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Adverse drug reactions (ADRs) are responsible for drug candidate failure during clinical trials. It is crucial to investigate biological
pathways contributing to ADRs. Here, we applied a large-scale analysis to identify overrepresented ADR-pathway combinations
through merging clinical phenotypic data, biological pathway data, and drug-target relations. Evaluation was performed by
scientific literature review and defining a pathway-based ADR-ADR similarity measure. The results showed that our method is
efficient for finding the associations between ADRs and pathways. To more systematically understand the mechanisms of ADRs,
we constructed an ADR-pathway network and an ADR-ADR network. Through network analysis on biology and pharmacology,
it was found that frequent ADRs were associated with more pathways than infrequent and rare ADRs. Moreover, environmental
information processing pathways contributed most to the observed ADRs. Integrating the system organ class of ADRs, we found
that most classes tended to interact with other classes instead of themselves. ADR classes were distributed promiscuously in all the
ADR cliques. These results reflected that drug perturbation to a certain pathway can cause changes in multiple organs, rather than
in one specific organ. Our work not only provides a global view of the associations between ADRs and pathways, but also is helpful
to understand the mechanisms of ADRs.

1. Introduction

Adverse drug reactions (ADRs) are undesired phenotypic
effects that occur in human organisms after medicine admin-
istration. In recent years, ADRs have gained broad public
attention. ADRs not only affect quality of life for patients,
but also have become a major cause of death. Furthermore,
ADRs concern the economical profit of the pharmaceutical
industries. ADRs are responsible for drug candidates’ failure
to gain FDA approvals during clinical trials. Many marketed
drugs have beenwithdrawndue to severeADRs. For example,
Cerivastatin was withdrawn from the world market, because
this drug caused 52 deaths that were attributed to rhabdomy-
olysis and kidney failure [1]. Therefore, the recognition of
ADRs during the early phases of drug discovery is valuable
for drug development and safety [2].

One of the direct reasons for ADRs is the interaction
with the primary targets or off-targets [3]. While binding of
drugs to their primary targets or off-targets affected pathways,

perturbed pathways can cause phenotypic effects in human
biological system. If the pathway that is affected by a drug
influencing the phenotype is known, then we can more
effectively study the drug-related phenotype. Therefore, it is
essential to detect the links between ADRs and pathways
by a systemic approach. Scheiber et al. predicted targets
for compounds causing ADRs using a multiple-category
Bayesian model. Then they used these targets that were
linked to ADRs to connect ADRs to pathways [4]. Xie et al.
identified the protein-ligand binding profiles of cholesteryl
ester transfer protein (CETP) inhibitors. Then, the predicted
targets were merged into biological pathways via a literature
review, and the results clarified the molecular mechanisms
of ADRs of CETP inhibitors [5]. Furthermore, Wallach et al.
predicted protein-drug interactions using in silico docking,
which was based on information in the publicly available
Protein Data Bank, and identified ADR-related pathways
using logistic regression [6].These studies are limited by their
dependency on the availability of a 3D structure of the drug or
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target. Therefore, the methods are infeasible for many drugs
and drug targets without known 3D models. Additionally,
these studies usually focused on one aspect of identifying
the relations among drugs, pathways, and ADRs and did not
consider the global map of ADRs and pathways. It is known
that network biology and pharmacology provides a way of
developing drugs and understanding the mechanisms of side
effects. Many studies have shown the success of network
analysis in understanding biology and pharmacology [7–
10]. Therefore, a large-scale ADR-pathway network should
be constructed, and network analysis should be used to
understand the mechanisms of ADRs.

In this study, we identified overrepresented ADR-
pathway associations through combining pathway informa-
tion, drug-target and drug-ADR relations. We evaluated
those associations through scientific literature review and
defining a pathway-based ADR-ADR similarity measure.
Then, a bipartite graph of ADR-pathway interactions (ADR-
pathwaynetwork)was constructed.Weusednetwork analysis
on biology and pharmacology to (i) analyze topological prop-
erty differences between frequent, infrequent, and rareADRs,
(ii) explore ADR-ADR associations (ADR-ADR network)
based on the connections in the ADR-pathway network, and
(iii) analyze ADR system organ class relations and mine the
cliques with biological meaning in the ADR-ADR network.
Our results provided great insights into understanding the
mechanisms of ADRs.

