
ARTICLE

Received 4 Feb 2017 | Accepted 19 Apr 2017 | Published 5 Jun 2017

Threshold in North Atlantic-Arctic Ocean
circulation controlled by the subsidence
of the Greenland-Scotland Ridge
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High latitude ocean gateway changes are thought to play a key role in Cenozoic climate

evolution. However, the underlying ocean dynamics are poorly understood. Here we use a

fully coupled atmosphere-ocean model to investigate the effect of ocean gateway formation

that is associated with the subsidence of the Greenland–Scotland Ridge. We find a threshold

in sill depth (B50 m) that is linked to the influence of wind mixing. Sill depth changes within

the wind mixed layer establish lagoonal and estuarine conditions with limited exchange

across the sill resulting in brackish or even fresher Arctic conditions. Close to the threshold

the ocean regime is highly sensitive to changes in atmospheric CO2 and the associated

modulation in the hydrological cycle. For larger sill depths a bi-directional flow regime across

the ridge develops, providing a baseline for the final step towards the establishment of a

modern prototype North Atlantic-Arctic water exchange.
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T
he tectonic evolution of ocean gateways and CO2 changes
are key controls of Cenozoic (from 65 Myr ago until
present) climate change and ocean circulation. The last

65 Myr ago (Ma) of the earth’s history are characterized by a
gradual long-term cooling trend, and the superposition of
relatively abrupt climate changes that occurred on much faster
timescales1–3. However, it remains a major challenge to identify
to which extent tectonic events and CO2 changes controlled the
different trends and climate variations.

Especially during the late Eocene to early Miocene interval
(B35–16 Ma), the climate of the North Atlantic-Arctic sector is
prone to instabilities4–9. Therein, the subsidence of the
Greenland–Scotland Ridge (GSR) from subaerial conditions
towards a submarine rise constitutes an active ocean gateway
control of North Atlantic-Arctic water exchange9–13. The long-
term subsidence history of the GSR is, however, interfered by
recurrent Icelandic mantle plume activity, causing topographic
uplift in response to thermal variations in the mantle13,14.
Periodic uplifting of the seafloor through the Neogene, driven by
frequent mantle plume intensity, has shown to correlate with
excursions in Atlantic deep sea d13C records indicating a
moderated southward sill overflow of Northern Component
Water—a predecessor of modern North Atlantic Deep
Water13,15.

Although the long-term evolution of such ocean
gateway developments on adjacent ocean water mass
characteristics are generally accepted to induce basin-scale
reorganizations6,9,12,13,16–17, the climatic impacts, as well as the
associated mechanisms of climate changes remain largely elusive.
Using a fully coupled Earth System Model (ESM)18, we
investigate the effect of the GSR subsidence during an interval
between B35 and 16 Ma. In our simulations we use Miocene
background climate conditions (B20–15 Ma), as a basis and
apply different GSR depths and CO2 concentrations as a
surrogate for different conditions during the subsidence interval.

We find a non-linear impact of ocean gateway depth controls
on the water mass exchange and Arctic Ocean circulation that is
mainly controlled by the effect of sill depth on mixed layer
characteristics. For gateway depths close to the depth of
the mixed layer, additional simulations of different atmospheric
CO2 concentrations show a modulation of the atmospheric
hydrological cycle, controlling the overall Arctic salinity and
ocean gyre circulation in the sub-polar Arctic (Greenland and
Norwegian Seas). The critical threshold in gateway depth is
constrained by the characteristic depth of wind driven mixing,
unravelling the underlying processes that allow a theoretical
assessment of the circulation system of semi-enclosed ocean
basins throughout Earth’s history.

Results
Experimental approach. In this study we apply an ESM (see
model description in Methods) to simulate the subsidence of the
GSR by incremental changes of the mean ridge height, starting
from a quasi-enclosed towards a deep Miocene topographic
configuration of the Greenland–Scotland ocean gateway (Fig. 1).
The ocean component of the ESM is characterized by a
curve-linear grid that provides a maximum horizontal resolution
of B30 km near the grid pole at Greenland18. This ocean grid
space is too coarse to resolve non-rotational meso-scale flow
patterns, as defined by the internal Rossby radius of deformation.
However, in our model the GSR gateway is wide enough to
simulate a rotationally controlled flow regime across the gateway.
Related to considerable uncertainties of the GSR subsidence
history, the model is setup with alternative boundary conditions
(early Miocene B20–15 Ma)19 compared with present-day

representing a template used in our ocean gateway studies
(for details on the model scenarios and boundary conditions,
see Methods). This setting includes a closed Bering Strait
and Canadian Archipelago configuration, providing a single
ocean gateway control of the GSR. The final model setup is
further advanced by embedding a high resolution bathymetry
reconstruction of the northern North Atlantic-Arctic Ocean20

into the global topographic dataset (Fig. 1).
Within a set of model scenarios we consider a gradual

deepening of the GSR by stepwise changes (between 22 and 200 m
below sea level, mbsl; see Methods and Supplementary Table 1) to
study the effect of sill depth changes21,22 on climate and ocean
circulation (Figs 2 and 3). Parallel with the GSR deepening, the
corresponding salt water import across the seaway largely
controls the overall salinity, baroclinity and gyre strength in the
Arctic Ocean (Figs 4,5 and 6; Supplementary Fig. 5). To analyse
the impact of GSR sill depth changes, we primarily focus on the
evolution of ocean gateway circulation, the establishment of
salinity (density) gradients and the gyre circulation in the
Greenland and Norwegian Seas.

