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Abstract: Current standard treatment of COVID-19 lacks in effective antiviral options. Plitidepsin,
a cyclic depsipeptide authorized in Australia for patients with refractory multiple myeloma, has
recently emerged as a candidate anti-SARS-CoV-2 agent. The aim of this review was to summarize cur-
rent knowledge on plitidepsin’s clinical profile, anti-tumour and anti-SARS-CoV-2 mechanisms and
correlate this with available or anticipated, preclinical or clinical evidence on the drug’s potential for
COVID-19 treatment.PubMed, Scopus, CENTRAL, clinicaltrials.gov, medRxiv and bioRxiv databases
were searched.Plitidepsinexerts its anti-tumour and antiviral properties primarily through acting
on isoforms of the host cell’s eukaryotic-translation-elongation-factor-1-alpha (eEF1A). Through
inhibiting eEF1A and therefore translation of necessary viral proteins, it behaves as a “host-directed”
anti-SARS-CoV-2 agent. In respect to its potent anti-SARS-CoV-2 properties, the drug has demon-
strated superior ex vivo efficacy compared to other host-directed agents and remdesivir, and it might
retain its antiviral effect against the more transmittable B.1.1.7 variant. Its well-studied safety profile,
also in combination with dexamethasone, may accelerate its repurposing chances for COVID-19
treatment. Preliminary findings in hospitalized COVID-19 patients, have suggested potential safety
and efficacy of plitidepsin, in terms of viral load reduction and clinical resolution. However, the
still incomplete understanding of its exact integration into host cell–SARS-CoV-2 interactions, its
intravenous administration exclusively purposing it for hospital settings the and precocity of clinical
data are currently considered its chief deficits. A phase III trial is being planned to compare the
plitidepsin–dexamethasone regimen to the current standard of care only in moderately affected hos-
pitalized patients. Despite plitidepsin’s preclinical efficacy, current clinical evidence is inadequate for
its registration in COVID-19 patients.Therefore, multicentre trials on the drug’s efficacy, potentially
also studying populations of emerging SARS-CoV-2 lineages, are warranted.
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1. Introduction

As of March 2020, the World Health Organization (WHO) stressed the need for
coordination and direction of global research work towards the development of treatment
strategies for coronavirus disease 2019 (COVID-19) [1]. Subsequently, many large clinical
trials were carried out, aiming to identify and test the safety and effectiveness of potential
therapeutics against the virus [2–6]. Despite the substantial efforts, only a few drugs,
such as dexamethasone (an agent with anti-inflammatory rather than antiviral properties)
and remdesivir, have been associated with a more favourable disease trajectory [2,4,7–9].
Furthermore, a recently published, international randomized trial by the WHO reported
that the most widely proposed drugs have had little or no effect on overall mortality of
hospitalized patients with COVID-19 [10].
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Plitidepsin, a marine cyclic depsipeptide investigated more for its anti-tumour rather
than antiviral activity, lately emerged amongst many other candidates as a new therapeutic
option for COVID-19 [11,12]. In view of accumulating preclinical data and upcoming
clinical trials on patients with COVID-19, we aim to review current knowledge on pli-
tidepsin’sefficacy and safety profiles (also in combination with dexamethasone), illustra-
tively describe its severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-related
action mechanisms and critically discuss its implications for COVID-19 treatment.

