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ABSTRACT
Transcription factors (TFs) and microRNAs (miRNAs) are well-characterized trans-
acting essential players in gene expression regulation. Growing evidence indicates that
TFs and miRNAs can work cooperatively, and their dysregulation has been associated
with many diseases including cancer. A unified picture of regulatory interactions
of these regulators and their joint target genes would shed light on cancer studies.
Although online resources developed to support probing of TF-gene and miRNA-gene
interactions are available, online applications for miRNA-TF co-regulatory analysis,
especially with a focus on cancers, are lacking. In light of this, we developed a web
tool, namely CMTCN (freely available at http://www.cbportal.org/CMTCN), which
constructs miRNA-TF co-regulatory networks and conducts comprehensive analyses
within the context of particular cancer types. With its user-friendly provision of topo-
logical and functional analyses, CMTCN promises to be a reliable and indispensable
web tool for biomedical studies.
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Keywords MicroRNA, Transcription factor, Co-regulation, Network, Cancer, Web tool

INTRODUCTION
Gene expression regulation is a complex biological process involving various regulators
acrossmultiple levels. Because it controls organismdevelopment and cell homeostasis (Yu et
al., 2008), gene expression dysregulation is closely associated with disease processes. In gene
expression regulation system, transcription factors (TFs) and microRNAs (miRNAs) have
been recognized to play important roles at transcriptional level and post-transcriptional
level respectively. Moreover, increasing evidence suggests that miRNAs and TFs are able
to work together, mainly to buffer gene expression and/or adjust signaling (Bracken,
Scott & Goodall, 2016). Specifically, miRNAs and TFs have been shown to regulate
shared target genes in feed-forward-loops (FFLs) and co-regulating pairs (Zhang et
al., 2013). At the network level, miRNA-TF FFLs and co-regulating pairs are major
network motifs (i.e., genetic interconnection patterns that occur more often by chance in
biological networks), serving as basic building blocks of a complex regulatory system
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(Anastasiadou, Jacob & Slack, 2017; Guo et al., 2016). Hence, perturbations of the
interwoven regulatory patterns involving miRNAs and TFs trigger global alterations
in gene expression and are associated with many diseases, including cancer.

Cancer is a complex, heterogeneous disease whose etiology involves diverse genetic and
environmental factors. In the complex cancer-related gene expression regulation networks,
miRNAs and TFs can work cooperatively as oncogenes or tumor suppressors (Yan et al.,
2012). The construction and analysis of miRNA-TF co-regulatory networks may be used
to improve our understanding of tumorigenesis and may suggest novel therapeutic targets.
Indeed, analyses of FFLs and co-regulatory patterns have already revealed an essential
role of their combined regulatory influence in some well-studied cancers. For example,
in colorectal cancer, Wang et al. (2017) found that aberrant expression of two miRNAs
(hsa-mir-25 and hsa-mir-31), one TF (BRCA1), and two other genes (ADAMTSL3 and
AXIN1) affected patient survival, and thus provided clues regarding the components
that determine colorectal cancer prognosis. Additionally, employing FFL detection and
glioblastoma multiforme-specific co-regulatory network construction and analysis, Sun
et al. (2012) discovered that the miRNA hsa-mir-34a plays a key role in glioblastoma
multiforme, a lethal form of primary brain cancer. Likewise, employing miRNA-TF
co-regulatory network analysis in breast cancer, Qin et al. found novel potential breast
cancer driver genes (Qin, Ma & Chen, 2015).

Several web resources have been developed to unravel how miRNAs and TFs interact
with genes, including resources for TF-gene regulation (Bovolenta, Acencio & Lemke, 2012;
Han et al., 2017; Jiang et al., 2007; Zheng et al., 2008), and numerous tools for obtaining
miRNA targets by experiments and predictions (Chou et al., 2017; Jiang et al., 2009; Xiao
et al., 2009; Yang et al., 2011). Although the identification of TF and miRNA targets is a
key step in studying miRNA-TF co-regulation, there remains a need to combine these
two forms of basic regulatory information together technically to enable identification
of co-regulatory relationships and establish co-regulatory networks. Although combining
co-regulatory information with disease-related knowledgebases is critical for biomedical
research, online tools based on these ideas are lacking.

