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A P P L I E D  E C O L O G Y

Integrating economic dynamics into ecological 
networks: The case of fishery sustainability
Paul Glaum1,2*, Valentin Cocco3, Fernanda S. Valdovinos1,2,4*

Understanding anthropogenic impacts on ecosystems requires investigating feedback processes between eco-
logical and economic dynamics. While network ecology has advanced our understanding of large-scale commu-
nities, it has not robustly coupled economic drivers of anthropogenic impact to ecological outcomes. Leveraging 
allometric trophic network models, we study such integrated economic-ecological dynamics in the case of fishery 
sustainability. We incorporate economic drivers of fishing effort into food-web network models, evaluating the 
dynamics of thousands of single-species fisheries across hundreds of simulated food webs under fixed-effort 
and open-access management strategies. Analyzing simulation results reveals that harvesting species with 
high population biomass can initially support fishery persistence but threatens long-term economic and eco-
logical sustainability by indirectly inducing extinction cascades in non-harvested species. This dynamic is 
exacerbated in open-access fisheries where profit-driven growth in fishing effort increases perturbation strength. 
Our results demonstrate how network theory provides necessary ecological context when considering the sustain-
ability of economically dynamic fishing effort.

INTRODUCTION
The advent of network theory in ecology and environmental studies 
has greatly advanced the study of ecological dynamics and complexity 
(1, 2). These advances have also translated into a growing knowledge 
of how human-caused disturbances can create far-reaching ecolog-
ical impacts through indirect effects (3–6). Often, however, the dis-
turbances in these network studies have been studied as a one-time 
event or a constant external rate of change, separate from the dy-
namic elements of the ecological network (3, 6, 7). We argue that 
developing both sustainable management practices and a fuller un-
derstanding of Anthropocene ecological dynamics require recogni-
tion that much of the ecological impact of anthropogenic activity is 
determined by an integrated feedback process between ecological 
dynamics and socioeconomic conditions as a coupled natural-human 
system (8, 9). In short, the scope of ecological networks should con-
tain humans as dynamic elements when necessary (10, 11). Here, 
we expand ecological network theory by incorporating economic 
dynamics into food web network models to evaluate the coupled 
natural-human dynamics affecting sustainability in the case of fisheries.

Fisheries are an example of natural-human integrated network 
systems that are particularly important given their critical role in 
the economic stability and food security of billions of people (12). 
Both the available yield and mobilized fishing effort in any fishery 
are products of a complex set of interacting socioeconomic and eco-
logical factors (13). Understanding the dynamics and consequences 
of these interactions is particularly pressing, as current management 
strategies have produced an overexploitation crisis in a multitude of 
fisheries across the globe (14, 15), threatening both aquatic bio-
diversity (16) and the aforementioned food security (12). Tradi-
tionally, fishery sustainability goals have been implemented into 

policy on a single-species basis as optimal harvesting strategies (12). 
While economic considerations have been well integrated into opti-
mization studies (17, 18), these strategies conventionally consider 
harvested species in isolation from the broader food web and model 
their dynamics with an idealized growth curve (13, 19, 20). This has 
limited the ability of research based on these assumptions to address 
the indirect effects of harvesting on other species within food webs, 
as seen in network-based approaches (21). Specifically, the popula-
tion variability induced directly through fishing effort on harvested 
species (22) can transfer to non-harvested species through trophic 
interactions (5, 23). This variability has been linked to perturbations, 
causing reductions in aquatic biodiversity (24, 25) and ecosystem 
function (26). These reductions cycle back to further affect harvested 
species (5, 27) and the potential economic returns harvested species 
provide (14, 28). Any effect on economic returns can affect future 
fishing effort and the corresponding effect on harvested ecosystems, 
creating a bio-economic feedback loop. While this bio-economic loop 
is understood in concept, limited work exists on its actual dynamics, 
especially in the context of broader ecological networks (29). Until 
more is known about the complex interactions between ecology and 
economic factors that drive the bio-economic loop in fisheries, 
policy-makers risk attempting to optimize a process that we poorly 
understand.

In accordance with these concerns, we applied network theory to 
incorporate the ecological complexity of species trophic interactions 
into the model. This differs from past modeling work using ap-
proaches like Ecopath with Ecosim (EwE) (30), which rely on ex-
tensive lists of estimated system- and species-specific parameters to 
manage specific systems rather than study general patterns in fun-
damental dynamics. This specificity has been essential to the man-
agement potential of EwE and allowed it to function as an effective 
tool in numerous fisheries. However, estimating the full parameter 
set required for EwE is data intensive (31) and potentially difficult 
to empirically or theoretically verify (32). This can lead to uncertainty 
in parameter estimates (13) and prompt some modelers to use 
“default” values (32). Given that model outcomes can be greatly al-
tered, with multiplicative effects, by erroneous parameter estimates 
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(33, 34), models must be finely tuned to their specific system. EwE 
includes mechanisms to improve parameter estimates against data 
from the fisheries in question, but this further delimits investigations 
to specific systems studied and less toward understanding more 
universal underlying mechanisms driving the bio-economic feed-
back loop. While this precision offered by system-specific investiga-
tions is undoubtedly important, complementary investigations into 
the underlying generality of the dynamics seen across fisheries are a 
necessary part of a multimodel strategy (see appendix S1) (35, 36).