Lagoonal circulation. The restricted ocean gateway geometry
(GSR sill depth at 22 mbsl and GSR width of B370 km,
as compared with our standard gateway width of B1,300 km)
results in a quasi-enclosed Arctic Ocean with minor commu-
nication to the world oceans via lagoonal circulation. This
circulation is characterized by hydraulic controls of an intense
uni-directed flow regime (Fig. 3b) that is accomplished by a
positive virtual balance of the net Arctic freshwater input
(net precipitation and river runoff: þ 0.7 Sv). Thereby, the
absence of northward ocean heat and salt transports governs near
freezing-point temperatures, near basin wide seasonal sea ice
cover and the presence of ephemeral perennial sea-ice
(Supplementary Figs 2,4 and 5). Arctic freshwater excess and the
reduction of northward ocean heat and salt transport results in an
Arctic ‘freshwater lake’ stage, accompanied by a regional surface
air temperature drop of B5–9 �C and decreased precipitation in
the Norwegian and Greenland Seas, as compared with the
standard model climatology (Fig. 2, Supplementary Fig. 5). In this
setting the GSR operates as an oceanographic barrier that steers
major parts of North Atlantic Current (NAC) along the isobaths
towards Irminger and Labrador Seas (Fig. 3a). The absence of
southern placed sources of salty waters that are usually trans-
ported by the modern Norwegian Current (NC) analogue inhibits
the development of pronounced vertical and horizontal salinity
gradients in the Arctic Ocean. Without vertical and horizontal
salinity gradients, as provided by a restricted Arctic freshwater
environment, the prevailing barotropic mode inhibits a dynamic
ocean regime due to minor salinity driven density and pressure
gradient forces (Fig. 3).

To highlight the relevance of vertical and horizontal salinity
gradients driving Arctic Ocean dynamics, we run an additional
model sensitivity study, assuming Arctic water masses of constant
salinity (28%; herein the salinity driven part of the density
calculation is kept constant but pressure and temperature related
density changes are taken into account). As shown by the
sensitivity study, the absence of salinity contrasts minimizes
pressure gradients that fail to balance the wind driven Ekman
transport, hence the baroclinic geostrophic imbalance results in a
collapse of the Arctic Ocean circulation (Supplementary Fig. 6).

A more quantitative approach to analyse the dynamics in the
Norwegian and Greenland Seas is given by the calculation of gyre
strength—as expressed in terms of the horizontal barotropic
streamfunction (vertically integrated water mass movement)—
reveals a relative weak gyre strength of � 13 Sv within an Arctic
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freshwater environment. Resulting pressure gradient forces,
which are typically associated with ocean baroclinity, are largely
impeded—thereby the gyre strength is strongly suppressed.
Remaining gyre dynamics within the quasi-enclosed Arctic
Ocean basin are mainly forced by wind-stress.

Semi-enclosed estuarine circulation. In general, progressive GSR
gateway deepening from 22 m to B80 m enables the northward
penetration of dense North Atlantic waters via near bottom flow
across a shallow GSR sill establishing a semi-enclosed estuarine
circulation. For characteristic gateway depths that are placed

within the typical depth range of the Ekman layer, the ingress of
North Atlantic water to the Greenland and Norwegian Seas is
constrained by the opposed Arctic outflow at the surface mixed
layer. Thereby, frictional processes at the bottom of the gateway
and internal friction between the two water masses limit the
inflow of North Atlantic water to the Arctic Ocean.

The inflow of Atlantic water induces a salinisation
process towards a brackish Arctic Ocean regime (Fig. 3a,b,
Supplementary Fig. 5). As a result of ocean salt exchange across
the GSR gateway (Fig. 4) and net Arctic freshwater input via the
atmospheric hydrological cycle (net precipitation and river
runoff), a vertical Arctic salinity gradient and halocline establishes
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Figure 1 | Geographical settings of Miocene topography circa 20 to 15 Ma. (a) Global compilation of Miocene geography19 (elevation and depth in
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for the first time (Fig. 6b,e). Thereby the location of the strongest
vertical salinity (density) gradient (Fig. 6) defines the depth of
the halocline (a similar depth of the pycnocline is given in

Supplementary Fig. 14). The formation of horizontal and vertical
salinity gradients invigorate Arctic gyre circulation following
isolines of salinity. Highest densities at the surface are generated
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by Ekman mixing and outcropping isopycnals in the centre of the
gyre (Fig. 5). To maintain this gyre circulation, the corresponding
horizontal density gradient must be established to obtain the
compensation of the wind driven Ekman transport (baroclinic
geostrophic balance)23. Wind stress and associated Ekman
mixing (generally operating in the upper ca. 40–200 m of the
ocean)23 induces wind stirring and relative buoyancy of
dense subsurface waters that in turn establish the
corresponding horizontal pressure gradient across the gyre.
Lateral entrainment of subsurface waters from the GSR gateway
conserves mass transport for this upwelling.

For a detailed perspective on the dynamics of a semi-enclosed
estuarine circulation, we further subdivide the circulation regime

into two flow cases that are defined by the relative depth of the
ocean gateway with respect to the mixed layer depth. For GSR sill
depths between 22 and 50 mbsl (first case), limited inflow of
Atlantic water to the Arctic occurs above the characteristic depth
of the mixed layer (B50 mbsl) and for the second flow case,
the bulk inflow of Atlantic water takes place beneath the surface
mixed layer at gateway depths between 50 and 80 mbsl.