Here, we report the design, development, and testing of an online application called
CMTCN. CMTCN collects and integrates the published regulatory relationships among
miRNAs, TFs, and target genes from 11 databases and provides a means of curating cancer-
specific interactions by referring to documented cancer-related gene andmiRNA databases.
It conducts systematic explorations of major co-regulatory motifs, namely co-regulating
pairs and FFLs that consist of miRNAs, TFs, and cancer-related genes. By identifying
co-regulatory interactions, CMTCN can establish miRNA-TF co-regulatory networks
for cancers and provide useful analyses for understanding the molecular mechanisms
underlying cancer pathogenesis.

MATERIAL AND METHODS
Design and workflow
CMTCN was developed by way of a five-step computational pipeline (Fig. 1). In step
one, CMTCN utilized information provided by established regulatory databases of both
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Figure 1 Overview of the CMTCNworkflow. (A) CMTCN utilized information provided by established
regulatory databases of both predicted and experimentally validated interactions. (B) CMTCN curated
cancer-related genes and miRNAs for 33 types of cancers by referring to established cancer genes/miRNAs
databases. (C) CMTCN screened out cancer-related regulatory interactions (continued on next page. . . )

Full-size DOI: 10.7717/peerj.5951/fig-1
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Figure 1 (. . .continued)
whose target nodes or regulator nodes are known to be relevant to cancer, forming an entirely synthetic
network by pooling four types of interactions. (D) CMTCN identified FFLs and co-regulatory pairs from
the combinatorial network using a network motif detection algorithm. (E) By identifying co-regulatory
interactions, CMTCN can establish miRNA-TF co-regulatory networks in different cancers. (F) CMTCN
incorporated expression data from TCGA to refine discoveries. (G) CMTCN supports enriched network-
centric downstream analysis, including cancer-specific co-regulatory network displays, network topology
analyses, co-regulatory interactions queries, and intra–co-regulatory network gene/miRNA enrichment
analyses.

predicted and experimentally validated interactions (Fig. 1A, Table S1). In total, 67,770
TF-gene, 177,724 TF-miRNA, 630,106 miRNA-gene, and 97,580 miRNA-TF interactions
were collected. In step two, CMTCN curated cancer-related genes/miRNAs manually for
33 types of cancer by referring to cancer gene/miRNA databases, including TissGDB (Kim
et al., 2017), SEGreg (Tang et al., 2018), IntOGen (Gonzalez-Perez et al., 2013), HMDD
v2.0 (Li et al., 2014), miR2Disease (Jiang et al., 2009), PhenomiR (Ruepp et al., 2010), and
miRCancer (Xie et al., 2013) (Fig. 1B, Tables S2–S3). In step three, CMTCN screened out
cancer-related regulatory interactions whose target nodes or regulator nodes are known
to be relevant to cancer, forming an entirely synthetic network by pooling four types of
interactions (Fig. 1C). Finally, in step four, CMTCN identified FFLs and co-regulatory pairs
from the combinatorial network using the network motif detection algorithm FANMOD
(Wernicke & Rasche, 2006) and, in step five, constructed the co-regulatory network and
incorporated expression data fromThe Cancer Genome Atlas (TCGA) (Katarzyna, Patrycja
& Maciej, 2015) to refine its discoveries (Figs. 1D–1F).

The online CMTCN interface is a neat and user-friendly dashboard layout with two
main modules: Start and Analysis. Users initiate their research in the ‘Start’ module with a
three-step job submission process. After the job has been submitted, the webserver jumps
to the ‘Analysis’ module where there is access to network-centric analysis, including a
cancer-specific co-regulatory network display, network topology analysis, a co-regulatory
interactions query, and enrichment analysis of genes and miRNAs in a co-regulatory
network (Fig. 1G).

Data input
The user initiates a cancer-specific miRNA-TF co-regulation analysis through the
construction of a co-regulatory network. CMTCN displays the co-regulatory network
and provides detailed investigation for the network (Fig. 2).

