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Abstract
Ecologists	have	used	Global	Positioning	Systems	(GPS)	to	track	animals	for	30	years.	
Issues	 today	 include	 logging	 frequency	 and	precision	 in	 estimating	 space	use	 and	
travel	distances,	as	well	as	battery	life	and	cost.	We	developed	a	low-	cost	(~US$125),	
open-	source	GPS	datalogger	based	on	Arduino.	To	test	the	system,	we	collected	po-
sitions	at	20-	s	intervals	for	several	1-	week	durations	from	cattle	and	sheep	on	range-
land	in	North	Dakota.	We	tested	two	questions	of	broad	interest	to	ecologists	who	
use	GPS	collars	to	track	animal	movements:	(1)	How	closely	do	collared	animals	clus-
ter	 in	 their	herd?	 (2)	How	well	do	different	 logging	patterns	estimate	patch	occu-
pancy	 and	 total	 daily	 distance	 traveled?	 Tested	 logging	 patterns	 included	 regular	
logging	(one	position	every	5	or	10	min),	and	burst	logging	(positions	recorded	at	20-	s	
intervals	for	5	or	10	min	per	hour	followed	by	a	sleep	period).	Collared	sheep	within	
the	 same	 pasture	 spent	 75%	 of	 daytime	 periods	 within	 51	m	 of	 each	 other	
(mean	=	42	m);	collared	cattle	were	within	111	m	(mean	=	76	m).	In	our	comparison	of	
how	well	different	logging	patterns	estimate	space	use	versus	constant	logging,	the	
proportion	 of	 positions	 recorded	 in	 1-		 and	 16-	ha	 patches	 differed	 by	 2%–3%	 for	
burst	 logging	 and	1%	 for	 regular	 logging.	Although	all	 logging	patterns	underesti-
mated	total	daily	distance	traveled,	underestimations	were	corrected	by	multiplying	
estimations	by	regression	coefficients	estimated	by	maximum	likelihood.	Burst	log-
ging	can	extend	battery	 life	by	a	factor	of	7.	We	conclude	that	a	minimum	of	two	
collars	programmed	with	burst	logging	robustly	estimate	patch	use	and	spatial	distri-
bution	of	grazing	 livestock	herds.	Research	questions	 that	 require	accurately	esti-
mating	 travel	 of	 individual	 animals,	 however,	 are	 probably	 best	 addressed	 with	
regular	logging	intervals	and	will	thus	have	greater	battery	demands	than	spatial	oc-
cupancy	questions	across	all	GPS	datalogger	systems.
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1  | INTRODUC TION

Civilian	 research	 scientists	 had	 access	 to	 satellite-	based	 Global	
Positioning	Systems	 (GPS)	by	the	early	1990s,	and	use	 in	animal	
tracking	for	ecological	 research	was	almost	 immediate	 (Rodgers,	
2001).	 Technological	 advancement	 and	 greater	 user	 computing	
power	 has	 brought	 a	 Big	 Data	 approach	 to	 animal	 tracking	 re-
search	in	ecosystems	around	the	world	(Cooke	et	al.,	2017;	Kays,	
Crofoot,	Jetz,	&	Wikelski,	2015).	But	while	the	frontiers	of	GPS-	
based	 animal	 tracking	 are	 exciting,	 there	 remains	 a	 core	 set	 of	
research	questions	that	rely	on	GPS	methods.	For	example,	ecolo-
gists	worldwide	use	GPS	to	study	the	spatial	patterns	of	domestic	
livestock	and	managed	herbivores	 to	measure	animal	movement	
and	behavioral	responses	to	heterogeneous	environments	(Allred	
et	al.,	 2013;	 Girard,	 Bork,	 Nielsen,	 &	 Alexander,	 2013;	 Raynor	
et	al.,	2017;	Zhao	&	Jurdak,	2016).	Data	 from	animal-	borne	GPS	
receivers	can	also	enhance	agroecosystem	sustainability	by	giving	
managers	 information	 useful	 to	 increase	 productivity	 and	 iden-
tify	 areas	 of	 use	 sensitive	 to	 environmental	 degradation	 (Haan,	
Russell,	Davis,	&	Morrical,	2010;	Turner,	Udal,	Larson,	&	Shearer,	
2000).	Not	only	is	domestic	livestock	management	a	global	indus-
try	and	foundation	of	rural	 livelihoods	 (Randolph	et	al.,	2007),	 it	
is	also	an	important	component	of	natural	areas	management	as	a	
prescribed	approach	to	ecological	disturbance	(Pietzsch,	Ochsner,	
Mantilla-	Contreras,	 &	 Hampicke,	 2013).	 Thus,	 whether	 for	 pro-
duction	or	conservation	grazing,	GPS	technology	is	an	important	
resource	 for	 monitoring	 patterns	 of	 livestock	 space	 use	 pat-
terns	 (Allred,	Fuhlendorf,	&	Hamilton,	2011;	Putfarken,	Dengler,	
Lehmann,	&	Härdtle,	2008).