At GSR depths between 22 and 50 mbsl, the first case depicts a
bulk inflow of Atlantic water that takes place above the
characteristic depth of the surface mixed layer (B50 mbsl).
Thereby, the lateral inflow of North Atlantic waters across the
gateway perturbs the Arctic stratification as represented by
excursions of the characteristic halocline (Fig. 6e). Notably, at
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50 mbsl of GSR sill depth, the gyre strength approaches its
maximum at � 28 Sv, matching the modelled halocline (Fig. 6d,e)
and the depth of the surface mixed layer (B50 mbsl, see depth
of the wind driven upper ocean layer provided in Methods).
At gateway sill depths that intersect the approximate depth of the
mixed layer, the injection of salty Atlantic water just below the
halocline establishes pronounced vertical salinity contrasts. This
corresponds to effective Ekman pumping and steep baroclinity,
obtaining intensified Arctic gyre strength (Fig. 4; � 28 Sv). The
second case sets GSR sill depths between 50 and 80 mbsl with
bulk inflow of Atlantic that places beneath the mixed layer depth.
The vertical separation of bulk Atlantic water inflow with respect
to the mixed layer above tends to weaken the amplitude of the
halocline and therefore the baroclinic-geostrophic balance of the
gyre circulation.

Bi-directional to modern prototype circulation. By deepening
the GSR sill depth from 80 to 100 mbsl we identify the transition
from an estuarine towards a bi-directional seaway circulation and
a ventilation of the Arctic Ocean (Fig. 3). The transition regime is
controlled by the depth of the halocline, defining the interface
between the surface mixed layer and the ocean layer below.

The subsidence of the GSR sill from the surface mixed layer to
the ocean layer underneath, as defined by the characteristic depth
of the halocline (B50 mbsl, see also pycnocline in Supplementary
Fig. 14), obtains vertical differentiation of the surface-subsurface
outflow and underlying inflow to the Arctic Ocean. At gateway
depths that are placed well beneath the depth of the Arctic
halocline, unrestricted Atlantic water inflow to the sub-polar
Arctic is indicated by a pronounced unperturbed Arctic halocline.
In parallel with the establishment of an Arctic halocline (Fig. 6e)
and bi-directional circulation regime, the through-flow into the
Arctic Ocean constitutes the reorganization from a brackish
towards ventilated Arctic salinity regime. A reduction in strength
of the Arctic gyre is compensated by the evolution of a
north-south directed current system instead (Fig. 4).

Progressive deepening of the GSR sill from 100 to 200 mbsl
towards a deep gateway configuration of B960 m depth
additionally strengthens the entrainment of Atlantic waters. In
return, a considerably decreased Arctic gyre circulation evolves
that responds to a more effective cross-sectional gateway
transport (Fig. 4). In contrast to a bi-directional circulation
across the gateway, the final establishment towards a modern

prototype current system is characterized by the zonal differ-
entiation between the northward directed North Atlantic Current
in the East and the East Greenland Current to the West (NAC
versus EGC) of the Greenland and Norwegian Seas (Fig. 3).
Although a modern like deep GSR gateway configuration
provides unrestricted ocean water interchange and therefore
reducing the Arctic halocline, however, our gateway studies still
obtain stronger than preindustrial vertical salinity contrasts
(Fig. 6a). This is mainly due to relatively fresh Arctic surface
waters—fed by Arctic rivers and net precipitation—balanced by
relatively salty southern sourced Atlantic water (for information
on the modelled freshwater balance and salinity trends in the
Arctic Ocean, see Methods).

Atmospheric CO2 controls on the Arctic Ocean regime. To
further test the sensitivity of stratification and gyre strength at the
brackish salinity regime (GSR sill depth at 50 m), we focus on the
effect of different atmospheric CO2 concentrations, capturing a
wide range of Eocene to Miocene greenhouse gas variations
(B278–1,200 p.p.m. in the atmosphere, refs 24–26, Fig. 7).
Therefore, we additionally investigate the model scenario at
critical GSR depths (B50 mbsl) by a variety of atmospheric CO2

concentrations (278, 450, 600, 840 p.p.m.). The CO2 concentra-
tion case at 278 p.p.m. reflects the climate sensitivity at pre-
industrial CO2 levels, whereas the standard CO2 levels at
450 p.p.m. represents the modelled climatology (Fig. 2b) that has
also been used for the previously presented gateway studies.

At fixed gateway depths (GSR sill depth at 50 mbsl), providing
a semi-enclosed estuarine circulation, we find that CO2 controls
via the atmospheric hydrological cycle modulate the strength
in Arctic gyre circulation (Supplementary Fig. 7). Elevated
atmospheric CO2 levels induce an increase in the Arctic
freshwater budget (Supplementary Table 2) and a more
accentuated halocline establishes in the Arctic Ocean (Fig. 6).
Increasing freshwater excess in combination with reduced
Atlantic water inflow progressively shifts Arctic salinities towards
fresher conditions. Interestingly, at fixed gateway depths of
B50 mbsl the standard CO2 case (450 p.p.m.) reveals maximum
gyre strength. Especially in this CO2 scenario a pronounced
Arctic halocline (pycnocline) provides pronounced baroclinic
forcing to balance the wind stress (for further information on the
effect of atmospheric CO2 changes on the brackish Arctic Ocean
see Methods).
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Discussions
The modelled climate shows distinct global warming (Fig. 2) that
matches the global mean temperature reconstruction suggesting

þ 6 �C increase of surface temperatures27 with respect to
preindustrial conditions. Apart from topographic height
reduction associated with the lapse rate, major warming
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anomalies as compared to preindustrial (Supplementary Fig. 1)
are related to changes in atmospheric CO2 and changes in land
surface characteristics (land albedo, potential evaporation over
land) related to aspects of the global energy balance28,29

(planetary albedo, effective longwave emissivity). Our modelled
Paleogene climate is characterized by warm background
conditions and exhibits a sensitive surface air temperature
response to CO2 perturbations, which is governed by climate
feedbacks, such as water vapour30 (þ 58% increase compared to
preindustrial; Supplementary Table 2) and changes from single
to multi-year sea-ice28–30 (Supplementary Fig. 2). Previous
investigations show that the model generally reveals a strong
climate response due to high sensitivity of climate feedbacks
especially in the lower range of CO2 changes (between 278 and
450 p.p.m. CO2)28,31. Compared with preindustrial, the computed
Paleogene climate shows a reduction in sea-ice volume, increased
water vapour, precipitation and river runoff (Supplementary
Fig. 3 and Supplementary Table 2), consistent with precipitation
records32, proposing a stronger Arctic Ocean freshwater balance
(further information is given in modelled freshwater balance and
salinity trends in the Arctic Ocean in Methods).