2. Materials and Methods

We conducted a comprehensive literature search on plitidepsin, its molecular anti-
tumour or antiviral mechanisms, clinical uses and/or current indications, described toxicity
profile and preclinical and/or (anticipated, ongoing or completed) clinical studies on the
potency and efficacy of the drug against SARS-CoV-2 infection. For this purpose, we
searched the PubMed, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL)
and clinicaltrials.gov databases, as well as relevant preprint servers (medRxiv, bioRxiv) to
also retrieve articles not yet indexed in PubMed. References of the identified articles, along
with relevant information on the drug’s authorization by competent authorities all over
the world, were also extracted. We used two different search algorithms; one to broadly
acquire all current data on plitidepsin (“(plitidepsin OR “plitidepsin” [Supplementary
Concept] OR aplidine OR aplidin OR “dehydrodidemnin B”)”) and another to ensure that
all evidence correlated with SARS-CoV-2 infection was also obtained(“(plitidepsin OR
“plitidepsin” [Supplementary Concept] OR aplidine OR aplidin OR “dehydrodidemnin
B”) AND (“COVID-19” [Mesh] OR COVID-19 OR “Coronavirus disease 19” OR “SARS-
CoV-2” [Mesh] OR SARS-CoV-2 OR “severe acute respiratory syndrome coronavirus 2”)”).
The same algorithms without the Mesh terms were implemented for the databases other
than PubMed.Records were initially retrieved on March 23, 2021. Due to the constantly
accumulating data on investigated antiviral options, the search was updated on April 15,
2021. The search strategy for each database is extensively provided in Supplementary S1.

3. Mechanisms of Action
3.1. Cancer

Plitidepsin is an agent initially studied for its anti-tumour properties (i.e., cell cycle
arrest, apoptosis and growth inhibition) [13]. Its antineoplastic activity emerges not only
from antiproliferative but also from antiangiogenic (i.e., inhibition of vascular endothelial
growth factor secretion) effects [13–16]. The primary intracellular target of plitidepsin
seems to be eukaryotic translation elongation factor 1 alpha 2 (eEF1A2), one of two different
isoforms of eukaryotic translation elongation factor 1 (eEF1A). eEF1A2 is responsible for
the enzymatic delivery of aminoacyl tRNAs to the ribosome, but also has noncanonical
pro-oncogenic activities. Via its inhibition, the drug is engaged in numerous cell actions,
such us regulation of oxidative stress, control of unfolded protein degradation by the
proteasome, heat shock response and actin building and cytoskeleton reorganization [17,18].
Concerning plitidepsin’s impact on the cell cycle, Alonso et al. [19] presented a dual effect
in human melanoma cells, with it being cytostatic at low concentrations and cytotoxic at
higher concentrations.

3.2. SARS-CoV-2

Ex vivo studies of SARS-CoV-2 and pancoronaviral interactomes identified 332 host
proteins interacting with the virus at crucial stages of its life cycle [20,21]. Existent drugs
were investigated as “host-directed agents”, targeting these host proteins [21]. Examples
include ralimetinib (a p38/MAPK inhibitor) and drugs targeting the eukaryotic translation
machinery, like zotatifin (an inhibitor of eukaryotic initiation factor eEIF4A, the partner of
eEIF4H that interacts with SARS-CoV-2 Nsp9), plitidepsin and its molecular derivative,
ternatin-4 (an eEF1A inhibitor) [22,23].