The network approach that we use allows for the development of 
more fundamental, widely applicable theory because network models 
can be run across an array of ecological topologies, both empirical 
(5) and realistically generated (37), by parameterizing metabolic 
rates and species interactions through allometric scaling (38). Ex-
perimental results across these collections of webs can then be 
searched for patterns and explanatory drivers. For the purposes of 

this study, we generated realistic food web networks using the niche 
model (39), each with an initial 30 interacting trophic species (see 
Materials and Methods). Species available for harvest are labeled 
“fish” for ease of description (Fig. 1A). Ecological dynamics in each 
generated web were governed by a series of ordinary differential 
equations and parameterized through allometrically scaled rates (38), 
creating allometric trophic network (ATN) models (see Eqs. 1 to 10 
in Materials and Methods). Allometric scaling provides a sound 
theoretical basis from which to realistically parameterize various 
iterations of trophic interactions and ecological processes based 
on metabolic theory and life history traits (e.g., trophic level and 
vertebrate/invertebrate) without exhaustive parameter sweeps (38, 40). 
Given the high dimensionality of food web models (e.g., coupled 
differential equations; see Materials and Methods) (30), mathe-
matical analysis is intractable. Instead, general results are obtained 
through statistical analysis on simulation output. Last, this network 

1

2

3

4

5

6

Tr
op

hi
c 

le
ve

l

Original food web
(t = 0)

13
17

27

19

30

23

5
21

18 29

20

22 28
1

6

26
7

2

4

16

12

11 10 15 14

3
8

25

24

9

Food web after fishing
(t = 8000)

17
27

30

23
21

29

20

22
6

2

16

12

11 10 15 14

3
8

25

24

Food web before fishing
(t = 4000)

13
17

27

19

30

23

5
21

29

20

22
6

26

2

16

12

11 10 15 14

3
8

25

24

9
* (iii) (ii)

(iv)

(i)

Invertebrate
Fish
Harvested

Amplified
Dampened

*

A B C

Without fishing H With fishing H

Bi
om

as
s 

µg
C

L
−1

Bi
om

as
s 

µg
C

L
−1

1.2

1

0.8

0.6

0.4

0.2

0

Time
1000 2000 3000 4000 5000 6000 7000 8000

Effort = 0 Effort = 20

Without fishing H With fishing H
2

1

1.5

0.5

0

Time
1000 2000 3000 4000 5000 6000 7000 8000

Effort = 0

Ef
fo

rt

D E

Persistent
Extinct

Fig. 1. Diagrams of the experimental design. (A to C) Example evolution of a food web structure across complete simulation process with a fixed effort of 5. Node sizes 
are logarithmically scaled to the biomass at each point in time of the simulation. Edges between nodes represent trophic interactions with arrows indicating the consumer. 
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ample time series from fixed-effort treatment simulations with effort set at 20. (E) Example time series from open-access treatment simulations.
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approach then also provides a flexible framework that facilitates the 
integration of economic dynamics.

We incorporated two economic models driving fishing effort 
into the ATN’s ecological network structure with fisheries function-
ing as an additional node in the networks during simulations (see 
Materials and Methods for the description of fishing effort). After 
an initialization period of 4000 time steps, roughly 11 years in model 
time (see Materials and Methods) (Fig. 1B), each “conserved” food 
web (see Materials and Methods) is subjected to two fishery treat-
ments (Fig. 1C): (i) fixed effort and (ii) open access. The fixed-effort 
treatment uses fixed levels of fishing effort starting immediately af-
ter the initialization period that does not change within simulations 
(Fig. 1D). In the open-access treatment, on the other hand, fishing 
effort is unregulated (41). That is, effort adjusts in response to fish-
ing profits, with effort growing or declining in response to positive 
or negative net profits, respectively (Fig. 1E). The dynamics of net 
profits are influenced by both yield and market price, with market 
price related to yield through a linear pricing model (Eqs. 11 to 13; 
see Materials and Methods). We illustrate these economic dynamics 
using a graphical example in fig. S1. The static effort levels of the 
fixed-effort treatment serves as a control to the variable dynamics of 
open-access fisheries, but fixed-effort levels also has real-world rep-
resentations in some subsistence fisheries where strict permitting rules 
produce stable effort levels over the years (42). The open-access 
treatments simulate fisheries from their initialization and therefore 
start from a low initial effort at t = 4000. All open-access results 
presented in the main text pertain to initial effort levels of 1, while 
initial effort levels of 0.5 and 2 were also considered for sensitivity 
analysis (see Materials and Methods). Effects of different economic 
conditions are studied by parameter sweeps across levels of price 
sensitivity to yield (b), effort’s sensitivity to changes in profit (), 
and maximum price (a) paid for the harvested species. See Materials 
and Methods for more. We simulated single-species fisheries, label-
ing the single harvested fish in each simulation, H. The remaining 
non-harvested species in each simulation are then labeled, N-H. 
While single-species fisheries are not necessarily the dominant form 
of fishery in terms of quantity, they make up some of the largest 
fisheries globally and have a large economic and ecological influence 
(43, 44), making them a useful starting point for our network-based 
studies of the bio-economic feedback loop.