The user begins in the ‘Start’ module with the following three steps: (i) choose a specific
cancer; (ii) select a regulatory data source; and (iii) choose whether to analyze the full
cancer-specific co-regulatory miRNA-TF network or to view the co-regulatory network
for specific genes/miRNAs of interest (Fig. 2A). Currently, CMTCN supports 33 types
of cancer. For co-regulatory network construction, users are given the option of three
evidence levels (validated, predicted, or both) and two angles (full co-regulation network
or co-regulatory subgraph). When the full network is selected, CMTCN provides an overall
co-regulatory network for a specific cancer. When the co-regulatory subgraph is selected,
users can view the genes/miRNAs they are interested in. To facilitate analyses, CMTCN
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Figure 2 Features of the interactive CMTCNweb service. (A) Users initiate their study by three steps.
First, the user selects an CMTCN-supported cancer type (currently, 33 to choose from), selects the desired
evidence levels, and selects whether they want to study an entire co-regulation network or a subnet of co-
regulatory network for genes of interest. (B) CMTCN displays an interactive and intuitive force network
map for the co-regulatory network. (C) CMTCN uses three indicators to analyze the key nodes of the es-
tablished co-regulatory network. (D) CMTCN can query each co-regulatory interaction type. (E) CMTCN
makes functional enrichment analysis for genes, TFs, and miRNAs involved in the co-regulatory network.

Full-size DOI: 10.7717/peerj.5951/fig-2

provides the gene sets associated with clinical stage (Lee et al., 2015) and high mutation
rates (Sun, Li & Wang, 2018) for each type of cancer. Users can input the genes they are
interested in directly or upload a gene list in the form of a .txt file for query. The sample
.txt file is provided in Data S1.
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Functionality of CMTCN
Identification of miRNA-TF co-regulatory interactions
CMTCN pools TF-gene, TF-miRNA, miRNA-gene, miRNA-TF regulatory relationships.
Based on these relationships, CMTCN focuses on co-regulatory pairs and three-node FFLs
identified with the help of the network motif detection algorithm. A co-regulatory pair
includes a TF and miRNA that regulate a gene simultaneously. There are three types of
three-node FFLs: TF-FFLs, miRNA-FFLs, and composite-FFLs. In a TF-FFL, the TF is the
master regulator, which regulates a partner miRNA and their joint target. In a miRNA-FFL,
the miRNA is the master regulator, repressing its partner TF and their joint target gene.
A TF-FFL and miRNA-FFL can combine to form a composite-FFL in which the miRNA
and TF regulate each other. CMTCN can query and display each co-regulatory pattern in
detail, and can incorporate expression data from TCGA to refine co-regulatory interactions
(Fig. 2D).

Co-regulatory interactions refinement
CMTCN capitalizes on TCGA expression data to select important co-regulatory
interactions. TCGA RNA-Seq data (run date 2016-01-28) provided in the Firehose data
repository are accessed using the R package RTCGAToolbox (Samur, 2014). CMTCN
calculates pairwise Spearman correlation values between TFs, miRNAs, and genes. Users
can refine co-regulatory pairs or FFLs on the basis of correlation p-values and correlation
coefficients. For instance, when the user sets the p-value cutoff to 0.05 and the correlation
coefficient cutoff to 0.2, CMTCN displays a TF-target edge of p< 0.05 with correlation
coefficients whose absolute values are ≥0.2. Since most miRNAs are assumed to inhibit
the expression of their targets (Beermann et al., 2016), CMTCN shows miRNA-target edge
p< 0.05 and correlation coefficient ≤−0.2. Users can indicate which types of TF-target
regulation they need. CMTCN gives the user the ability to select to differentiate between
positive and negative TF regulation. Thus, if the user needs to examine only positive or
negative regulation, CMTCN can retain only positive or negative correlation coefficient
interactions, respectively.

Network visualization
CMTCN utilizes major co-regulatory motifs to form a cancer-specific miRNA-TF co-
regulatory network. It uses the D3.js to depict an interactive and intuitive co-regulatory
network map in which genes, TFs, and miRNAs are represented by green, yellow, and
red nodes, respectively. To improve the presentation of the force-directed graph, users
can adjust link distance, node repulsion, and the number of co-regulatory relationships
displayed. CMTCN network graphs presented can be saved as images (Fig. 2B).