2. Materials and Methods

2.1. Drug Targets. Human protein drug targets were collected
from DrugBank [11], PDSP Ki database [12], Matador [13],
and Therapeutic Targets Database [14]. We only considered
drug-target annotations with binding affinity that were lower
than 10 𝜇M [15]. Finally, 3,142 drugs, 2,920 targets (Entrez
Gene ID), and 17,873 interacting pairs were obtained.

2.2. Adverse Drug Reactions. 1,450 ADRs related to 888 drugs
were downloaded from the SIDER database release 1 [16]. We
also obtained information concerning the frequency of drug-
relatedADRs, whichwas defined as the percentage of patients
who reported the ADR after taking the drug. The frequency
can be a general range (rare, infrequent, and frequent) or
an exact value (e.g., 3.1%). The SIDER database provided the
exact lower/upper bounds for the general frequency range.
Rare is limited to the range [0, 0.001]. Infrequent is limited
to the range [0.001, 0.01]. Frequent is limited to the range
[0.01, 1]. We grouped one ADR into three categories (rare,
infrequent, and frequent) according to the median frequency
of its drugs and the lower (upper) bound of the general range.

2.3. Pathways. KEGG database was used to obtain the
biological pathway information for this study [17]. “Global
pathway” was excluded from the pathway set. According to
the pathway classification of KEGGdatabase, all the pathways
were partitioned into six categories: cellular processes (CP),
environmental information processing (EIP), genetic infor-
mation processing (GIP), human diseases (HD), metabolism
(MB), and organismal systems (OS).

2.4. The ADR-Pathway Network. We connected ADRs to
pathways through the pathway-drug and drug-ADR rela-
tions. The hypothesis is that pathways that are affected
frequently by drugs causing the same ADR have higher
probabilities of correlation with an ADR than pathways
that are affected less frequently. Firstly, we identified drug-
perturbed pathways using the SubpathwayMiner software
package [18] (see Figure 1). After inputting targets of a drug,
hypergeometric test was performed to obtain the statistically
significant enriched pathways with 𝑃 ⩽ 0.05. By applying
this method for all the drugs, drug-pathway relations were
obtained.These relationswere represented by a drug-pathway
matrix, in which rows represent drugs, columns represent
pathways, and the 𝑖𝑗th element is 1, if drug 𝑖 perturbs pathway
𝑗, and is 0 otherwise. Similarly, drug-ADR relations from the
SIDER database were represented by a drug-ADR matrix,
whose rows represent drugs and columns represent ADRs,
in which the 𝑖𝑗th element is 1 if drug 𝑖 induces ADR 𝑗 and
is 0 otherwise. Then, to identify the associations between
ADRs and pathways, we used drug information to combine
the drug-pathway matrix with the drug-ADR matrix. 572
drugs were involved in the above two matrices. Therefore,
we used 572 drugs with 1,267 ADRs and 194 pathways to
find the associations between ADRs and pathways based on
enrichment analysis. An ADRwas associated with a pathway,
when drugs causing the ADR were significantly enriched in
the set of drugs that affected the pathway. The significance of
the enrichment was evaluated by the 𝑃 values of the hyper-
geometric test. Finally, we constructed an ADR-pathway
network consisting of ADRs and ADR-associated pathways.

2.5. Closeness between ADRs’ Drug Sets. For any two ADRs 𝑖
and 𝑗, the drug sets that induced them were denoted by 𝐷

𝑖

and 𝐷
𝑗
, respectively. We calculated association score (AS) to

evaluate the extent of closeness between the two drug sets𝐷
𝑖

and𝐷
𝑗
. The AS was defined as follows:

AS (𝐷
𝑖
, 𝐷
𝑗
) =

1
𝑁
𝑖
× 𝑁
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where 𝑁
𝑖
and 𝑁

𝑗
denote the number of drugs in the drug

sets𝐷
𝑖
and𝐷

𝑗
, respectively. The FER (fold enrichment ratio)

is used to quantify the extent of the closeness between any
drug 𝑎 in the drug set 𝐷

𝑖
and any drug 𝑠 in the drug set 𝐷

𝑗
.