We use our dynamic model to evaluate the economic and eco-
logical factors that determine (i) the impact of fishing on harvested 
and non-harvested species (ecological impacts, i.e., changes in 
abundance and persistence), (ii) the conditions for fishery “success” 
(i.e., a sustained nonzero fishing effort from start to finish), and (iii) 
the different ecological impacts of fisheries within fixed and open- 
access regimes (i.e., the persistence of harvested species and degree 
of species loss).

RESULTS
When we implement fishing through the fixed-effort treatment, 
higher effort levels increase the mortality of H, intuitively causing 
more biomass depletion (fig. S2), more extinctions (fig. S3), and 
quicker times to extinction (Fig. 2A) for the harvested species, H. 
Among the hundreds of ecological factors analyzed (see Materials 
and Methods), we found those H extinctions to be more prevalent 
at higher trophic levels (Fig. 2B and fig. S4), reflecting numerous 
empirical examples (45–47). The best ecological predictor of H 

extinctions, the population biomass of H at the start of fishing (BH0; 
table S1), has a nonlinear effect (Fig. 2B and fig. S5A). Compared to 
populations with the lowest BH0, moderate increases in the starting 
population biomass of the harvested species decreased the prevalence 
of H extinctions because more abundant harvested populations are 
more resistant to the direct extraction-induced mortality. However, 
for all but the highest trophic levels, we saw that further increases in 
BH0 escalate extinction risk of H. This nonlinearity initially seems 
counterintuitive, as one could expect larger populations to better 
withstand harvesting pressure.

This nonlinearity occurs because fishing higher BH0 generally 
induces greater levels of variability in the rest of the populations 
within the food web (fig. S6; see Materials and Methods), mirroring 
past work that finds greater population variability when removing 
species with higher initial biomasses (see table S2) (25, 37). Higher 
levels of variability generate extinction cascades of non-harvested 
species (N-H extinctions; fig. S7), which threaten H when extinction 
cascades negatively affect its prey items. This causation chain of 
harvesting larger BH0 inducing higher population variability caus-
ing more N-H extinctions functions as the mechanism behind BH0, 
generating higher levels of N-H extinctions shown in Fig. 2C (also 
see figs S5B and S8). BH0 is also the best single pre-fishing predictor 
of N-H extinctions (table S3), and its effects are exacerbated when 
higher effort levels induce stronger perturbations in the community 
(Fig. 2C, fig. S6, and table S3). The majority of these N-H extinc-
tions occur downstream from H (fig. S9A) and are trophically close 
to H (fig. S9B), with the average distance becoming closer with a 
higher number of trophic links to H (fig. S10). Consequently, we 
can show that the loss of H’s prey options increases proportionally 
with overall N-H extinctions ( = 1.5, P < 0.0001, R2 = 0.75; Fig. 2D). 
The higher amount of downstream extinctions relative to upstream 
extinctions is due to the generally higher trophic level of harvested 
fish (average of 3.36) compared to the overall species trophic level 
(average of 2.33). That is, there are proportionally more non-harvested 
species downstream than upstream of the harvested species. This 
is partially due to the size restrictions on our generated food webs 
(30 species maximum), although empirical food webs are also 
generally more species rich at lower trophic levels. Regardless, our 
results demonstrate that perturbations due to fishing can cycle through 
the food web and threaten even highly abundant harvested species 
through their prey items. The nonlinear effect of BH0 on its own 
survival indicates that one cannot necessarily assume linear rela-
tionships in ecological responses to perturbations.