Geological constraints on the subsidence history of the GSR
from a subaerial gateway towards modern sill depths remain
largely elusive. Early Deep Sea Drilling Project (DSDP)
reconstructions of paleo-water depth21,22 at the GSR do not
suggest significant tectonic activity until 36 Ma ago. Thereafter,
accelerated gateway deepening across the Eocene-Oligocene
transition to depth ranges B200–300 mbsl is followed by a

prolonged period of tectonic dormancy. The superposition of
Icelandic mantle plume variability and associated seafloor uplift
variations through time provides an in detail unknown control on
the GSR gateway opening. Seismic reflection profiles that transect
the V-shaped Reykjanes Ridge south of Iceland offer insight into
the temporal evolution of Icelandic mantle plume activity up to
55 Ma back in time14: reconstructed mantle plume activity before
initial GSR subsidence (436 Ma), as derived from residual depth
anomalies of seismic profiles indicate a strong decline in Icelandic
mantle plume activity between B55 and 35 Ma, but with a still
subaerial ridge at the end of this period. Significant deepening
and the subsidence of the GSR below sea level afterwards sets
an active control of modest periodic (3–8 Ma period) mantle
plume variations that ranges within the uncertainties of depth
reconstructions9–12, response in depth variations14,15 and sea
level fluctuations33.

Further to the North of the GSR, tectonic widening of the Fram
Strait constitutes an alternative candidate that complicates the
overall interpretation on the gateway opening of the central
Arctic Ocean5,20. Although the transition from anoxic towards
fully oxygenated conditions found in sediments records in
proximity to the North Pole suggests a ventilation control via
the Fram Strait, however, age model interpretations remain
ambiguous5,34,35.

As suggested by the geological subsidence model of DSDP site
336 (ref. 21), before initial gateway deepening around 36 Ma,
lagoonal circulation conveyed Arctic freshwater excess towards
the North Atlantic. For this period a relatively warm climate
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Figure 6 | Impact of atmospheric CO2 changes and gateway changes on vertical salinity characteristics in the subpolar Arctic. Mean salinity profiles

(%) and haloclines (dS/dz; %/m) of the subpolar Arctic (Greenland and Norwegian Seas) for different atmospheric CO2 levels (a,d), Greenland-Scotland

Ridge (GSR) gateway sill depths (b,e) and different atmospheric CO2 levels at limited GSR sill depths of 50 metres below sea level (c,f).
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likely enhances Arctic freshwater excess that promotes a sluggish
freshwater environment in the restricted Arctic Ocean. As a
result of the applied boundary conditions, our model shows a
barotropic Arctic Ocean that fails to establish sufficient pressure
gradient forces to balance the wind driven geostrophic
circulation. Such a resilient Arctic Ocean circulation does not
support the development of contourite drift deposits36 before the
gateway opening, enabling a regime of ultra-slow sedimentation
rates such as suggested for quasi-enclosed ocean basins34,35.

Referring to the GSR depth record, accelerated subsidence of
the GSR around 36–31 Ma initiates a semi-enclosed estuarine
seaway exchange and brackish salinity regime in the sub-polar
Arctic. In response to the GSR deepening, a nonlinear salinisation
process controls the stratification and the associated baroclinic
geostrophic balance in ocean circulation, which in turn coincides
with initial contourite sediment drift formation in the Greenland
and Norwegian Seas12,37. Within time periods of characteristic
gateway depth levels that are placed around 50 mbsl, our model
results indicate an accelerated circulation regime with most
pronounced baroclinic forces driving the gyre circulation. On the
basis of the GSR depth record, our results suggest a change
from semi-enclosed estuarine towards a bidirectional circulation

B32 Ma, induced by subsidence of the GSR beneath the surface
ocean mixed layer. Such a scenario matches the initial change in
isotope records at the Walvis Ridge9,38—a proxy used for
identifying the origin of water masses. This record indicates the
contemporary onset of sub-polar Arctic deep water reaching the
South Atlantic around 33 Ma (Supplementary Information and
Supplementary Fig. 8). Accompanied by the salinisation process,
mixing of a d18O depleted ‘Arctic freshwater lake’ with the
surrounding oceans implies changes in the global salinity
distribution and global shifts in benthic d18O (Supplementary
Table 2), which lies within the variability of compiled isotope
records1–3.