It is defined as FER(𝑎, 𝑠) = 𝑂/𝐸, 𝑂 equals 𝑛
𝑎𝑠
which is the

observed value, and𝐸 equals (𝑛
𝑎
×𝑛
𝑠
)/𝑁which is the expected

value [19], where 𝑛
𝑎
is the number of indications related to

drug 𝑎, 𝑛
𝑠
is the number of indications related to drug 𝑠, 𝑛

𝑎𝑠
is

the number of indications shared by drug 𝑎 and drug 𝑠, and
𝑁 is the number of the unions of indications which related to
the drug set𝐷

𝑖
or the drug set𝐷

𝑗
.The higher the AS themore

the same indications shared by the drug set 𝐷
𝑖
of ADR 𝑖 and

the drug set 𝐷
𝑗
of ADR 𝑗. The AS could quantify the extent

of the closeness between the two drug sets.

2.6. Clique Identification. The CFinder software was used
to detect 𝑘-cliques in the ADR-ADR network based on
the Clique Percolation Method (CPM) [20]. A 𝑘-clique is
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Figure 1: A framework for ADR-pathway network construction. Current knowledge was obtained through two data types: drug targets
from DrugBank, PDSP Ki, Matador, and Therapeutic Targets Database, and drug-induced ADRs from the SIDER database. The affected
pathways for each drug were found by inputting targets of the drug into SubpathwayMiner. Then we applied enrichment analysis method
to identify associations between ADRs and pathways based on drug-ADR relations and drug-pathway relations. Finally, we combined these
ADR-pathway associations to construct an ADR-pathway network.

a maximal complete subgraph. In this context, 𝑘 equals 6,
which is defined as the number of nodes in the subgraph.

3. Results and Discussion

In this paper, we reported a large-scale analysis to system-
atically extract and characterize ADR-pathway associations.

We combined clinical phenotypic data, biological pathway
data, and drug-target relations to identify overrepresented
ADR-pathway associations. Effectiveness examination was
performed in the following two ways: firstly, we calculated
how many ADR-pathway associations were identified by our
method and were concurrently found in PubMed records
using a text-mining tool; second, we defined a pathway-based
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Figure 2: The AP network. (a) In the AP network, the blue circles correspond to ADRs, and the red triangles correspond to biological
pathways. An edge is placed between an ADR node and a pathway node when drugs that induced the ADR are significantly enriched in the
set of drugs that perturbed the pathway. (b) The distribution of ADR-pathway interactions in the random AP networks. The 𝑥-axis denotes
the edge number, and the 𝑦-axis is the frequency of the edge numbers in random AP networks (the edge number of the real AP network is
labeled in red arrow). ((c), (d)) The distributions of the average degrees of ADR and pathway nodes in the random AP networks. The red
arrows denote the average degrees of ADR and pathway nodes in real AP network, respectively.

ADR-ADR similarity measure and validated whether this
measure can be used to quantify relation between two ADRs.
Then, an ADR-pathway network and an ADR-ADR network
were constructed, and network analysis on biology and
pharmacology was applied to effectively and systematically
understand the mechanisms of ADRs.

3.1. Construction of the ADR-Pathway Network. To system-
atically identify pathways that were associated with ADRs,
we integrated ADR data for marketed drugs from the SIDER
database with enriched biological pathways by drug tar-
gets (see Section 2). Initially, human targets and off-targets
for 3,142 drugs were utilized to identify the statistically
significant drug-perturbed pathways. After removing drugs
without significantly enriched pathways, we used the 572
drugs with 1,267 ADRs and 194 pathways to find associations
between ADRs and pathways (see Supplementary Figure S1
for histograms in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/670949). An ADR was asso-
ciated with a pathway, when the drugs causing the ADR
significantly overlapped with the drugs that affected the
pathway (𝑃 ≤ 0.01) and when the number of common drugs

that were shared by the ADR and the pathway was more
than 10. Finally, we obtained 1,694ADR-pathway associations
covering 284 ADRs and 101 pathways (see Supplementary
Dataset S1). Based on these associations, an ADR-pathway
(AP) network was constructed (see Figure 2(a)).

