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Abstract
This first-in-dog study evaluates the use of the PET-radioligand [11C]DASB to image the

density and availability of the serotonin transporter (SERT) in the canine brain. Imaging the

serotonergic system could improve diagnosis and therapy of multiple canine behavioural dis-

orders. Furthermore, as many similarities are reported between several human neuropsychi-

atric conditions and naturally occurring canine behavioural disorders, making this tracer

available for use in dogs also provide researchers an interesting non-primate animal model to

investigate human disorders. Five adult beagles underwent a 90minutes dynamic PET scan

and arterial whole blood was sampled throughout the scan. For each ROI, the distribution vol-

ume (VT), obtained via the one- and two- tissue compartment model (1-TC, 2-TC) and the

Logan Plot, was calculated and the goodness-of-fit was evaluated by the Akaike Information

Criterion (AIC). For the preferred compartmental model BPND values were estimated and

compared with those derived by four reference tissue models: 4-parameter RTM, SRTM2,

MRTM2 and the Logan reference tissue model. The 2-TCmodel indicated in 61% of the ROIs

a better fit compared to the 1-TCmodel. The Logan plot produced almost identical VT values

and can be used as an alternative. Compared with the 2-TCmodel, all investigated reference

tissue models showed high correlations but small underestimations of the BPND-parameter.

The highest correlation was achieved with the Logan reference tissue model (Y = 0.9266 x +

0.0257; R2 = 0.9722). Therefore, this model can be put forward as a non-invasive standard

model for future PET-experiments with [11C]DASB in dogs.

Introduction
The serotonin transporter (SERT) is a plasma membrane transporter that belongs to the neuro-
transmitter sodium symporter (NSS) family. By using the energy stored in the transmembrane
ion gradients of Na+, Cl- and K+, it selectively transports extracellular serotonin from the
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synaptic cleft back into the presynaptic nerve terminals. Thereby SERT terminates the neuro-
transmission at extracellular receptor sites and makes it available for recycling into new synap-
tic vesicles [1–3].

Alterations in brain SERT density and availability are reported to be involved in both the
pathophysiology and treatment of a variety of pathological and neurological disorders such as
major depressive disorder[4], obsessive compulsive disorder[5], social phobia [6,7], Parkin-
son’s disease [8] and Alzheimer’s disease [9]. Intense research during the past decades to image
this transporter with positron emission tomography (PET) points out that the radiotracer
[11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile or [11C]DASB, intro-
duced in 2000 by Wilson and co-workers [10], can be considered as an appropriate candidate.
This tracer combines several major prerequisites, such as a high affinity (Ki 1.1 nM), an excel-
lent selectivity (NET/SERT 1230—DAT/SERT 1300), a high specific to nonspecific binding
ratio, a reversible high brain uptake and a binding equilibrium within a reasonable time frame.
[10,11]

Up to now, [11C]DASB has been extensively used in rodents [12–14], pigs [15], cats [16],
non-human primates [13,17,18], and humans [19–21], but despite the potential added value,
this tracer has never been used in dogs. Imaging the serotonin transporter, or the serotonergic
system in general, could improve diagnosis and therapy of canine behavioural disorders that
may have an impact on the daily life of the human society. Furthermore, naturally occurring
canine behavioural and human neuropsychiatric disorders, such as anxiety [22], aggressive
[23] and compulsive [24,25] disorders, share many similarities which ensures that dogs repre-
sent a more practical and available alternative to other laboratory animals such as rodents or
nonhuman primates.

The aim of this study is to present an evaluation of the [11C]DASB PET data obtained in
beagles, where different standard kinetic models for quantification were assessed using a
metabolite corrected arterial plasma input function. Furthermore, to evaluate whether or not
invasive blood sampling can be excluded in the future, the validity of several reference tissue
models was also investigated.