J. Pers. Med. 2021, 11, 668 3 of 10

With regard to plitidepsin, which belongs to the above analysed drug category,
White et al. [23] demonstrated that it possesses antiviral activity against SARS-CoV-2 by
inhibiting the activity of eEF1A. They proved that the expected anti-SARS-CoV-2 activity
of plitidepsin could be mitigated when using a mutated version of eEF1A in 293T cells
(A399V mutation), suggesting the factor as a druggable target [23]. eEF1A is used by
RNA viruses for mRNA translation by being involved in both the enzymatic delivery
of aminoacyl tRNAs to the ribosome and the aminoacylation-dependent tRNA export
pathway [24]. It has also been previously identified as an important host factor for the
replication of the single-stranded RNA influenza virus, respiratory syncytial virus and
certain transmittable coronaviruses [25–28]. In the case of SARS-CoV-2, and through target-
ing eEF1A, plitidepsin inhibits the translation of the open reading frames (ORF) ORF1A
and ORF1B, leading to reduced production of polyproteins (pp) pp1a and pp1ab, hence
conducing to a decreased quantity of replicative non-structural proteins, such as RNA-
dependent-RNA-polymerase [29]. It also inhibits the translation of different subgenomic
mRNAs, resulting in insufficient production of viral structural and accessory proteins [29].
The lack of necessary viral proteins, such as RNA-dependent-RNA-polymerase, as well
as structural proteins simultaneously prevents the virus from generating copies. Figure 1
illustrates the exact mechanism of the drug’s integration into the SARS-CoV-2– host cell
interactions [24,30,31].
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Figure 1. Plitidepsin’s host-directed anti-SARS-CoV-2 action mechanisms.SARS-CoV-2 possesses a single-stranded RNA
(ssRNA) genome. The angiotensin converting enzyme-2 (ACE2) receptor is identified as the cell-surface receptor of
SARS-CoV-2. Specific spike protein interactions with ACE2 receptors promote viral fusion with the cellular membrane.
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After entry, uncoating of the viral genomic RNA is followed by the translation of two large open reading frames (ORF),
ORF1A and ORF1B. The resulting polyproteins, pp1a and pp1ab, are proteolyzed into non-structural proteins (nsps)
that form the viral replication and transcription complex. This complex includes, amongst others, RNA-processing and
RNA-modifying enzymes, such as RNA-dependent-RNA-polymerase, and drives the production of negative-sense RNAs
((−) RNAs). In general, the positive-sense genome can act as messenger RNA (mRNA) and can be directly translated into
viral proteins, whereas negative-sense RNA is converted (via RNA-dependent-RNA-polymerase) into positive-sense RNA
in order to be translated. Genomic RNA contains the necessary RNA regions required for genome replication and translation.
During replication, full-length (−) RNA copies of the genome (genomic (−) RNAs) are used as templates for genomic
(+) RNAs. During transcription, various subgenomic RNAs are produced through discontinuous transcription, where
subgenomic (−) RNAs are synthesized by combining varying lengths of the 3′ end of the genome with the 5′ leader sequence
necessary for translation. Subgenomic (−) RNAs are then transcribed into subgenomic (+) mRNAs. Resulting structural
and accessory viral proteins are combined with genomic (+) RNAs to produce new viral particles, which will be secreted
from the infected pneumonocyte by exocytosis. Through targeting the host cell’s eukaryotic translation elongation factor
(eEF1A), plitidepsin inhibits the host-mediated translation of ORF1A, ORF1B and subgenomic mRNAs, leading to decreased
production of viral pp1a and pp1ab andnsps, including RNA-dependent-RNA-polymerase, as well as structural and
accessory proteins. Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; ssRNA, single-stranded
RNA; ACE2, angiotensin converting enzyme-2; ORF, open reading frame; mRNA, messenger ribonucleic acid; tRNA,
transfer ribonucleic acid; eEF1A, eukaryotic translation elongation factor 1; GTP, guanosine triphosphate; pp, polyprotein.

4. Current Uses and Authorization
4.1. Multiple Myeloma (MM)

To date, relapsed/refractory MM constitutes the main indication for plitidepsin’s use.
Preclinical evidence has suggested that the drug has both in vivo and in vitro anti-MM
properties [32]. This activity of plitidepsin was further investigated by clinical trials, solely
or in combination with established anti-MM agents, including dexamethasone, in patients
with relapsed/refractory MM [33–35].

Due to its limited benefit, several concerns were raised as to whether the drug should
be authorized; thus, plitidepsin was not universally approved. To date, the combination
of plitidepsin with dexamethasone is authorized only in Australia and solely for patients
with relapsed/refractory MM after a minimum of three prior treatment regimens [36]. On
the contrary, the European Medicines Agency’s (EMA) Committee for Medicinal Products
for Human Use refused the authorization of Aplidin® (plitidepsin’s trademark) even for
this subset of patients [37]. Nevertheless, as of October 2020, EMA returned the marketing
authorization application for Aplidin®, and further evaluation of the drug will follow [38].