In the open-access treatment, BH0 also played a critical role in 
fishery sustainability, as it was a principal driver of market dynamics. 
Open-access effort is dynamic, capable of both declines and growth 
(Fig. 3A). Growth in open-access effort is a function of BH0 and the 
maximum price of H (i.e., parameter a in Eq. 13). Higher max price 
reflects higher base demand for H, and higher BH0 provides poten-
tial yield to meet demand, thereby driving greater profits and effort 
(fig. S11A). Therefore, dependent on demand and yield, effort levels 
can range from low to high values. However, with sufficiently low 
demand or yield, net profit is consistently negative and effort de-
clines to zero, meaning that the fishery fails to sustain itself (fig. S12). 
Consequently, harvesting the most abundant fish per food web 
sustained more fisheries (78% of simulations sustained) than 
harvesting randomly chosen fish populations (26% of simulations 
sustained). However, higher prices (i.e., demand) can sustain effort 
on rare species by supporting higher profits on lower yield (fig. S13). 
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This potential growth in effort as a result of combined max price (a) 
and harvestable initial biomass (BH0) strongly predicts the peaks in 
effort early in open-access fisheries’ time series (Fig. 3, A and B, and 
tables S4 and S5).

However, growth itself, if unchecked, can also lead to effort de-
clines during the “cycle of adjustment” (48), an empirically detected 
bio-economic process (49) reproduced in our simulation results. 
That is, effort declined (Fig. 3A) either when past fishing effort 
oversupplied H causing market saturation (reductions through price 
sensitivity to yield, via parameter b) or when past effort overfished 
H (reductions through a lack of biomass from which to profit). 
These mechanisms of reactionary effort reduction can function as 
“self-corrections” that potentially protect the harvested population 
(H) against excessive fishing effort, allowing their regrowth and 
recovery. These self-corrections, coupled with the potential for 
open-access fisheries to fail to sustain effort at low BH0, explain the 
relative lack of direct extinctions of the harvested species (H extinc-

tions) in the open-access treatments (fig. S11B). However, combi-
nations of sufficiently high max price (a) and BH0 can increase effort 
to levels (Fig. 3B) that cause H extinctions before self-correction 
occurs (Fig. 3C), especially in fisheries with high growth potential 
(high prices and BH0) and high sensitivity to profit (high  in Eq. 11). 
After analyzing the range of this bio-economic feedback, we found 
three general categories in the outcomes of open-access fisheries 
that emerged from the early dynamics in the cycle of adjustment: (i) 
failed fisheries due to low BH0 and max price failing to maintain or 
grow effort, (ii) failed fisheries due to high BH0 and price driving 
H extinctions through excessive effort, and (iii) sustained fisheries 
existing in a middle ground between the two (Fig. 3D).

These three general economic outcomes underpin much of the 
relationship between the harvested species (H) and fishing effort 
in open-access fisheries. In particular, these results indicate that 
H extinctions were actually most common when harvesting highly 
abundant H (species with high BH0), as unregulated growth in effort 
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depleted fish reserves (fig. S14). This also formed the basis of the 
nonlinear effect that BH0 had on open-access fishery persistence 
(Fig. 4A) and the level of effort sustained by the end of the simula-
tion (Fig. 4B). In addition, while H extinctions were relatively 
less common in open-access fisheries, the association between 
harvestable biomass and effort growth reversed the positive rela-
tionship between BH0 and the time to H extinction seen in fixed- 
effort fisheries (compare Fig. 2A to Fig. 4C). Last, the dynamics of 
effort in response to yield also drive the different effects of fishing 
on non-harvested (N-H) species between open-access and fixed- 
effort fisheries.

The profit-driven growth in effort caused by high BH0 means 
that (given sufficient demand) economic factors incentivize sub-
jecting food webs to high levels of harvesting pressure on their more 
abundant species. This induces more variability in the biomass of 
the rest of the community than fixed-effort fisheries (fig. S15). Given 
the connection between this variability and non-harvested (N-H) 
extinctions (see fig. S7), market-generated variability expectedly in-
duced more N-H extinctions than fixed-effort simulations. This was 
the case whether comparisons between fixed-effort and open-access 
results were made with attainable effort levels across all webs (Fig. 4D 
and figs. S16 and S17) or strictly within each web at the most com-
parable effort levels between fishery treatments (Fig. 4E).

DISCUSSION
Our study uses the ATN framework to study integrated feedback 
processes between ecological and economic dynamics by subjecting 
a wide array of food web topologies to two different harvesting 
treatments. Results demonstrate the notable nonlinear effects of the 
initial population biomass of harvested species (BH0) on both the 
ecological (e.g., Fig. 2B) and economic (e.g., Figs. 3C and 4B) 
sustainability of fishing. It also reveals the role of BH0 in driving 
variations in effort (Fig. 3B) and exacerbating the ecological costs 
of harvesting in open-access fisheries (Fig. 4, D and E). Temporary 
fluctuations in effort above sustainable levels are a known process 
in the cycles of adjustment seen in open-access fisheries (41), but we 
show here that the indirect effects of those fluctuations can drastically 
change food web structure through local species extinctions. Overall, 
our results indicate that considering the sustainability of an ecosystem 
service requires accounting for its surrounding ecology and its inter-
face with the economy that it provides. In addition, the study, as a 
whole, demonstrates the flexibility of network approaches to integrate 
external anthropogenic variables into dynamic ecological processes.