Materials and Methods

Experimental animals
The study was approved by the Ethical Committee of Ghent University (EC approval 2013/133).
Five (four male, one female) healthy adult laboratory beagles (age 6 ± 2 years, weight 20 ± 10 kg,
Marshall farms) were included in this study. All scans were performed between October 10, 2013
and January 30, 2014. Dogs were housed as pairs in kennels of 2.6 m2 and had unlimited access
to water. The dogs were fasted for at least 12 hours before the PET/CT scan. They were sedated
with an i.m. injection of dexmedetomidine (375 μg/m2 body surface area, Dexdomitor1,
Orion Corporation, Espoo, Finland), transported to the PET-center of the Ghent University hos-
pital and placed on the bed of the PET/CT scanner (sternal recumbency with the front limbs
extended caudally). To induce general anesthesia with propofol (2–3 mg/kg, depending on
response, Propovet1, Abbott Laboratories, Queenborough, UK), a 22G venous catheter was
placed in one of the cephalic veins. Thereafter, anesthesia was maintained with a mixture of
1.2–1.4% isolurane (Isoflo1, Abbott Laboratories) in oxygen using a rebreathing system. A 22G
arterial catheter was placed in one of the arteries dorsalis pedis to perform arterial blood sam-
pling. Continuous monitoring of body temperature and cardiorespiratory functions by pulse
oximetry and capnography was performed during and after anesthesia until the animals were
fully awake. After completion of the study protocol the beagles were kept alive and made avail-
able for future research.
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Radiosynthesis
The serotonin transporter ligand [11C]DASB was synthesized by N-methylation of the precur-
sor N-desmethyl-DASB (50 μg, ABX, Radeberg, Germany) with [11C]methyl triflate using
established methods. [26] This resulted in moderate to high activities of 2405 ± 1406 MBq and
high radiochemical purities of more than 99%. The specific radioactivities measured with ana-
lytical HPLC were 74 ± 50 GBq/μmol at the end of synthesis and 43 ± 34 GBq/μmol at the time
of tracer injection. As all beagles were injected with a dose of 289 ± 60 MBq, the SERT occu-
pancy, calculated via the method of Hume and colleagues (1998) and using the mean ED50

value of 56 nmol/kg, was 1.09 ± 0.88% [12,27].

[11C]DASB PET/CT scanning protocol
All dogs were scanned with a Gemini PET/CT imaging system (Philips Co., Eindhoven, The
Netherlands), which consists of a gadolinium oxyorthosilicate full-ring PET scanner with 5
mm in-plane spatial resolution. After conducting a low dose CT survey (16-slice helical scan,
120 kV, 30 mA, FOV 600 mm, 0.5 s rotation time, pitch of 0.9, collimation 16 x 1.5 mm) for
attenuation correction, dynamic emission recordings in list mode were initiated on bolus injec-
tion of 289 ± 60 MBq [11C]DASB. Emission data were reconstructed as 34 successive frames of
increasing duration (6 x 10, 8 x 30, 5 x 120, 15 x 300 s) using the iterative 3D-RAMLA (Row
Action Maximum Likelihood Algorithm) algorithm provided by Philips and the resulting
voxel size of the images was 1x1x1 mm3. During the 90 minutes PET scan, arterial whole blood
samples (1–2 mL) were taken manually into heparinized syringes at several time points with
increasing intervals (15, 30 and 45 seconds, 1.25, 1.5, 1.75, 2, 2.5, 5, 10, 12 and 20 minutes, and
every ten minutes thereafter) and collected in K3EDTA tubes. After centrifugation of the blood
samples (5 min, 5200 rpm), the plasma fraction was separated from the blood cells and the
plasma activity was measured using a calibrated 3x3 inch NaI(Tl) scintillation detector (Can-
berra, Meriden, Connecticut, USA). For each dog, the parent compound fraction was measured
at 4–9 time points using a validated solid phase extraction (SPE) procedure.[19] OASIS HLB
Plus cartridges (225 mg, 60 μm, Waters Corporation, Milford, MA, U.S.A) were prewashed
with consecutively 5 mL of each tetrahydrofuran (THF), ethanol, and water. After applying the
plasma sample on the cartridge, the cartridge was washed with successively 5 mL 5% methanol
(MeOH) in water, 5 mL 22% acetonitrile (CH3CN) in water containing 0.1 N ammonium for-
mate, and 5 mL THF. The ratio of the activity in the THF fraction to the total activity was
determined and equals the fraction of plasma radioactivity representing unchanged [11C]
DASB.