3.2. Properties of the ADR-Pathway Network. Randomization
tests were performed to evaluate whether the AP network
was generated randomly. We permuted the relations between
drugs and ADRs 1,000 times randomly, while keeping the
degree of each node unchanged.The edges in the AP network
were significantly denser than that in 1000 random networks
(𝑃 < 0.001, Figure 2(b)), and the average degrees of ADR and
pathway nodes in the AP network were significantly higher
than that of 1000 random networks (𝑃 < 0.001, Figures
2(c) and 2(d)). These results reflected that the connections
between ADRs and pathways had biological significance,
instead of random connections.

We calculated the degree of every ADR node, which was
the number of pathways that were linked to the ADR node
under investigation (see Figure 3(a)). Anemia and dyspnea
were the highest degree ADR nodes, which were associated



BioMed Research International 5

0 5 10 15 20 25 35 40 45

10

20

30

40

50

60

70

0
30

ADR (deg)

Th
e n

um
be

r o
f A

D
Rs

(a)

Rare Infrequent Frequent

(d
eg

)

0

5

10

15

20

25

30

35

40

P = 9.5268e − 04

P = 0.0027

(b)

0
0

10 20 30 40 50 60 70 80 90 100

1
2
3
4
5
6
7
8
9

10

Pathway (deg)

Th
e n

um
be

r o
f p

at
hw

ay
s

(c)

Figure 3:The properties of the AP network. (a) Degree distribution of the ADRs. (b)The box plot for ADR degrees in 3 frequency categories.
(c) Degree distribution of the pathways.

with the most pathways (degree = 40). Many drugs eliciting
these ADRs were antineoplastic agents, which can affect
many tissues including the heart and lung [21, 22]. 78% of
all the ADR nodes were linked to more than one pathway,
implying that many ADRs were the compositive outcome
of the alteration of multiple biological pathways. Then, we
focused on the difference in the degrees of three ADR
groups (rare, infrequent, and frequent ADRs), which was
illustrated in Figure 3(b). The degrees of the rare ADRs,
infrequent ADRs, and frequent ADRs were compared using
the Kruskal-Wallis test. The degrees of these ADR classes
were significantly different (𝑃 = 0.0033). Furthermore, we
used the Wilcoxon rank-sum test to compare the degrees
of frequent ADRs with the degrees of infrequent ADRs and
rare ADRs, respectively. As a result, the degrees of frequent
ADRs were significantly higher than that of infrequent ADRs
(𝑃 = 0.0027) and that of rare ADRs (𝑃 = 9.5268 × 10−4). This
statistical result indicated that frequent ADRs were linked
to more pathways than infrequent ADRs and rare ADRs.
Similarly, we calculated the degree of every pathway node in
the AP network, which was the number of ADRs that were
linked to the pathway under investigation (see Figure 3(c)).

The linoleic acid metabolism and gap junction pathways
were associated with most ADRs (degree = 94). 90% of
all the pathway nodes were associated with more than one
ADR, implying the disturbance of most pathways induced
concurrency of multiple ADRs. Additionally, the degree
distributions of ADR and pathway nodes in the AP network
both followed power-law distributions with 𝑃 = 0.8608
and 𝑃 = 0.7956, respectively (using igraph package in
𝑅). This implied that the AP network displayed scale-free
characteristics.

The inferred ADR-pathways associations can be used
to interpret an observed drug-ADR pair through searching
pathways that were associatedwith theADR among pathways
affected by the drug. To quantify the contributions of pathway
categories to ADR etiology, we classified all relevant pathways
into six categories according to the KEGG database. For each
pathway category, we searched the members of this pathway
category among the drug-affected pathways that can interpret
a drug-ADR pair (see Figure 4(a)). We found that environ-
mental information processing (EIP) contributedmost to the
observed 284 ADRs in the AP network (see Figure 4(b)).This
maymirror that a large number of different drugs affected EIP
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Figure 4: Drug-ADR pairs interpreted by pathway categories. (a) For this given drug, two of three drug-ADR pairs can be interpreted by
the identified ADR-pathway associations. If we concerned only one pathway category, then only a drug-ADR pair was interpreted. (b) The
contributions of any pathway and each pathway category to ADRs were quantified. Only 284 ADRs in the AP network were investigated.

pathways, and the number of known targets for these drugs is
high. EIP pathways respond to external environment stimuli
and internal environment changes for maintaining cellular
homeostasis. Therefore, ADRs perhaps are caused by the
alteration of EIP pathways. Recently, Ji et al. predicted drug
effects based on the change atmidstage of signal transduction
[23].