Network topology analysis
The key nodes in a co-regulation network have biological significance because they are signal
convergence sites with pronounced control and influence over the network; accordingly,
they represent potential candidates for biomarker prediction, clinical prognosis, and
treatment (Barabási, Gulbahce & Loscalzo, 2011). CMTCN uses three indicators in its key
node analysis: node degree, hub score, and authority score (Kleinberg, 1999) (Fig. 2C).
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Node degree represents the number of edges that meet at a vertex. A node with a high hub
score contains a large number of outgoing links, and a node with a high authority score is
pointed to by many other nodes with high hub scores. Letting A be the adjacency matrix of
the graph, the hub score is defined as the principal eigenvector of AAT, and the authority
score is the principal eigenvector of ATA. CMTCN uses appropriate pictures to produce a
vivid presentation of scoring results.

Gene/miRNA enrichment analysis
To better capture and mine biological roles of a co-regulatory network, CMTCN takes
advantage of annotated gene/miRNA sets from GSEA (Subramanian et al., 2005) and
miEAA (Backes et al., 2016), thereby enabling functional enrichment analysis of genes,
TFs, and miRNAs involved in the co-regulatory network. CMTCN enables detailed
gene-ontology association analyses with a variety of biological and biomedical ontologies,
extending beyond GO (Consortium et al., 2000) and KEGG (Kanehisa & Goto, 2000),
thereby providing clues for follow-up studies (Fig. 2E).

Implementation
The CMTCN website can be accessed freely and readily by all users without a login
requirement. It supports the most prevalent web browsers, including Google Chrome,
Mozilla Firefox, Safari, and Internet Explorer (10 or later). It adjusts automatically to the
layout of particular browsers and device types, from desktop computers to tablets and
smart phones. CMTCN was written almost entirely in R code based on the R-Shiny web
framework (Chang et al., 2017) and has been deployed on an Aliyun server. The backend
database is implemented with SQLite (version 3.8.8.2).

RESULTS
Functional use case of CMTCN
To better illustrate the functionality and utility of CMTCN, we studied the miRNA-TF
co-regulation of two specific cancers, namely thyroid carcinoma (THCA) and ovarian
cancer (OV).

Uncovering and analyzing the miRNA-TF co-regulatory network in THCA
THCA is a common endocrine malignancy with an increasing worldwide incidence
(Cabanillas, Mcfadden & Durante, 2016). In CMTCN, we chose the THCA cancer set,
selected the validated regulation information confidence level, and built a full miRNA-TF
co-regulatory network for THCA. For each type of co-regulatory pattern, we required
a p-value <0.05, an absolute value of correlation coefficient ≥0.2, and both types of
TF regulation. CMTCN established a THCA-specific miRNA-TF co-regulatory network
comprised of 391 nodes and 518 links, with 710 co-regulatory pairs, 7 TF-FFLs, 1 miRNA-
FFL, and 2 composite-FFLs.

CMTCN then used network topology analysis to reveal the top-five genes in terms of
authority score (MELK, PIGR, SNX5, CLU, and DAPK2) (Table S4). A comprehensive
literature review of these genes confirmed their implicated roles in cancer diagnosis and
therapy.MELKhas been reported to be potential therapeutic targets formalignancies (Pitner
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et al., 2017). PIGR has the potential to be a candidate prognostic biomarker (Fristedt et al.,
2014). Regulation of CLU by oncogenes and epigenetic factors has important consequences
for mammalian tumorigenesis (Sala et al., 2009). The aberrant methylation, and hence
silencing, of DAPK2 has been reported to play a critical role in thyroid cancer tumorigenesis
and progression (Hu et al., 2006). Finally, reduced expression of SNX5 was shown recently
to be related to promotion of thyroid tumorigenesis (Jitsukawa et al., 2017) and SNX5
expression studies can be used to support a pathology diagnosis of thyroid cancer (Ara et
al., 2012). Additionally, CMTCN carried out a functional enrichment analysis for genes
and TFs in the THCA-specific miRNA-TF co-regulatory network. With KEGG pathway
enrichment, CMTCN found 11 significant pathways, all of which were related to cancer
(Table S5). CMTCN pinpointed four TFs (E2F4, TFDP1, SP1, MYC) and one gene ACVR1
in the transforming growth factor-β signaling pathway, a negative regulator of thyroid
follicular cell growth (Geraldo, Yamashita & Kimura, 2012).