In combination, the GSR history and the model results suggest
a period (B36–32 Ma; Fig. 3b) of estuarine North Atlantic-Arctic
circulation across the Eocene-Oligocene transition (B33.8 Ma)
that is characterized by remarkable CO2 variations26,39 and
relative sea-level changes33 (Fig. 6b and Supplementary Fig. 8).
Our results suggest that after a first order tectonic pre-
conditioning of the GSR gateway and the establishment of an
estuarine circulation, atmospheric CO2 changes and glaciation
induced sea level variations may have modulated the overall
salinity and gyre strength in a brackish Arctic Ocean at shorter
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Figure 7 | North Atlantic-Arctic circulation regime modulated by atmospheric CO2 levels at sensible Greenland-Scotland Ridge sill depths for

circa 36 to 31.5 Ma. (a) Salinity (%) and ocean velocity (cm s� 1; velocities o0.5 cm s� 1 are not shown) maps at water depths of 50 metres below

sea-level (mbsl) for model scenarios (sill depth at B50 mbsl) at 278, 450, 600, 840 p.p.m. CO2 in the atmosphere, respectively. (b) Evolution of

Greenland-Scotland Ridge gateway circulation and different atmospheric CO2 levels set into context of reconstructed CO2 proxy history (error bars

show documented uncertainties)25,26.
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millennial time-scales. Especially at the Eocene-Oligocene
transition, the contemporary drop in atmospheric CO2 and
relative sea level changes with respect to the GSR sill depth
(for example, by Antarctic glaciation) may have partly
counterbalanced the opposing effects of the Arctic freshwater
balance and the Atlantic water inflow on the salinity and
circulation of the Arctic Ocean. According to the GSR subsidence
record21,22, at B32 Ma the GSR sill falls well below the surface–
subsurface ocean interface (4B50 mbsl) as defined by the
halocline, which constitutes the establishment of a bidirectional
seaway circulation and the development towards a present-day
north-south directed EGC-NAC current system.

In principal, our modelling study shows a pronounced near
surface stratification that defines the critical depth in ocean
gateway circulation of a semi-enclosed Arctic Ocean basin. The
dynamic exchange across the gateway is fundamentally limited to
the characteristic depth of wind driven mixing. This depth is
determined by the depth of frictional influence, which is
controlled by the Coriolis force and local ocean conditions like
stratification and turbulent mixing. In light of our modelling
results, the theoretical derivation on the depth of frictional
influence restricts the critical threshold regime in ocean gateway
circulation to the wind driven upper ocean layer. This theoretical
and dynamical framework provides a baseline to derive critical
gateway depths that are defined by the transition between a
semi-enclosed estuarine and fully ventilated ocean regime.

In future studies, the presented framework gives support to
interpret high-resolution sediment records that target past
climate variability in the North Atlantic-Arctic sector. Given
the lack of calcareous carbonates in sediment records from the
Greenland and Norwegian Seas and the Arctic Ocean, an analysis
of near bottom flow changes associated with the simulated ocean
circulation regime shift via, for example, sortable silt records or
oceanic circulation reconstructions using high resolution imaging
of sedimentary structures might be sensible. Such methods could
be complemented by biomarker based reconstructions of
temperature (for example, alkenone SST) and sea ice conditions
(for example, IP25) to test the presented framework.

Methods
Model description. The General Circulation Model COSMOS (community of
earth system models) comprises the standardized IPCC4 model configuration
which incorporates the ocean model MPIOM18, the ECHAM5 atmosphere model
at T31 spherical resolution (B3.75� 3.75�) with 19 vertical levels40 and the land
surface model JSBACH including vegetation dynamics41,42. The ocean model is
resolved at 40 unevenly spaced vertical layers and takes advantage of a curve-linear
grid at an average resolution of 3� 1.8� on the horizontal dimension, which
increases towards the grid poles at Greenland and Antarctica (B30 km).
High-resolution in the realm of the grid poles advances the representation of
detailed physical processes at locations of deep water formation, as Weddell,
Labrador and Greenland and Norwegian Seas. The ocean model includes an
Hibler-type dynamic-thermodynamic sea-ice model. The interactive transfer of
energy and fluxes between atmosphere and ocean runs without flux corrections and
is handled via the coupler OASIS3 (ref. 18). Net precipitated water over land, which
is not stored as snow, intercepted water or soil water, is either interpreted as surface
runoff or groundwater and is redirected towards the ocean via a high-resolution
river routing scheme43. The model has been applied for scientific questions
focusing on the Quaternary29,44–46, as well as the Neogene28,31,47–49.

Model boundary conditions. The model setup uses state-of-the-art model
boundary conditions encompassing a time period (B23–15 Ma) within the early
and middle Miocene, which we apply as a template to investigate our North
Atlantic/Arctic gateway studies. For this time period the continental ice on
Antarctica as well as tectonic boundary conditions (continental distribution, land
surface elevation, shelf seas, bathymetry and sediment loading) are derived from
Herold et al.19. In general the Miocene orography (Andes, Rocky Mountains,
East Africa, Tibetan Plateau) and the height of the Antarctic ice-sheet are reduced
compared to present-day, whereas the Greenland ice-sheet is absent in the Miocene
setup. Ocean gateways like Bering Strait and the Canadian Archipelago evolved
after the middle Miocene but Tethys through-flow and Panama Seaway still
connected the ocean basins. After the closure of Turgay Strait during the

middle/late Eocene50, the general late Eocene to Miocene ocean gateway settings at
the Arctic have been established. Into this global tectonic reconstruction we have
nested a regional high resolution bathymetric dataset comprising the middle
Miocene (15 Ma) Greenland and Norwegians Seas and Eurasian Basin20, which is
adequately represented in our spatial model resolution due to the close locality of
the grid pole (Fig. 1). The Greenland-Scotland Ridge acts as an oceanographic
barrier and represents the single gateway restricting the exchange of water
masses/fluxes between the Arctic Ocean (incl. the Greenland and Norwegian Seas)
and the northern North Atlantic.