3.3. Evaluation Result. We investigated the relevant scientific
literature to validate the inferred ADR-pathway associations.
Firstly, each of all the ADRs in the AP network was used as
a query. In order to insure that the ADR was mentioned in
abstracts or titles, the “[abstract/title]” qualifier was applied
in the PubMed search. Second, because pathway terms are
noun phrases, it is not easy to detect pathway terms in the
literature through a simple exact string match. We extracted
pathway terms using a text-mining tool PathNERwhich used
soft dictionary matching and rules to identify pathway terms
in the literature [24]. Of 1,694 ADR-pathway associations
identified by our method, 727 were found in the text-mining
results.

To further validate the inferred ADR-pathway associa-
tions, we proposed a pathway-based ADR-ADR similarity
measure method using hypergeometric enrichment. Namely,
two ADRs were similar when the pathways that were asso-
ciated with the two ADRs significantly overlapped based on
hypergeometric test (𝑃 ≤ 0.01). To examine the ability of
the pathway-based ADR-ADR similarity measure to quantify
ADR relations, we calculated the closeness between drug sets
of two ADRs (see Section 2).The background set was defined
as the drug sets of two dissimilarADRs.We found that similar
ADR pairs’ drug sets significantly shared more indications
than the background set (𝑃 = 1.8261×10−57, Wilcoxon rank-
sum test). This result indicated drug sets of similar ADRs
were closer than that of dissimilar ADRs, implying that our
method can link similar ADRs to one pathway.Therefore, our
method can efficiently identify the relations between ADRs
and pathways.

3.4. Case Study: Heart Failure-Associated Pathways. Heart
failure (HF) is a condition in which the heart is unable

to pump out sufficient blood to meet the need of the
body. The features of HF are systolic/diastolic dysfunction
and impaired electrical conduction [25]. Upon the seven
identified HF-associated pathways, we can understand the
molecular mechanisms of HF. It was proposed that HF was
likely caused in the following three routes (see Figure 5). (1)
Direct interactions with proteins like p53, TNF, IL-1, IL-3,
or other proteins caused apoptosis, which was a hallmark of
etiologies of HF [26]. (2) Activation ofMAPK signaling path-
way by undesired interactions with proteins like FGF, ERK,
and JNK caused HF through regulating cardiac remodeling,
cardiomyocyte apoptosis, and cardiac hypertrophy [27–29].
(3)Gating properties of gap junction can be changed by active
mitogen-activating protein (MAP) kinase and c-Src, which
can cause conductance decrease [25, 30]. Altered Ca2+-
release channel levels via protein IP3R in gap junction may
be responsible for defects in Ca2+ homeostasis, which was
implicated in HF [31]. Besides, pathways including bladder
cancer, colorectal cancer, toxoplasmosis, and epithelial cell
signaling in helicobacter pylori infection were connected
to the MAPK signaling pathway and apoptosis and were
associated with HF.

3.5. Constructing the ADR-ADR Network. To better under-
stand the mechanisms of ADRs, we constructed an ADR-
ADR (AA) network inwhich twoADRnodes were connected
if they were similar according to the pathway-based ADR-
ADR similarity measure. The AA network contained 273
ADRs and 3,241 interactions (see Figure 6(a) and Supplemen-
tary Dataset S2). The average interaction number per ADR
was 23.7.The characteristic path length, which was defined as
the average number of links in the shortest path between two
nodes, was 2.637.The result showed that the AA network was
tightly connected. The degree distribution of ADRs followed
a power-law distribution with 𝑃 = 0.9617 (using igraph
package in 𝑅). Like many other known biological networks,
the AA network also showed scale-free characteristics.