Regions of interest
Prior to the day of the PET-scan, each dog underwent a series of 3D high resolution
T1-weighted anatomical images (3D MPRAGE sequence, 176 sagital slices, TR = 2250 ms,
TE = 4.18 ms, TI = 900 ms, parallel acquisition method = GRAPPA with acceleration factor = 2,
matrix size = 256 x 256, FOV = 220 mm, flip angle = 8°, voxel size = 1 x 1 x 1 mm3), obtained
on a 3T Magnetom Trio Tim System MRI scanner (Siemens Medical Systems, Erlangen, Ger-
many) using a phased-array spine coil and a phased-array body matrix coil. In order to provide
anatomical information, these images were subsequently coregistered with the PET image
using the PMOD software version 3.0 (PMOD Technologies Ltd., Zurich, Switzerland). Based
on two dog brain atlases [28,29], 18 regions of interest (ROIs) were manually delineated on
dorsal planes: anterior cingulate gyrus, basal ganglia left, basal ganglia right, cerebellar cortex
(vermis excluded), frontal cortex left, frontal cortex right, hippocampus left, hippocampus
right, occipital cortex left, occipital cortex right, parietal cortex left, parietal cortex right,
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posterior cingulate gyrus, brainstem region containing the raphe nuclei, temporal cortex left,
temporal cortex right, thalamus left and thalamus right. Within the cortex only grey matter
was included. For each ROI a time-activity curve was calculated in PMOD by determining the
radioactivity concentration for each frame, correcting it for decay, and plotting it versus time.

PET-data quantification
All kinetic modeling was performed with PMOD’s Kinetic Tool (version 3.405) and compari-
sons between the models were done according to a commonly used methodology.[30] The vol-
ume of distribution (VT), representing the ratio of the concentration of radiotracer in a
particular ROI to the concentration in plasma at equilibrium, and related standard error coeffi-
cients of variation (COV), were calculated for each ROI based on two standard full kinetic
compartmental models, the single- and two-tissue compartment (1-TC and 2-TC) model
[31,32], and a graphical analysis technique, the Logan plot [33]. The derivations, at equilib-
rium, of the relationship between the rate constants and VT can be calculated as follows [34]:

1-TC model:

VT ¼ K1

k2
ð1Þ

2-TC model:

VT ¼ K1

k2
ð1þ k3

k4
Þ ð2Þ

For both standard compartmental models the brain activity was corrected for the contribu-
tion of plasma activity assuming a cerebral blood volume in the regions of interest fixed at 0.05
mL/cm3 [35]. The goodness-of-fit was evaluated using the Akaike Information Criterion (AIC)
[36], whereby lower AIC values indicate a better fit and a penalty was given for increasing the
number of parameters in the model.

In order to validate the use of a reference tissue model for future PET-experiments with
[11C]DASB, binding potentials were estimated for the preferred compartmental model and sev-
eral reference tissue models. The binding potential (BPND) refers to the ratio at equilibrium of
specifically bound radioligand to that of nondisplaceable radioligand in tissue [34] and there-
fore requires the presence of a region devoid of receptors (i.e., reference region). For PET stud-
ies with [11C]DASB, the cerebellum has been put forward over the years as the reference region
of choice, but still contains a considerable displaceable fraction. Notwithstanding this, an auto-
radiography study with [3H]cyanoimipramine, stated that the specific SERT binding is much
higher in the cerebellar vermis (8.4 fmol/mg) compared with the cerebellar gray matter (1.25
fmol/mg). [37] Therefore we adapted the recommendation of Meyer [38] to include the poste-
rior half of the cerebellar cortex in the delineation of the ROI, thereby excluding the vermis
and keeping distance from white matter, venous sinuses and the occipital cortex. For the pre-
ferred compartmental model BPND can be calculated as:

BPND ¼ ðVT � VNDÞ
VND

¼ VT

Vref

� 1 ð3Þ

Four reference tissue models were included in the study: the 4-parameter reference tissue
model (RTM)[39], the two-steps simplified reference tissue model (SRTM2)[40,41], the
2-parameter multilinear reference tissue model (MRTM2)[42] and the Logan reference tissue
model [43]. For all these models, the degree to which they could reproduce the BPND values
observed using the 2-TC model was investigated. Thereby, the BPND and COV was calculated
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for each ROI using a fixed k2’ value representing the tissue clearance rate from the reference
region. For MRTM2, MRTM [31,42] was used to calculate k2’ and for SRTM2 and the Logan
reference tissue model, SRTM [31,40] was used to calculate k2’. In both cases, a fixed k2’ was
determined as the mean value of five high binding regions: raphe nuclei, thalamus left, thala-
mus right, basal ganglia left and basal ganglia right. For comparison between the reference tis-
sue models and the preferred compartmental model only fits with a COV smaller than 25%
were taken into account.

Statistical analysis
Statistical analysis was performed using IBM SPSS Statistics version 22 (New York, US),
whereby results are considered statistically significant if the p-value is under .05.

Results

Plasma analysis
During the first minutes after tracer injection, the fraction of unmetabolized [11C]DASB in
arterial plasma rapidly declined to 53 ± 3% at 5 minutes. Thereafter the rate of metabolism
continuously decreased (Fig 1A). Because of less accurate count statistics at later time points in
three of the dogs, mean values at each time-point were used to set up the curve. A Hill-type
function (Eq 4) could be fitted to the fraction of parent radiotracer (fparent) in order to subse-
quently enable estimation of the metabolite corrected plasma input functions.

fparentðtÞ ¼ 1� 0:93 t0:34

t0:34 þ 7:51

� �
with t representing time; expressed in seconds ð4Þ

The tail of these plasma input functions could be, in turn, fitted individually using a bi-
exponential function, which resulted in excellent fits (Fig 1B). Arterial plasma activity concen-
tration reached a peak within the first minute and was then followed by a rapid distribution
phase. Subsequently, the rate of decrease of radioactivity in plasma significantly diminished
towards a half-life of over 45 minutes in every laboratory beagle.

Brain analysis
Dynamic [11C]DASB PET images revealed an in vivo distribution consistent with the known dis-
tribution of SERT sites in other species, thereby observing high radioactivity levels in the raphe
nuclei and thalamus, intermediate levels in the hippocampus and basal ganglia and lower levels
in the cortical regions and the anterior and posterior cingulate gyri (Figs 2 and 3). Provided that
the vermis was excluded, lowest radioactivity levels were observed in the cerebellar cortex.

Kinetic analysis
For all ROIs observed, VT values (mean ± SD), obtained with the 1-TC and 2-TC model, gave
maximum COV of respectively 4.40% and 6.24% and were significantly different from each
other (paired sample t-test, two-tailed p-value = 0.00004). The 2-TC model showed superior
fitting compared to the 1-TC as judged by lower AIC values in 61% of the observed brain
regions (Table 1). Especially for the regions with high (raphe nuclei and thalamus) and inter-
mediate (hippocampus and basal ganglia) SERT densities, the 2-TC model was preferred in
89% of the cases. Plotting BPND values obtained with 1-TC versus these obtained with 2-TC
(Fig 4A), indicates small underestimations with the 1-TC model. However, the results are
highly correlated with a Pearson product moment correlation coefficient (R2) of 0.9976.
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Maximum COV for the VT values calculated with the Logan plot was 1.98% and no relevant
under- or overestimations were observed in any of the ROIs. The results demonstrated a strong
correlation with those obtained via the 2-TC model, which was represented by the mean ratio
between estimates outputs of 0.99. Fixing the starting point for linearization to the highest
value observed across all ROIs, 24.83 min, had no significant effect on the outcomes (paired t-
test, two-tailed p-value = 0.668).