4.2. Leukemia and Lymphomas

Due to its antiproliferative and selective cytotoxic properties in experimental models
of human leukaemia cell lines and fresh leukaemia cells, as of 2003, plitidepsin was granted
orphan designation by the European Commission for treatment of acute lymphoblastic
leukaemia [39]. In this case, the drug should be reassessed in clinical trials before receiving
marketing authorization.

Several phase I and II clinical studies have also evaluated plitidepsin in patients with
lymphomas; these have estimated safe doses of the drug, also confirming feasibility of its
combination with other anti-tumour agents [40–42].

4.3. Melanoma

According to preclinical evidence, plitidepsinappears to act as an antiproliferative
agent in melanoma cell lines while presenting synergistic activity with dacarbazine, a drug
used for treating metastatic melanoma [19]. Nevertheless, studies carried out to evaluate the
efficacy and safety of plitidepsin in patients with locally advanced or metastatic malignant
melanoma revealed only a limited clinical benefit [43,44]. On this basis, the drug was
not included in 2019 European Society for Medical Oncology (ESMO) Clinical Practice
Guidelines for treatment of this malignancy [45].
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5. Safety Profile

Plitidepsin’s safety profile has been extensively studied over both phase I and II/III
trials, with the drug presenting mostly transient and tolerated adverse events. Myalgia,
alanine aminotransferase/aspartate aminotransferase and creatine phosphokinase increase,
as well as fatigue, nausea and vomiting, constituted the most common dose-limiting
toxicities in phase I studies [34,41,46–48]. Regarding phase II/III studies, the same adverse
events were reported, along with mild to moderate hematologic abnormalities, such as
anaemia and thrombocytopenia [33,35,43].A hypersensitivity reaction was also observed;
the event was well-tolerated with the exception of one patient that was withdrawn from a
trial due to a grade 4 hypersensitivity reaction and hypotension [43].

A particularly well-studied drug combination among patients with relapsed and
refractory multiple myeloma consisted of plitidepsin with dexamethasone [33–35]. Even
though the combination was associated with a mildly increased incidence of muscular
events and creatine phosphokinase elevations, the safety profile is altogether acceptable [33].
Notably, plitidepsin with dexamethasone was related to less hepatic enzymes abnormalities
compared to plitidepsin alone [33], while a study assessing the combination of plitidepsin
with dexamethasone and bortezomib reported no dose-limiting adverse events [34]. Con-
sequently, the drug is considered safe and well-tolerated, both as a monotherapy and as a
combination with dexamethasone; hence, it is already authorized for use in patients with
relapsed/refractory MM in Australia [36].

6. Implications for COVID-19 Treatment

Both ex vivo and in vivo preclinical data on plitidepsin’s antiviral activity against
SARS-CoV-2 have recently emerged [23]. Its antiviral effect in infected Vero E6 cells has
surpassed that of other currently studied host-directed agents (i.e., termatin-4, zotatifin) [23].
Compared to the current standard of care, remdesivir, plitidepsin has been proven more
potent in reducing the expression of the viral structural protein N in Vero E6 cells and
27.5 times more powerful in inhibiting SARS-CoV-2 replication in the hACE2-293T human
cell line [23]. Among 72 in vitro tested potentially antiviral drugs, plitidepsin was the
only clinically approved drug exhibiting nanomolar efficacy (expressed as IC50) against
SARS-CoV-2 replication and subsequent cytopathic effects [49]. In vivo, the drug has
decreased lung virus titres and lung pathology of infected mice to a comparable extent to
remdesivir [23]. Considering that emerging (and potentially remdesivir-resistant) variants
may outweigh earlier strains, an advantage of plitidepsin is that it appears to preserve
its antiviral activity against the more transmittable and likely more deadly (though data
on increase in severity or death are contradictory) B.1.1.7 variant, as demonstrated by
the results of a preprint study [22,50–53]. This property may be attributed to the drug
targeting host’s proteins vital for the virus life cycle, yet less amenable to mutations than
viral proteins, as described above [22]. Similar host’s mechanisms have been located
as essential for replication of other respiratory viruses, including influenza, respiratory
syncytial virus and other transmittable coronaviruses, implying a potent utility of such
agents for combating future coronavirus or other viral outbreaks [25–28].