Medical Dictionary for Regulatory Activities (MedDRA)
is a standardizedmedical terminology that is used for adverse
event reporting in the USA, European Union, and Japan [32].
MedDRA possesses a hierarchy structure that contains five
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levels. We obtained the top level system organ class (SOC)
for ADRs. To analyze interacting ADR classes from a global
view, we investigated the interaction frequency between any
two SOCs in the AA network. For an ADR of one SOC (e.g.,
“hepatobiliary disorders”), we calculated the number of the
ADR’s neighborhoods which belonged to another SOC (e.g.,
“eye disorders”). The calculation procedure was repeated
for all the ADRs in the SOC “hepatobiliary disorders”
and the corresponding numbers were summed to gain the
interaction frequency between “hepatobiliary disorders” and
“eye disorders.” In this manner, we obtained the interaction
frequency between any two SOCs for 23 SOCs involved in
the AA network. Here, only one ADR “SGOT increased” in
the AA network was an element of the SOC “investigations,”
and the degree of the ADR equals 1. Hence, this SOC whose
interaction frequency is 1 is excluded. Finally, for one SOC
we calculated the fraction of interaction frequency between
the SOC and each of the 22 SOCs normalized by total
amount of the SOC’s interaction frequency.The outcome was
visualized in Figure 6(b). We found that only the three SOCs
had high interaction frequency with themselves, particularly
“gastrointestinal disorders,” “nervous system disorders,” and

“respiratory, thoracic and mediastinal disorders.” Most SOCs
(19/22) frequently interacted with other SOCs rather than
themselves. Interactions between SOCs were promiscuous. It
suggested that the perturbation of the pathways by drugsmay
affect various organs rather than a particular organ, which
was consistent with the previous study [4]. Such a result
also supported the effective performance of our method in
identifying the associations between ADRs and pathways.
Furthermore, interaction frequencies with all SOCs were
different for one SOC. Except “pregnancy, puerperium and
perinatal conditions” and “respiratory, thoracic and medi-
astinal disorders,” the remaining 20 SOCs interacted with
“gastrointestinal disorders” or “nervous system disorders”
more frequently than other SOCs, with 12 SOCs that inter-
acted frequently with “gastrointestinal disorders” and 8 SOCs
that interacted frequently with “nervous system disorders.”
This analysis has provided useful information. When an
ADR in one organ was observed, gastrointestinal organs and
the nervous system were most likely affected. For example,
“psychiatric disorders” frequently interacted with “nervous
system disorders” which was consistent with the previous
research [33]. Simultaneously, “nervous system disorders”
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Table 1:The cliqueswith at least half ofADRs sharing the same SOC.

Clique r Common SOC
Clique 17 0.83 Skin and subcutaneous tissue
Clique 18 0.83 Skin and subcutaneous tissue
Clique 21 0.66 Skin and subcutaneous tissue
Clique 22 0.66 Skin and subcutaneous tissue
Clique 10 0.5 Blood and lymphatic system
Clique 11 0.5 Blood and lymphatic system
Clique 26 0.5 Infections and infestations

Clique 27 0.5 Respiratory, thoracic and mediastinal
disorders

𝑟 is the percentage of the ADRs belonging to one SOC in a clique.

interacted with “psychiatric disorders” more frequently than
other SOCs. This result showed that ADRs from these two
organs were likely to be cooccurring terms.

Finally, we used CFinder [20] to mine the cliques in the
AA network (as shown in Supplementary Table S1). All ADRs
in one clique were fully connected with each other. Any
two connected ADRs significantly shared the same pathways
according to themethod of constructing theAAnetwork. For
example, ADR clique 20, which was shown in Figure 6(c),
shared three pathways: the leishmaniasis pathway, Chagas
disease pathway, and small cell lung cancer pathway. Subse-
quently, we considered the SOC distribution in ADR cliques.
To this end, we calculated the number of SOCs in each clique,
which spanned a range from 4 to 8. Then, for each SOC in
one clique, wemeasured the percentage of ADRs belonging to
the SOC. The ADR cliques with percentages ≥0.5 were listed
in Table 1, where the largest percentage was 0.83. This result
indicated that there was none of ADR clique, in which all
the ADRs belonged to the same SOC. In other words, all of
the ADR cliques were heterogeneous. Therefore, SOCs were
distributed promiscuously in all the cliques, implying that the
change in common pathways can cause unwanted phenotypic
effects in different system organs. We further supported the
above result that drug perturbation to a certain pathway may
affect multiple organs instead of one particular organ.