In order to investigate the degree to which a reference tissue model could reproduce the
observed BPND values using the 2-TC model, BPND values were calculated with the 4-parame-
ter RTM, SRTM2, MRTM2, and the Logan reference tissue model (start time for the lineariza-
tion as a free variable or fixed at 24.83 min), thereby using the cerebellar cortex (vermis
excluded) as a reference region. Fitted values with a COV< 25% were plotted against the cor-
responding ones obtained with the preferred 2-TC model (Fig 4B–4F). The 4 parameter refer-
ence tissue model reached convergence in 80 of 85 regions, although it was the model with the
highest sensitivity to noisy data as 21 of the remaining regions show COV> 25%. The SRTM2

Fig 1. (A) Time course for the percentage of radioactivity in plasma (mean ± SD) corresponding to
unchanged [11C]DASB–(B) A representative metabolite corrected plasma inputfunction.

doi:10.1371/journal.pone.0148943.g001

Fig 2. Distribution of [11C]DASB in the canine brain: dorsal and sagital sections of a summed PET-
image, fused with MRI. Regions of interest delineated on the image: 1. Frontal cortex right – 2. Frontal
cortex left – 3. Temporal cortex right – 4. Temporal cortex left – 5. Occipital cortex right – 6. Occipital cortex
left – 7. Basal ganglia right – 8. Basal ganglia left – 9. Thalamus right – 10. Thalamus left – 11. Hippocampus
right – 12. Hippocampus left – 13. Region in brainstem containing raphe nuclei – 14. Cerebellar cortex,
vermis excluded – 15. Anterior cingulate gyrus – 16. Posterior cingulate gyrus.

doi:10.1371/journal.pone.0148943.g002
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and MRTM2 model both failed to reach convergence in only 4 regions and had acceptable fits
(COV< 25%) in respectively 77 and 78 regions. As three fits with MRTM failed to have
COV< 25% for calculation of k2’ values, these regions were excluded in the calculation of the
fixed k2’ value to use with MRTM2. For the Logan reference tissue model convergence was
reached in 80 regions and all had acceptable fits, independently from the start time for lineari-
zation fixed to 24.83 min or not.

Compared with the 2-TC model, all investigated reference tissue models show small, but
significant (One way repeated measures ANOVA, Pairwise comparisons with Bonferroni cor-
rection, p-values� 0.026) underestimations of BPND, ranging from 4.1% to 5.6%. However all
data were highly correlated, stated by R² values ranging from 0.9581 (4-parameter RTM) to
0.9722 (Logan). The best correlation was achieved with the Logan reference tissue model, leav-
ing the time from which the regression was computed as a free variable (Y = 0.9266 x + 0.0257;
R² = 0.9722).

Discussion
To our best knowledge, this is the first in-dog study that investigates the kinetic properties of
the radiotracer [11C]DASB in the canine brain and validates the use of several reference tissue
models as a noninvasive alternative to standard compartmental modeling.

After tracer injection, [11C]DASB revealed a regional distribution pattern in the canine
brain which was consistent with the one observed in humans, non-human primates, cats and
rodents. As also observed in humans [44], radioactivity peaked earlier in the low binding
regions (10–20 min) than in the high binding regions (27–37 min). Despite the previously
reported high brain uptake of [11C]DASB in the hypothalamus of several species, limited spa-
tial resolution of PET and partial volume effects prevented us from including this region in the
study. The olfactory bulb was also not included in the study due to the complex structure of
blood vessels in this region causing problems with the delineation of this ROI.

According to the Akaike Information Criterion the 2-TC model indicated in 61% of the
ROIs a better fit compared to the 1-TC model, especially for regions with high and intermedi-
ate SERT-densities such as the raphe, the thalamus, the hippocampus and the basal ganglia.
Given the nearly identical VT values derived by the Logan plot analysis, this graphical analysis
model can be used as an alternative to the 2-TC model.