Our study succeeds in expanding the purview of ecological net-
works and addressing the need for generalizability in fisheries studies, 
but further considerations are necessary in future developments. 
Important details in fishery output can result from spatial features 
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of the fishery or from the ontogeny of the species in the aquatic 
community (5). Developing network ecology to the point of direct 
application in fisheries requires consideration of these ecological 
components. In addition, while single-species fisheries can have a 
large ecological and economic impact (43, 44), multispecies fisheries 
make up the majority of unique fisheries across the globe. Our 
model’s current form serves as a useful first step, but its flexibility 
makes it well poised in expanding toward multiple harvested spe-
cies and other crucial developments.

Fisheries management has come a long way from focusing on 
single harvested species in isolation to considering the interconnected 
surrounding social, economic, and ecological conditions in which 
fishing occurs, commonly called ecosystem-based fisheries manage-
ment (EBFM) (29). Such a holistic collection of considerations re-
quires a multifaceted array of models and techniques to study (35). 
Our current model qualitatively reproduces past theoretical results 
(table S2) (37), well-documented empirical patterns (fig. S4), and 
output from models specifically trained on empirical data (fig. S18) 

(25). Open-access results were also qualitatively robust to different 
starting effort levels initiating the fishery (figs. S19 to S22). This 
gives us confidence in vetting our results and further developing 
this framework to contribute toward the creation of operational 
EBFM options for fisheries.

MATERIALS AND METHODS
Experimental design
The objective of this study was to expand ecological network theory 
to include dynamic economic components. This Materials and Methods 
section describes the creation of ecological-economic networks and 
how they were analyzed. The ecological network models are com-
posed of two major parts, the underlying structure of the network of 
interactions between species and the population dynamics of the 
interacting species (6, 39). In our model framework, we expand 
upon preliminary work (11, 41) and add economic dynamics to the 
established population dynamics.
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Network/food web structure
Network structure describes the trophic links between resource, prey, 
and predator populations, irrespective of the strength of the link. 
Initially, 1100 trophic food webs were created as networks using the 
niche model (39). All food webs contained 30 trophic species with 
a connectance of 0.15 (37) within an error of 0.025 (39). Trophic 
species (S) define a population of individuals with similar resources 
and consumers. Connectance (C) is the fraction of realized trophic 
links  (  L _ 

 S   2 
 ) , where L is the actual number of realized links. Trophic 

species are assigned a niche value across a single trait axis (consid-
ered body size in this case; see the “Ecological and economic dy-
namics” section below) defined by a feeding range and center along 
the trait axis. Species P eats species V if V’s niche value lies within 
P’s consumption range. This process does allow for the species’ con-
sumption range to be at a higher niche value that allows for canni-
balism. The consumption range of the lowest species in the niche 
axis is fixed to 0, assuming at least one primary producer/basal 
species. Each of the 30 trophic species is assigned values iteratively 
until (i) the web is connected (cannot be divided into two indepen-
dent webs), (ii) every consumer species is linked to at least one basal 
species through a trophic chain, and (iii) the realized connectance is 
within the error range set by C. Trophic species that can be poten-
tially harvested are labeled fish for ease of discussion. The fish 
species are chosen among the consumer species of each web with a 
Bernoulli’s trial (P = 0.6) and modeled as vertebrates, while the 
remaining species are modeled as invertebrates (11). Niche model 
food webs have been shown to exhibit empirically observed pat-
terns in field webs (distribution of trophic species across different 
trophic levels, mean trophic chain length, etc.), especially in aquatic 
systems (39, 50, 51).

Ecological and economic dynamics
Population dynamics of the trophic species on the food web are 
regulated through the allometric trophic scaling (38), extended to a 
multispecies food web to function as an ATN (52). The ATN has 
advanced our understanding of ecosystems by providing flexible ways 
of expanding ecological models to incorporate dozens to hundreds 
of interacting species while maintaining tractable methods of analysis. 
The ATN models the biomass  ( gC _ L  )  dynamics of trophic species 
through a system of consumer-resource (Eqs. 1 and 2)
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    (2)

Parameter values shown in Eqs. 1 and 2 are described in Table 1 
with differences based on life history traits labeled in consecutive 

entries. The functional response of consumers to prey biomass is 
given in Eq. 3. Note that B0, j denotes the half saturation biomass of 
species j and that ij denotes the preference of consumer i for prey 
species j. Each preference, ij, equals the inverse of the total number 
of i’s prey species and changes through time when prey go extinct

   F  ij   =   
   ij    B j  h 

  ─────────────  
 B 0,j  h   +    k∈prey species      ik    B k  h 

    (3) 

The applicability of the ATN framework to models with such a large 
number of species stems from the ability to create plausible param-
eters for the physiological rates through a negative-quarter power 

Table 1. Parameter/function definitions, values, and sources. N/A, not 
applicable. 