What currently further distinguishes plitidepsin from other candidate host-directed
anti-SARS-CoV-2 therapies is the more adequate comprehension of its bioavailability
and safety profiles, even in cases of co-administration with dexamethasone, which is
part of the current standard of care of hospitalized patients with COVID-19, primarily
through available MM trials [33–35]. Such knowledge will greatly accelerate the drug’s
testing in infected hospitalized patients requiring oxygen supplementation or invasive
mechanical ventilation [4]. The drug’s safety and efficacy have also been preliminarily
evaluated in the specific setting of COVID-19 patients needing hospital admission [54].
In this proof-of-concept trial, three cohorts of patients intravenously (IV) received three
different doses (1.5 mg, 2.0 mg or 2.5 mg per day) of plitidepsin over three consecutive
days post-admission [54]. The protocol further predefined an obligatory minimum of
hospitalization for 7 days and surveillance for adverse events for a timeframe of 31 days
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after admission [54]. Except being well-tolerated and without any serious adverse events
being observed, plitidepsin reduced participants’ viral load by 50% and 70% on hospital-
ization days 7 and 15, respectively, and it concomitantly led to 38% and 81% of patients
being discharged by days 8 and 15, respectively [54,55]. Viral load reduction was signifi-
cantly associated with clinical resolution of pneumonia and decrease in C-reactive protein
levels [54,55]. On their visit on day 30, no patients presented with symptoms compatible
with COVID-19 [54,55].

When the drug’s characteristics are carefully examined, certain deficits might be iden-
tified. Since plitidepsin’s marketing authorization is so far limited to the narrow clinical
setting of patients with relapsed/refractory MM and only in Australia, the drug is not
widely incorporated into daily clinical practice and is therefore not broadly known by clini-
cians.Affecting multiple cell cycle-related molecular pathways is accompanied by a specific
toxicity profile [33,35,43]. This toxicity profile encompasses more common dose-limiting
adverse events, such as fatigue, nausea, vomiting, anemia and thrombocytopenia, to rare
cases of hypersensitivity [33,35,43]. Interestingly, the administered IV antitumor doses of
the drug (including the dose authorized for administration in Australia) (5 mg/m2) were
higher than the ones planned for hospitalized COVID-19 patients (a maximum of 2.5 mg
per day for three days post-admission) [33,35,43,54]. Following the examples of hydroxy-
chloroquine, lopinavir–ritonavir and remdesivir, plitidepsin remains a repurposed drug
with its mechanisms being studied chiefly in the context of its anti-tumour properties [56].
Therefore, plitidepsin’s specificity against SARS-CoV-2, as well as the exact host–virus
interactive mechanisms with which the agent interferes, should be further elucidated. To
facilitate this purpose, Martinez suggested the generation of tissue cultures resistant to
the drug [55]. Although the drug’s host-directed mechanisms may also imply activity
against different SARS-CoV-2 variants, current evidence supporting such an effect derives
only from a preprint preclinical study and should therefore be considered anecdotal [22].
Accounting for its intravenous route of administration, the drug is also excluded from a
community prophylactic use in mildly affected individuals, a setting for which beneficial
antiviral options have not been discovered yet [55]. Though several steps are required
before developing oral analogues, plitidepsin is currently clearly purposed for hospitalized
patients with moderate severity of infection [54,57].