Because of the tectonic opening of the Atlantic basin in time, the depth
(B970 m) and width (B1,300 km) dimensions of the GSR provided by the
Miocene bathymetric model setup are comparably smaller than preindustrial.
Further north, the Miocene bathymetric constraints also show a more shallow
(B1,900 m depth) and a more narrow (B500 km) Fram Strait with respect to the
preindustrial bathymetry. The study of Jakobsson et al.5 suggests that the Fram
Strait progressively opened at B18.2–17.5 Ma, which is accompanied by a regional
Arctic sea-level drop51. In contrast, a more recent age model—established by
Rhenium–Osmium isotope measurements—indicates that such an opening might
have occurred much earlier during the Late Eocene35,36. Besides conflicting age
models4,34,35,52, depth reconstructions show a narrow and relatively deep
(B2,000 mbsl) Fram Strait that already existed during the Oligocene (B30 Ma)20.
Further, sill depth variations of the Fram Strait during the Oligocene-early Miocene
(B30–20 Ma) possibly ranged between B2,000 and 1,500 mbsl, before the Fram
Strait progressively broadened between 20 and 15 Ma (ref. 20). Although the sill
depth changes (between B2,000 and 1,500 mbsl) of the Fram Strait might be
important for the exchange of deepwater masses20, nevertheless, our study focuses
on the effect of GSR sill depth changes in the range of the upper 200 mbsl.

On the basis of a Late Miocene vegetation reconstruction53, we derived physical
soil characteristics, such as soil albedo and maximum water holding field capacity
by adapting vegetation related parameters from Stärz et al.29. In general the global
soil albedo in the Miocene setup decreases in the visible (� 0.01) and near infrared
spectrum (� 0.03) compared to preindustrial (PI; 0.13 and 0.21, respectively).
Further the total water holding field capacity increases (þ 0.03 m) with respect to
PI (0.63 m).

The time interval between 35 and 16 Ma is characterized by changes in
greenhouse gas concentrations. We performed several experiments with different
CO2 forcing scenarios (278, 450, 600 and 840 p.p.m.) that are within the range of
CO2 reconstructions24–26,39 (Supplementary Table 2).

Model scenarios. The model scenarios, which have been performed in this study,
are listed in the Supplementary Table 1. The preindustrial control run is described
in Wei and Lohmann44. The final 100 years of each model simulation are used for
analysis.

We set-up two model scenarios with Miocene boundary conditions as a paleo
template for our experiments starting from present-day ocean salinity and
temperature fields with atmospheric CO2-levels at 278 (EO_278) and 450
(EO_450) p.p.m. Both scenarios (EO_278, EO_450) run for at least 4,000 yrs in
order to minimize salinity and temperature trends in the deep ocean. The effect of
tectonic gateway changes (subsidence of the Greenland-Scotland Ridge) on the
ocean dynamics is investigated by means of various model scenarios. The ocean
gateway sensitivity studies are performed at different height and width dimensions
of the GSR. By initializing the ocean model from the final 100 yrs mean of EO_450,
we performed model scenarios by changing the GSR sill depth to 200, 150, 100, 80,
60, 50, 40, 30 and 22 mbsl, respectively. In a further model scenario we decrease the
width of the GSR ocean passage towards B370 km at a sill depth of 22 mbsl
(comprising the uppermost two vertical layers of the ocean’s model grid)
respectively, in order to simulate the effect of an oceanographically quasi-enclosed
system of the Arctic Ocean. This strategy allows us to pursue the long-term climate
response as a consequence of the tectonic GSR subsidence history at timescales of
millions of years and to identify potential nonlinear behaviour in this process.
Further we initialized all GSR model scenarios with 1% salinity and 0 �C ocean
temperature of the Arctic Ocean in order to reach an equilibrated state after
another 2,000 yrs of model integration.

Apart of the gateway sensitivity studies we performed additional experiments at
different levels of atmospheric CO2 (Supplementary Table 1) reflecting a broad
range of greenhouse gases representative for the Eocene to Miocene time period
(Supplementary Fig. 8).

Timing constraints. The geological understanding on the subsidence of the
Greenland-Scotland Ridge (GSR) during the Eocene towards an oceanographic
rise at present water depths remains a major challenge54. The general
understanding is that the subsidence of the submarine ridge (Fig. 1) controlled the
onset (B35–33 Ma)9–11 and long-term variability13,15 of the Atlantic circulation by
southward overflow of Northern Component Water (NCW, which constitutes the
precursor of modern North Atlantic Deep Water). In general, we classify two main
groups of marine reconstructions that constrain different timing on the opening of
the Arctic Ocean:

Early Oligocene opening. Palaeontological depth estimates at DSDP site 336
(Figs 1 and 3)21,22 suggest that during the early Oligocene at 32.4–27 Ma, the rapid
deepening of the GSR has been triggered by an abrupt suppression of the Icelandic
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mantle plume22,55. This coincides with the onset of deepwater formation as
indicated by sediment drift body formation in the northern North Atlantic10,12 and
parallels the onset (B33 Ma) of decreasing radiogenic neodymium (Nd) isotope
composites (143Nd/144Nd normalized, expressed as eNd in Supplementary Fig. 8) in
the South Atlantic, respectively, which has been interpreted as a signal of NCW
derived from the Greenland and Norwegian Seas9.

Late Oligocene/early Miocene opening. Findings of a major unconformity along
the western North Atlantic continental rise have been associated to tectonic
controls of deep water outflow from the Greenland and Norwegians Seas during
the late Oligocene to earliest Miocene56. Moreover, the lack of cosmopolitan
benthic foraminifer species57,58 and indications of poorly ventilated intermediate/
deep water11, as seen in Oligocene strata from the Norwegian-Greenland Seas,
rather point towards the retention of an open circulation regime and restricted
oceanographic conditions of the Greenland and Norwegian Seas late into the early
Miocene21,22,59.

Modelled freshwater balance and salinity trends. Although the model
reproduces the reconstructed global Miocene temperature signal27 (Fig. 2,
Supplementary Table 2) some classic model discrepancies still remain, such as
relatively warm tropical and cool polar temperatures compared to the proxy
records27,60 (Supplementary Fig. 9).