Ecological 
parameter/
equations

Description Value Source

K Carrying 
capacity 1

Brose et al. (52)

e
Assimilation 

efficiency 
(carnivore)

0.85

e
Assimilation 

efficiency 
(herbivore)

0.45

ax/ar

Allometric 
constant 

(invertebrate)
0.314

ax/ar
Allometric 

constant (fish) 0.88

y

Maximum 
consumption 

rate 
(invertebrate)

8

y
Maximum 

consumption 
rate (fish)

4

Z Body size ratio 100

B0
Half-saturation 

biomass 0.5

h Hill coefficient 1.2 Williams (51)

Bext

Extinction 
threshold 
biomass

10−6 Schneider et al. 
(60)

ij
Preference of i 

for j Variable N/A

Fij
Functional 
response Variable N/A

Economic 
parameters Description Value Source

q Catchability 
coefficient 0.01 Martinez et al. 

(11)

co

Cost per unit 
harvesting 

effort
0.01 N/A
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law relationship with species’ body masses, the single trait axis de-
scribed in the “Network/food web structure” section (38, 53). Part 
of the analytical power of this approach is that ecological interac-
tions are reasonably parameterized, thereby allowing researchers to 
focus analysis and sensitivity analysis on other model aspects, in our 
case, food web structure and fishery parameters. This is realized 
through the three rates: reproduction, R; metabolism, X; and maxi-
mum consumption, Y

   R  p   =  a  r    M p  −0.25   (4)

   X  C   =  a  x    M C  −0.25   (5)

   Y  C   =  a  y    M C  −0.25   (6)

where ar, ax, and ay are allometric constants that determine rates 
based on the body size Mi. The subscripts C and P indicate consumer 
and producer parameters, respectively (38).

The time scale of the dynamics in each food web is defined by 
setting the mass-specific growth rate of the basal species (the pro-
ducers) to one. With this as a reference and the assumption that 
basal species share the same body size, the mass-specific metabolic 
rates of all species are normalized by the time scale (RP), and the 
maximum consumption rates are normalized by the metabolic rates

   r  i   = 1  (7)

   x  i   =    X  C   ─  R  p     =    a  x   ─  a  r       (      M  C   ─  M  P     )     
−0.25

   (8)

   y  i   =    Y  C   ─  X  C     =   
 a  y   ─  a  x      (9)

The body masses of predators are expressed relative to basal spe-
cies, and the body size ratio between predators and prey is consid-
ered to be a constant (Z), a reasonable approximation in an aquatic 
system (52). This allows xi to be expressed as below

   x  i   =    a  x   ─  a  r      ( Z    T  i  −1 )   
−0.25

   (10)

where Ti is the prey averaged trophic level of species i calculated 
from network topology (50). Model time is set similar to past work 
(54) where one model time step equals one real-time day.

Loss of a population’s biomass due to harvesting (labeled “loss 
by harvesting” in Eq. 2) is measured as the rate of fishing effort, Ei 
(Eq. 11), on species i (55). Effort is a broadly applicable index used 
to measure the amount of fishing/harvesting taking place in a fish-
ery, including capital and labor (41). Depending on the specific 
fishery, effort can track the number of fishing lines, boats, workers, 
work hours dedicated to harvesting, etc. The results presented in 
this work would not qualitatively change on the basis of the specific 
details of the effort metric. This study focuses on single-species fish-
eries. Therefore, Ei = 0 for all species that are not the harvested fish 
species, H. The fishing effort on H is greater than or equal to 0 and 
changes in E derive from the product of net profit and an adjust-
ment parameter, , representing the economic sensitivity of fishing 
effort to changes in net profit (55). The economic sensitivity of the 
fishery’s effort ( ∈ [0,1]) describes the sensitivity of the effort to 

changes in profit or loss. Net profit is defined as the product of price 
per unit of biomass harvested and the actual yield (Y) caught at the 
current E level (Eq. 12) minus the costs per unit effort (55). The 
yield at any given time in the model is a product of the current level 
of effort, the available biomass of the harvested species (H), and q, 
the “catchability” of H per unit effort. Yield translates into supply 
and informs the market price, p, through the linear Eq. 13, where a 
represents the maximum price and price sensitivity to yield is la-
beled b. Equation 13 is incorporated as a piecewise equation such 
that p = 0 when  Y ≥   1 _ b  . Last, costs are removed from gross profit to 
reach net profit by subtracting coE from pY, where co is the fixed 
value of cost per unit effort. All open-access fisheries start with 
E(0) = 1 to model a fishery from its initiation

