paradigm

on how specific transporter tail interactions with internal

loops, and most probably with phospholipids, can allos-

terically finely regulate the gating process, and thus

substrate specificity, while distinct tail interactions can also

regulate folding, trafficking and turnover. Evolution of func-

tional tails may represent a naturally selected adaptation

required for the integration of new functions in eukaryotic

transporters, which face increasingly complex cellular

challenges of regulation in response to differentiation and

metabolic needs.
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182. Loqué D, Lalonde S, Looger LL, von Wirén N,
Frommer WB. 2007 A cytosolic trans-activation
domain essential for ammonium uptake. Nature
446, 195 – 198. (doi:10.1038/nature05579)

183. Adrade SL, Dickmanns A, Ficner R, Einsle O. 2005
Crystal structure of the archaeal ammonium
transporter Amt-1 from Archaeoglobus fulgidus.
Proc. Natl Acad. Sci. USA 102, 14 994 – 14 999.
(doi:10.1073/pnas.0506254102)

184. Ghaddar K, Merhi A, Saliba E, Krammer EM, Prévost
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