Fig 3. Regional time-activity curvesmeasured after injection of 29 MBq/kg [11C]DASB in a six year
old female beagle.

doi:10.1371/journal.pone.0148943.g003
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Compared to laboratory beagles, PET studies with [11C]DASB in humans [19] or rhesus
monkeys [13] often report a high degree of nonconvergence when an unconstrained 4 parameter
2-TCmodel is used and, in these cases, the 1-TCmodel is put forward as the preferred full kinetic
compartmental model. Despite this, our results are consistent with two published studies with
[11C]DASB in healthy volunteers where, in the one study[45], it was observed that, based on the
AIC, a constrained 2-TC model indicated a better fit in 58% of the examined ROIs, and in the
other study[44] that the 1-TC model did not adequately describe the rising portion of the time-
activity curve. Comparisons with the kinetic analysis approach in other species [13–17] is more
complicated due to a lack of studies that investigated and justified the use of a specific full kinetic
compartmental model or reference tissue model in those particular species.

Table 1. Distribution Volumes (Mean ± SD) and AIC values (Mean) for Single- and Two-Tissue Compartmental Models and the Logan Plot.

1-TC AIC 2-TC AIC Logan Logan (t* =
24,83 min)

Ratio 1-TC/
2-TC

Ratio Logan/
2-TC

Ratio Logan (t* =
24,83 min)/2-TC

Raphe nuclei 3.41
±0.31

49 3.63
±0.46

-22 3.53
±0.41

3.54±0.41 0.94 0.97 0.97

Hippocampus L 2.37
±0.40

52 2.48
±0.48

10 2.44
±0.46

2.44±0.47 0.95 0.98 0.98

Hippocampus R 2.28
±0.18

42 2.38
±0.21

2 2.37
±0.20

2.37±0.22 0.96 1.00 1.00

Thalamus L 3.42
±0.65

53 3.63
±0.76

10 3.49
±0.67

3.49±0.69 0.94 0.96 0.96

Thalamus R 3.34
±0.33

48 3.53
±0.42

2 3.44
±0.38

3.44±0.38 0.95 0.98 0.97

Basal ganglia L 2.81
±0.82

41 2.94
±0.95

6 2.87
±0.85

2.88±0.87 0.96 0.97 0.98

Basal ganglia R 2.69
±0.52

39 2.82
±0.61

-2 2.76
±0.54

2.76±0.55 0.96 0.98 0.98

ACG 1.78
±0.22

56 1.83
±0.26

34 1.80
±0.28

1.80±0.29 0.97 0.98 0.98

PCG 1.58
±0.11

54 1.62
±0.14

38 1.61
±0.19

1.60±0.20 0.97 0.99 0.99

Frontal cortex L 1.87
±0.17

43 1.93
±0.24

14 1.93
±0.26

1.93±0.27 0.96 1.00 1.00

Frontal cortex R 1.88
±0.17

36 1.94
±0.23

5 1.95
±0.24

1.95±0.25 0.97 1.01 1.00

Temporal cortex L 1.64
±0.15

48 1.68
±0.17

32 1.67
±0.19

1.67±0.20 0.98 0.99 0.99

Temporal cortex R 1.62
±0.05

45 1.65
±0.07

28 1.64
±0.09

1.64±0.10 0.98 1.00 0.99

Occipital cortex L 1.36
±0.12

49 1.41
±0.16

37 1.37
±0.18

1.37±0.18 0.97 0.97 0.97

Occipital cortex R 1.36
±0.11

53 1.39
±0.10

39 1.37
±0.16

1.36±0.17 0.98 0.98 0.98

Parietal cortex L 1.54
±0.19

46 1.57
±0.20

29 1.55
±0.17

1.54±0.17 0.98 0.98 0.98

Parietal cortex R 1.49
±0.15

44 1.52
±0.18

26 1.51
±0.20

1.51±0.21 0.98 0.99 0.99

Cerebellar cortex (vermis
excluded)

1.27
±0.10

37 1.29
±0.07

27 1.31
±0.10

1.31±0.10 0.98 1.02 1.01

Mean ratio 0.97 0.99 0.99

L = left, R = right, ACG = anterior cingulate gyrus, PCG = posterior cingulate gyrus

doi:10.1371/journal.pone.0148943.t001
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Conclusion
We found that in the canine brain the [11C]DASB radiotracer follows two-tissue compartment
kinetics. For future experiments invasive arterial blood sampling can be avoided by using one of
the investigated reference tissue models (highest correlation observed with Logan reference tissue
model), however small underestimations of the BPND parameter must be taken into account.
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