     
⏞

    dE  i   ─ dt      

 Effort  
level

  

  =    ⏞     

  
Sensitivity

  
to net profit

 

  *       pY 
⏟

   
 Gross  profit  

   −     c  o    E  i   
⏟

   
  Costs  per effort 

      
Net profit

    (11)

  Y = qE  B  H    (12)

  p = a(1 − bY)  (13)

Unlike optimization studies that can analytically seek out effort 
levels that maximize profits, the open-access equations (11–13) move 
toward equilibrium (  dE _ dt   = 0 ), as total revenue approaches total costs 
and economic profits reach zero.

Experimental setup and treatment design
All 1100 food webs created with the niche model were randomly 
assigned initial biomass conditions per species using a uniform dis-
tribution, U ∈ (0,1). The ATN framework shown in Eqs. 1 and 2 was 
then used to simulate each food web for 4000 time steps in a fishing- 
free stage (effort = 0). This initial fishing-free period limits possible 
effects of transient dynamics on results of fishery treatments. After 
the initial fishing-free period, only conserved webs that met fishery 
criteria are chosen to be subjected to the two different fishery treat-
ments. A food web is considered conserved if (i) it is connected, (ii) 
every consumer species is linked to at least one basal species through 
a trophic chain, (iii) the number of remaining trophic species is 
higher than or equal to 20, and (iv) it has at least one fish species.

These criteria resulted in 480 unique conserved food webs that 
were subjected to an additional 4000 time steps of simulation in the 
fishing stage. Subjecting the initial food webs to these criteria elim-
inated the potential for analytical comparisons of fishery effects 
between categorically different types of food webs. For example, 
criterion (i) not being met in a food web would potentially protect 
certain species from any perturbations caused by fishing, making 
it an incompatible comparison to connected food webs perturbed 
by fishing.

Fishing effort was applied as one of two fishery treatments, fixed 
effort and open access. In the fixed-effort treatment,   dE _ dt   = 0  and 
fishing effort is held constant from t = 4000 to 8000 during the 
entire fishing treatment. The tested fixed-effort values are E = [0,1,2,
3,4,5,6,7,8,9,10,12,15,20]. In the open-access treatment, effort varies 
on the basis of the interactions between economics and ecology 
through profit on yield described above. Open-access results are tested 
across the values of effort sensitivity to profit  = [0.05,0.2,0.5,0.8,1.0], 
price sensitivity to yield b = [0.01,0.05,0.1,0.5], and maximum price 
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a = [10,20,40,70,100,150]. Initial effort levels in all open-access sim-
ulations are set at 0.5, 1, or 2 to model a fishery from its beginning. 
Initial efforts of 1 are presented in the main text with initial efforts 
of 0.5 and 2 presented in the Supplementary Materials (figs. S19 to 
S22). Any larger initial efforts would take simulations away from 
modeling fisheries from their inception. Roughly 99.5% of our 
open-access simulations result in final effort levels ≤20. Therefore, 
exploring the range of fixed-effort values between 1 and 20 is the 
exact range that we want to cover so that we can compare manage-
ment strategies at different effort levels.

Regardless of fishery treatment, fishing effort was applied to a 
single fish species per simulation, H, chosen at the end of the initial 
stage in conserved webs, at t = 4000. We do not model bycatch or 
multiple-species fisheries. In the fixed-effort treatments, every single 
unique fish species was harvested in every web. In the open-access 
treatment, given the importance of population biomass seen in the 
fixed-effort results, the identity of the harvested fish species was se-
lected either (i) randomly across all available fish in the food web, 
labeled “Random” in figures and results, or (ii) as the fish species 
with the highest biomass after the initial stage (BH0 at t = 4000), la-
beled “Max” in figures and results. Webs with only one harvestable 
fish species were only used once per parameter combination per fishery 
treatment. These open-access results could then be directly compared 
to their fixed-effort counterparts. All simulations were completed 
using MATLAB 2018a and the solver ode45 for numerical integra-
tion (relative and absolute error tolerances both equal to 10−8).