In consequence the model scenarios might also represent a limited increase of
atmospheric water transport towards the Arctic region. Although our modelled
increase of freshwater transports towards the Arctic still may underestimate the
import via the atmospheric hydrological cycle to a certain extent32, however, the
freshwater input that dominates the stratification at the ocean gateway is
sufficiently well captured by our model scenarios (Supplementary Table 2).

Fresh/brackish water conditions in the Arctic Ocean are caused by relatively
shallow GSR sill depths (o80 mbsl) that limit the inflow of the North Atlantic
Current (Supplementary Figs 4 and 5). Low-salinities in this ‘freshwater lake’
environment in the Arctic Ocean are maintained by a net freshwater excess
(0.67 Sv) that is strongly increased (268%) compared to the preindustrial Arctic
freshwater balance (Supplementary Table 2). The model-data uncertainties
regarding the global latitudinal warming (Supplementary Fig. 9) and increases in
the modelled atmospheric hydrological cycle are likely to be a robust ‘estimate’
during the Cenozoic61. The model scenarios show an increased precipitation
pattern in the high northern latitudes (Supplementary Fig. 3), which is in general
agreement with elevated Neogene precipitation records of the northern
hemisphere32.

In our model scenarios the opening of a quasi-enclosed Arctic Ocean by the
GSR subsidence initiates a salinisation process in the Arctic Ocean. Progressive
deepening of the GSR sill depth (ca. 22–100 mbsl) shows that the ridge subsidence
causes a gradual nonlinear warming and a salinity increase from fresh/brackish to
modern conditions in the Arctic Ocean (Supplementary Fig. 5). A similar scenario
would be the temporary presence of fresh Arctic surface waters, known as the
‘Azolla event’, that have been controlled by limited oceanic heat/salt exchange with
adjacent oceans during the Eocene62.

Wind stress. Although we pointed out the main driving mechanism, other forces
that are related to CO2 changes, like wind stress and large scale ocean circulation
changes (Atlantic Meridional Overturning Circulation) may also affect Arctic
circulation (Supplementary Fig. 11, Supplementary Table 2). In general, the
associated wind stress is essential to induce Ekman transport for the gyre
circulation in the Greenland and Norwegian Seas. Compared to preindustrial,
EO_450 shows strong reductions in the Greenland and Norwegian Seas wind
system (Supplementary Fig. 11), however, the modern-like meridional NAC versus
EGC current system is still maintained.

Referring to the gateway studies, the wind field anomalies with respect to
EO_450 are mainly related to increased sea ice cover, as a consequence of limited
northward heat transports. However, as seen in Supplementary Fig. 11 the wind
stress anomalies do not show remarkable changes among model studies using
different gateway depths (model studies with GSR sill depth o100 mbsl).
Therefore, based on our model studies, we conclude that both the wind stress and
density driven pressure gradients are a prerequisite to establish a gyre circulation,
however, variations in the gyre strength are rather controlled by the baroclinic
effects, as a consequence of gateway depth changes.

Salinity driven pressure gradient forces on gyre strength. In another model
sensitivity study (based on EO_GSR100) we test the impact of prescribing uniform
salinities at 28% in an Arctic Ocean environment at GSR sill depths of 100 mbsl.
Therefore, the modified model version of the ocean density calculation depends on
ocean temperature and pressure applying salinity as a constant (28%)63. Without
salinity gradients in the Arctic Ocean, the temperature related part in the density
calculation is not sufficient enough to establish horizontal density and pressure
gradients in order to drive the Arctic Ocean circulation (Supplementary Fig. 6).
As a consequence the geostrophic-baroclinic balance is not maintained and the
Arctic Ocean circulation system collapses. In contrast to the model sensitivity
study (applying uniform Arctic Ocean salinities at 28%), the model scenario
EO_GSR100 shows ocean currents that strongly follow along with the pycnoclines,

suggesting a close relationship between ocean currents and pressure gradient forces
(Supplementary Fig. 6).

Effect of atmospheric CO2 changes on the Arctic Ocean. Based on the
model scenario EO_GSR50 with GSR sill depth at 50 m, we focus on a range of
atmospheric CO2 changes (278, 450, 600, 840 p.p.m.), ranging from preindustrial
CO2 (278 p.p.m.) to 840 p.p.m. in the atmosphere (refs 24–26,39; Supplementary
Fig. 7). Compared to preindustrial, the 278 CO2 case (EO_GSR50_278) reveals
þ 3.1 �C of global warming at the surface as a consequence of changes in the
boundary conditions19,29 and an increased Arctic freshwater balance
(Supplementary Table 2). Raising atmospheric CO2 levels of the EO model
scenarios result in additional warming in parallel with increased freshening in the
Arctic Ocean (Supplementary Table 2). This is largely related to the effect of an
enhanced Arctic freshwater balance in combination with limited gateway water
mass exchanges (Fig. 7 and Supplementary Fig. 5).

The CO2-induced climate warming (þ 4.94 �C more than in the 278 CO2 case)
drives a reinforced Arctic freshwater balance (þ 0.16 Sv) via the atmospheric
hydrological cycle, which largely shifts the salinity regime further towards fresh
conditions in the Arctic. The additional Arctic freshwater release that is transferred
into the North Atlantic, combined with increased high latitude warming dampens
deepwater formation and results in a consequent slowdown of the Atlantic
Meridional Overturning Circulation (ca. 5 Sv compared to PI). At the GSR gateway,
especially the additional Arctic freshwater export in combination with attenuated
salt import of southern sourced North Atlantic waters reduces the overall salinity
and baroclinity in the subpolar Arctic. As a result, at high CO2 levels (840 p.p.m.)
the Arctic gyre strength strongly reduces (ca. 7 Sv) compared to the standard CO2

(450 p.p.m.) case.