MiRNA-TF co-regulatory subnetwork of top mutated genes in OV
OV is highly aggressive gynecological cancer (Sung et al., 2017). We used CMTCN to
establish an OV-specific miRNA-TF subnetwork encompassing the top-100 mutated genes
in OV. Again, we set the confidence level to validated and required a p-value <0.05, an
absolute correlation coefficient ≥0.2 and both types of TF regulation. Our goal was to use
CMTCN to reveal the miRNAs and TFs related to the top mutated genes in OV, as well as
the regulatory effects of these miRNAs and TFs.

We obtained six co-regulated pairs and one TF-FFL related to the top-100mutated genes
in OV, which revealed six miRNAs and three TFs with possible associations with these
top mutated genes. The sole TF-FFL obtained was comprised of a TF (TP53), a miRNA
(hsa-mir-29c), and a joint target gene (PTEN). In this TF-FFL, the TF regulates both the
miRNA and the target gene, with the miRNA repressing the target gene. Regarding OV
pathogenesis, the loss function of PTEN, together with TP53 alteration is a common event
(Martins et al., 2014). Interestingly, hsa-mir-29c, an effector of regulator TP53, can also
suppress cancer development (Li et al., 2018). The possibility that abnormal expression of
the two cross-talking regulators and their co-target gene may be predictive of OV risk is
worth further careful study in future experiments.

DISCUSSION
The results of these demonstration studies, described before, show that CMTCN is able to
uncover and analyze miRNA-TF co-regulation networks in a manner that can enhance our
understanding of miRNA-TF gene regulatory mechanisms in different types of cancer and
provide valuable information for cancer prognosis and therapy.

CMTCN explored miRNA-TF co-regulatory pairs and FFLs systematically and in a
context-specific manner. To enhance the power and accuracy of the discovery, CMTCN
provides TCGA expression-based filtering options for calculations of pairwise correlations
between miRNAs, TFs, and genes. Owing to its simplicity and large-scale network
computing capability, like other related analyzation methods (Qin, Ma & Chen, 2015;
Wang et al., 2017), CMTCN uses pairwise correlations to refine co-regulation. In addition
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to the refinement, CMTCN combines network topology information with co-regulatory
relationship queries to provide a sum of degree, hub, and authority scores for each
co-regulation interaction type, which supports the discovery of high-value co-regulatory
interactions. In fact, there are multiple ways to deal with co-regulatory interaction mining
outcomes and there are opportunities to improve the co-regulatory analysis framework
in future work. Methods, such as partial correlation or the emerging detrended partial-
cross-correlation analysis (DPCCA) method (Yuan et al., 2015), could be applied in the
refinement step. Moreover, integrating our miRNA-TF co-regulatory network with other
functional networks will potentiate the findings at a systems level.

CONCLUSIONS
Here, we introduced CMTCN as a user-friendly online tool for miRNA-TF co-regulation
analysis in the context of cancer research. CMTCNcharacterized and detected co-regulatory
pairs and three types of FFLs for each type of cancer. It constructed detailed and dynamic
cancer-specific miRNA-TF co-regulatory networks that elucidate the interwoven pivotal
roles of TFs, genes, and miRNAs in human cancer. CMTCN identified pivotal network
nodes and prioritized those nodes that should be investigated further experimentally as
potential biomarkers or drug targets. The program supports various enrichment analyses
for discovery of network gene/miRNA ontology associations. Though it was developed
for miRNA-TF co-regulation analysis studies specifically, CMTCN has broad biomedical
applications and can be utilized by cancer researchers as well as systems biologists and
epigenetic scholars. Cancer researchers can utilize CMTCN to find candidate cancer genes;
systems biologists can explore the qualities of the comprehensive network-centric analyses
of CMTCN. Epigeneticists can use CMTCN to interpret the integrative global effects of
TFs and miRNAs on cancer.
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