Although encouraging enough, current evidence on plitidepsin’s utility for treating
SARS-CoV-2 infection has been obtained by preclinical in vivo or ex vivo studies and a
single multicentre phase I/II trial with 46 participants, designed and conducted by the
PharmaMar company. In absence of remarkable antiviral weapons for the fight against
SARS-CoV-2, current limited evidence definitely merits further carefully designed, multi-
centre, randomized controlled trials that will either establish or disprove the safety and
efficacy of plitidepsin, also in comparison with the standard of care. As the landscape
of dominant strains is constantly changing, it would be prudent to later enrol individ-
uals infected by the emerging variants and separately study the drug’s activity also in
these population subgroups [50]. In the context of all these evolutions and in order to
examine whether the drug possesses a true therapeutic benefit for hospitalized patients
with COVID-19 of moderate severity, the PharmaMar company is planning to initiate
the multicentre, phase III NEPTUNO trial (NCT04784559) [57]. According to the trial’s
protocol, participants will be randomized in a 1:1:1 ratio to receive either IV plitidepsin
at 1.5 mg per day combined with dexamethasone, IV plitidepsin at 2.5 mg per day com-
bined with dexamethasone or dexamethasone alone, with remdesivir being contextually
added to the regimen (as per local treatment guidelines) at IV 200 mg on day 1 followed
by IV 100 mg per day on days 2 to 5 after admission [57]. In the first two arms, and in
adherence to the previous phase I/II trial’s protocol, plitidepsin will be administered in
two of the formerly tested dosages and only over the first three consecutive hospitalization
days [54,57]. Dexamethasone in these arms will also be given at 8 mg per day IV on days
1 to 3, followed by 6 mg per day orally or IV (depending on the physician’s judgment of
patient’s condition) from day 4 and up to day 10 [57]. Due to the mandatory need for direct



J. Pers. Med. 2021, 11, 668 7 of 10

antiviral options, as well as the drug’s preclinical efficacy and host-directed mechanisms
analysed above, the results of the trial are anticipated with great scientific interest and
may form an entirely different approach in the treatment of COVID-19 patients. However,
the trial’s design reinforces the assumption that the drug is aimed at hospitalized patients
and only those with disease of moderate severity. Such a design excludes, at this point,
severely affected individuals, a population for which effective antiviral options may be
of considerable benefit.Therefore, more research is needed as this trial, even in case it
demonstrates significant clinical efficacy against the enrolled group of patients, constitutes
just the first “crash-test” for plitidepsin.

Despite plitidepsin’s preclinical efficacy against SARS-CoV-2, clinical evidence is
currently inadequate for its registration in COVID-19 patients. Even in case clinical effi-
cacy of the drug against moderately affected COVID-19 patients is demonstrated by the
NEPTUNO trial, many issues remain to be addressed in the future, including the drug’s
effectiveness against different SARS-CoV-2 variants and its efficacy when administered in
severely affected hospitalized patients.As the crucial research for antiviral options against
SARS-CoV-2 is progressing, evidence on all emerging and promising candidate agents
should be carefully and constantly assessed and updated. Moreover, as SARS-CoV-2 may
be part of our daily routine the following years, it is desirable to have pharmaceutical
options for all patients and variants and for all levels of severity of the disease. In this
light, plitidepsin is likely to gain a foothold in patients of moderate severity and in some
SARS-CoV-2 strains.

7. Conclusions

Plitidepsin, a drug currently authorized only in Australia for patients with refrac-
tory multiple myeloma, has exhibited anti-SARS-CoV-2 properties, through inhibiting the
elongation factor eEF1A, a component of the eukaryotic host cell’s translation machinery.
On the basis of accumulating preclinical and only preliminary clinical data, plitidepsin
currently represents a promising repurposed candidate drug against COVID-19 requiring
hospitalization.However, current clinical evidence is inadequate for plitidepsin’s use in
COVID-19 patients, while several issues, such as its efficacy against variants and its pur-
posing only for moderately affected hospitalized patients, remain to be addressed. In an
urgent necessity for more antiviral agents, that also retain activity against the constantly
spreading SARS-CoV-2 variants and as pandemic conditions are changing, carefully de-
signed, multicentrerandomized controlled trials, potentially further studying separate
subgroups of patients infected by new strains, are warranted.Thus, plitidepsin’s role may
be readdressed in a subcategory of COVID-19 patients that might benefit from the drug,
satisfying a personalized approach of these patients in the future.
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