3.6. Discussion. It is worth noting that our work can only
identify pathways that are affected by a certain amount of
drugs. If a pathway is affected by a very few drugs, then it is
unable to associate observed ADRs with this pathway. How-
ever, this will be alleviated through completing drug-target
relations. With the development of cheminformatics, more
precise associations between ADRs and biological pathways
will be identified. Another limitation is that examination
in vivo of novel predicted ADR-pathway associations needs
further investigation.

In this study, we proposed a new concept to identify the
ADR-pathway associations using enrichment analysis based
on multilevel relation. Compared with previous works, our
method used existing drug-target relations. Therefore, our
results do not depend on the selection and accuracy of various
drug-target prediction algorithms or require structural infor-
mation concerning compounds and proteins. Additionally,

the network analysis method was used to systematically
analyze ADR-pathway associations. The results showed that
ADR-related pathways were valuable resources in elucidation
of the mechanisms of ADRs and investigation of the concur-
rence of ADRs.

4. Conclusions

The inferred ADR-pathway relations can be used to elu-
cidate the mechanisms of drug side effects. To this end,
we used hypergeometric test, which is a typical method
for measuring the significance of the associations between
two variables, to identify ADR-pathway associations. We
evaluated the performance of the method by using a text-
mining tool to obtain cooccurring pathway terms with
ADRs and defining a pathway-based ADR-ADR similarity
measure. The results suggested that our method can be
efficient for identifying associations between ADRs and
pathways. Then, we constructed the ADR-pathway network
based on the identified ADR-pathway associations. This
network contributes to the investigation of drug-activated
biological pathways that regulate phenotypic changes in cells.
For example, the pathogenesis of heart failure was likely
attributed to three routes: apoptosis, gap junction, andMAPK
signaling pathway. Topological property analysis revealed
that, on the one hand, disturbance of most pathways led to
concurrency of multiple ADRs and, on the other hand, many
ADRs were caused through synthetically affecting multiple
biological pathways. We also found that the degrees among
the rare ADRs, infrequent ADRs, and frequent ADRs were
significantly different. Frequent ADRs were associated with
more pathways than rare and infrequent ADRs. To uncover
the reasons for this phenomenon, we calculated the number
of all drugs causing one ADR and the number of total
targets of these drugs. Although frequency of one ADR is
defined as the percentage of patients reporting the ADR
after taking drug rather than the number of drugs with the
ADR, we found that frequent ADRs were linked to more
drugs and drug sets eliciting frequent ADRs were linked to
more targets. We further investigated the contributions of
pathway categories to ADR etiology. The results showed that
EIP contributed most to the observed ADRs. Subsequently,
an AA network was generated according to the pathway-
based ADR-ADR similarity measure. After accessing the
interaction frequency between any two SOCs, we found that
SOCs frequently interacted with other SOCs rather than
themselves, indicating that perturbation to a certain pathway
may affect multiple system organs instead of one specific
organ. It was further supported by investigating the SOC
distribution in all the ADR cliques. These results can provide
references for side effect assessment in drug design. When
an ADR in one SOC presented after drug administration,
the biological characteristics of the organs that frequently
interacted with the SOC should be investigated. Finally,
there is a new speculation concerning ADR cliques. ADRs
in one clique shared the same pathway according to the
construction method of the AA network. Then, after drug
treatment, the corresponding pathway was affected by this
drug. The ADRs in the same clique likely cooccurred.
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For example, for ADR clique 20, patients with rheumatoid
arthritis experienced adverse events, including dyspepsia,
pneumonia, and gastroenteritis after Tacrolimus treatment
[34]. Additionally, patients with hepatitis had proteinuria
and hyperkalemia complications [35].The cross talk between
ADRs was established via their common pathways. The AA
network and ADR cliques may be used to elucidate the
concurrence of ADRs. Therefore, it would provide an entry
point for investigating ADR relations through recognition
of common pathways. In conclusion, this ADR and pathway
study provides a global and powerful approach to discuss the
molecular mechanisms of ADRs.
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