Data collection and categorization
Ecological, economic, and network data were compiled initially at 
t = 0, at the end of the initial fishing-free stage at t = 4000, and at the 
end of the fishing stage t = 8000. Species extinctions during simula-
tions were considered at the threshold, Bext, listed in Table 1 and are 
displayed in figs. S3 and S11B. Beyond the time series data of each 
species in each food web simulation, a large number of variables 
describing pre- and post-fishing overall network attributes (e.g., 
connectance) and local network structure around the harvested 
species (e.g., number of direct trophic links) were also considered. 
A full listing of these variables appears in table S6.

Per simulation, 408 attributes were considered in both the fixed- 
effort treatment and open-access treatment. Additional variables were 
added to the open-access treatment, for a total of 432, to detail the 
dynamics of effort through the simulation and to make direct com-
parisons to the fixed-effort treatments (see Fig. 4E). While effort 
levels were directly recorded in open-access treatments, simulation 
results were also categorized as sustained or failed at the end of 
simulations. To avoid considering temporary troughs in effort at the 
end of simulations as complete failures, effort levels were averaged 
over the last 400 time steps. Fisheries that did not maintain effort 
levels above 1% of starting effort values were labeled failures, while 
those that did were labeled sustained.

In each food web simulation, dynamic variability of each popu-
lation was measured using a population’s biomass time series’ coef-
ficient of variance (C.V.). A similar process was used to measure the 
variability in effort in open-access fisheries. For the community’s dy-
namic variability, we used the mean of each population’s biomass time 
series’ C.V. as a proxy. In other words, we took the C.V. of each species’ 
biomass time series and averaged them to get the mean variability of 
a community. This was done in the 400 time steps before the start of 
fishing, in the first year after the start of fishing, across the first 3 years 

after the start of fishing, and during the last year of fishing before 
each simulation ended. See table S6 for the full list of analyzed factors.

Statistical analysis
Given the large number of variables/factors, we used classification 
and regression tree analysis (56) through JMP Pro 13 to obtain vari-
ables of interest in the search for drivers of fishing-induced changes 
across our webs and simulations. Once obtained, potential drivers 
were further explored using R 3.5.1 statistical software. Continuous 
variables were initially explored using generalized linear models. 
Binomial regressions were used for binary response data, while 
gamma or Gaussian distributions were used for continuous re-
sponse data. Models were trained and vetted on various resampled 
subsets of data to assess consistency of the model results and avoid 
the pull of outliers. In the case of biomass of the harvested species 
(BH0), resampling indicated potential nonlinear responses. As a 
result, we used generalized additive models (GAMs) to account 
for and visualize BH0’s effect on response variables using the mgcv 
package in R (57). When response variables were continuous and 
limited between 0 and 1 (fig. S7), beta regressions were used (beta 
package R) (58). Categorical variables can be incorporated into 
GAMs as factors (table S3). In situations where GAMs were not 
appropriate, comparisons across categorical variables were done 
using Tukey’s post hoc test (Fig. 4D).

There are two major comparisons of ecological cost of harvest-
ing through the non-harvested (N-H) extinction prevalence between 
the two fishery treatments. The first (Fig. 4D and figs. S16 and S17) 
compares the average N-H extinctions associated with comparable 
effort levels between the fixed-effort and open-access fishery treat-
ments. Because of inherent variability in effort levels in open-access 
treatments, not every fish in every web can be guaranteed to be 
fished at every effort level, as was done in the fixed-effort treatment. 
Therefore, open-access effort per simulation was averaged across three 
time periods—the first year (fig. S16A), the third year (fig. S16B), 
and across the last year (Fig. 4D)—and then grouped into one unit 
effort block. For example, 0 < Effort < 1, 1 < Effort < 2, 2 < Effort < 3, 
and so on along the tested fixed-effort values. N-H extinctions from 
those open-access simulations were then compared against these 
from the fixed-effort simulation.

The first method’s focus on comparisons across effort requires 
comparisons across different webs. To constrain the N-H extinction 
assessment to within web comparisons, a second method was im-
plemented. For each max price value (a), every single open-access 
simulation’s N-H extinction level was compared to the N-H extinc-
tions from the fixed-effort treatment of the same fish in the same 
web with the closest matching fixed-effort level when compared to 
the open-access effort level averaged across the third year of open- 
access fishing. The third year was chosen because it captured the 
important transient behavior (when most changes to the food web 
occur) and was generally the beginning of simulations reaching as-
ymptotic behavior. The effect of fishery treatment was ascertained 
using Hedge’s G (effsize R package) (59) to compare the effect size 
of fishing with open access with the fixed-effort treatment as the 
control (Fig. 4E). The same process was also used to compare other 
metrics, such as mean community biomass variability (fig. S15).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/45/eaaz4891/DC1

http://advances.sciencemag.org/cgi/content/full/6/45/eaaz4891/DC1
http://advances.sciencemag.org/cgi/content/full/6/45/eaaz4891/DC1
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