Parameter change effects on the model scenarios. In order to decipher the
effect of CO2 changes (DCO2) and GSR sill depth changes (DGSR) with respect to
the synergy term, we applied a factor separation analysis64. The identifiers (Exp. Id)
that are used in the following formula refer to the list of model scenarios in
Supplementary Table 1:

DCO2 ¼ EO GSR50 278ð Þ� EO GSR50ð Þ ð1Þ

DGSR ¼ EO 450ð Þ� EO GSR50ð Þ ð2Þ

D GSRþCO2ð Þ ¼ EO 278ð Þ� EO GSR50ð Þ ð3Þ

DSYN ¼ EO 278ð Þ� EO GSR50 278ð Þ� EO 278ð Þþ EO GSR50ð Þ ð4Þ
An isolated decline in atmospheric CO2 (DCO2) results in a global atmospheric
cooling and a sea surface temperature drop that is most pronounced in regions that
are associated with a increase in sea-ice cover (Supplementary Fig. 12). On the
other hand, deepening of the GSR sill (DGSR) effectively promotes northward
directed oceanic heat transport, a change from perennial to seasonal sea ice cover
and warming SATs in the high-northern latitudes. The sea surface temperature
changes are dominated by atmospheric cooling compared with changes in the heat
transport that are associated with oceanic readjustments. The deepening of the GSR
sill depth (DGSR) from 50 m to Miocene depth reconstructions of B960 m
provides the establishment of a North/South directed North Atlantic/East
Greenland Current system. These changes cause a strong surface air temperature
warming in the high northern latitudes that is most pronounced in the Greenland
and Norwegian Seas (Supplementary Fig. 12). The comparison of these mono-
causal impacts of GSR changes and CO2 changes (D(GSRþCO2)) with their
combined effects via the synergy term (DSYN) reveals that especially the SAT
anomalies in the Norwegian and Greenland Seas are dominated by the associated
readjustments in the ocean circulation regime.

Interestingly, in the Southern Ocean both, the DCO2 drop, as well as DGSR
deepening, induces a regional SAT warming. However, the combined effect
(D(GSRþCO2)) reveals a general cooling in the Southern Ocean indicating strong
feedbacks that are related to the synergy term (DSYN).

Depth of the wind driven upper ocean layer. The thickness of the wind driven
layer can be determined by the depth of frictional influence, or approximated by
calculation of the Ekman depth:

DE ¼ p

ffiffiffiffiffiffiffiffi
2Az

f

s
ð5Þ

Thereby, f constitutes the Coriolis parameter, and the eddy viscosity—a parameter
that describes the effect of stratification and turbulent mixing—is given by Az

(1.0� 10� 2 m2 s� 1). DE is especially dependent on the choice of the eddy viscosity
coefficient Az. In the numerical ocean model within COSMOS, this parameter is
computed for every time step including the speed of ocean currents, background
viscosity based on the mixing of internal wave breaking, wind induced stirring
dependent on the local static stability (stratification) and the local Richardson
number65,66. Future studies focussing on a more realistic representation of
turbulent mixing as given in high resolution meso-scale eddy resolving ocean
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models, will provide a more detailed assessment of the upper mixed layer of the
ocean in order to constrain the regime shift of the GSR gateway studies.

As shown in the manuscript, the depth of frictional influence determines the
halocline (pycnocline) and therefore the regime shift in gateway circulation of
semi-enclosed stratified ocean basins. Global calculations of the vertical extent of
the wind driven layer (except of the low latitudes close to the equator since f
becomes increasingly low) provide depth values as a function of latitude, between
less than 40 m near the poles and more than 200 m at the low latitudes,
respectively. The GSR places at B58–69�N, yielding calculated Ekman layer depths
of B46–54 m (Supplementary Fig. 10) in agreement with mixed layer depths in the
central Arctic Ocean that range between 25 and 50 m (ref. 67). This result matches
the modelled halocline depth—similar results are obtained for the thermocline and
pycnocline (Supplementary Figs 13 and 14)—as well as the associated baroclinic
geostrophic response with respect to GSR sill depth changes as demonstrated in
maximum Arctic gyre strength.

Extensions of the model code. During sea-ice formation at the surface of the
ocean, small amounts of salt water get incorporated into sea-ice. To consider salt
water inclusions in the sea-ice matrix, the standard salinity of sea-ice is prescribed
at 5% in the COSMOS model. For computed sea surface salinities below 5%, we
define new sea-ice salinity at 1% in order to account for the formation of sea-ice in
a freshwater environment. Further, we included the dynamic computation of the
freezing point temperature68 which is currently fixed at � 1.9 �C. This formula
actually integrates the effect of sea surface salinity (S; pressure, r¼ 1,013 hPa) in
the calculation of the freezing point temperature tf:

tf ¼ a0Sþ a1S
3
2þ a2S2 þ br ð6Þ

a0 ¼ � 0:0575

a1 ¼ þ 1:710523�10� 3

a2 ¼ � 2:154996�10� 4

b ¼ � 7:53�10� 4

Following the oceanographic opening of the Arctic Ocean gateway and the salinity
evolution in the Arctic, as a consequence of salinisation processes the sea surface
temperature decreases, which is dominated by the calculation of the freezing point
temperature (Supplementary Fig. 4).

Code availability. The standard model code of the ‘Community Earth System
Models’ (COSMOS) version COSMOS-landveg r2413 (2009) is available
upon request from the ‘Max Planck Institute for Meteorology’ in Hamburg
(https://www.mpimet.mpg.de).

Data availability. The modelling data that support the findings of this study are
available in Pangaea with the identifier ‘https://doi.org/10.1594/PAN-
GAEA.873887’ (ref. 69).
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