Despite	 the	 benefits	 of	 fine-	scale	 insight	 into	 herbivore	 space	
use,	logistical	constraints	such	as	cost	and	functionality	limit	access	
to	GPS	tracking	technology	for	many	potential	users.	Commercially	
available	systems	can	be	so	expensive	that	a	recent	criterion	for	a	
“low-	cost”	solution	was	under	US$1,000	(Clark	et	al.,	2006).	While	
several	times	less	costly	than	many	commercial	systems,	US$1,000	
is	still	prohibitively	expensive	for	users	in	the	developing	world	who	
stand	to	benefit	from	GPS	tracking	data,	such	as	herder	communities	
in	Ethiopia	and	Morocco	(Akasbi,	Oldeland,	Dengler,	&	Finckh,	2012;	
Liao,	2017).

Even	 those	 with	 Western	 research	 budgets	 face	 questions	
about	how	to	best	use	GPS	technology	in	ecological	studies.	GPS-	
based	tracking	systems	pose	trade-	offs	between	data	quality	and	
quantity,	 hardware	 capability,	 and	 cost.	 Initially,	 data	 quality	 is-
sues	related	to	the	accuracy	of	the	receiver	unit,	and	quantity	de-
pended	on	data	storage	capacity	within	 the	span	of	battery	 life.	
Ensuring	maximum	accuracy,	storage	capacity,	and	battery	life	was	
expensive,	and	lower-	cost	systems	required	compromise	on	one	or	
more	facets.	As	receiver	accuracy	has	improved	and	data	capacity	
has	increased	dramatically	while	the	size	and	cost	of	storage	units	
have	decreased,	data	quality	is	now	more	a	question	of	temporal	
resolution	 to	 address	more	 complicated	 questions	 about	 animal	
behavior	 (Johnson	 &	 Ganskopp,	 2008).	 For	 example,	 estimating	
the	size	of	wolf	home	ranges	with	GPS	data	is	sensitive	to	logging	

frequency	(Mills,	Patterson,	&	Murray,	2006),	but	the	difficulty	in	
fitting	GPS	collars	onto	wolves	in	the	first	place	incentivizes	long	
logging	periods.

Another	 issue	 related	 to	 sampling	 frequency	 is	 how	different	
logging	 intervals	 affect	 estimations	 of	 total	 distance	 traveled	 by	
collared	 animals.	 Less	 linear,	more	 tortuous	 paths	 are	 underesti-
mated	by	infrequent	logging	intervals,	which	cut	corners	and	return	
low	 accumulated	 distance	 (Johnson	 &	 Ganskopp,	 2008;	 Marcus	
Rowcliffe,	Carbone,	Kays,	Kranstauber,	&	Jansen,	2012).	Thus,	one	
might	conclude	that	the	major	 limitation	in	GPS	receiver	technol-
ogy	today	is	battery	life:	Batteries	are	large,	heavy,	and	expensive,	
but	for	many	systems	logging	positions	more	frequently	draws	bat-
teries	down.

We	sought	an	ultra-	low-	cost	GPS	animal	tracking	solution,	and	
through	 the	 process	 of	 development	 inform	 outstanding	 ques-
tions	 about	 herd-	level	 replication	 and	 logging	 intervals.	We	 use	
hardware	 and	 software	 based	on	Arduino	 (https://www.arduino.
cc),	 an	 open-	source	 electronics	 platform.	 Designed	 for	 physical	
computing,	 Arduino	 consists	 of	 low-	cost,	 pre-	assembled	 boards	
programmed	with	a	 freely	available,	 cross-	platform,	open-	source	
Integrated	Development	Environment	 (IDE)	that	uses	C/C++	pro-
gramming	 languages.	Most	 of	 the	 functions	 users	 need	 are	 pro-
vided	with	the	IDE	or	are	freely	available	online	from	third-	party	
developers.

While	open-	source	microcontroller	systems–including	Arduino–
have	been	adopted	in	both	the	field	and	laboratory	(Barnard,	Findley,	
&	Csavina,	2014;	Greenspan	et	al.,	2016;	Shipley,	Kapoor,	Dreelin,	
&	 Winkler,	 2017),	 we	 found	 no	 instances	 of	 Arduino-	based	 GPS	
tracking	 systems	 in	 peer-	reviewed	 literature.	 Here,	 we	 report	 on	
the	assembly,	programming,	geolocation	performance,	and	field	de-
ployment	of	Arduino-	based	GPS	dataloggers	on	two	different	types	
of	grazing	animals,	cattle	and	sheep.	We	use	data	from	the	trials	to	
address	 two	 questions	 of	 general	 importance	 across	 GPS	 logger	
systems,	not	 just	 those	based	on	Arduino:	 (1)	How	closely	do	col-
lared	animals	in	a	herd	track	together?	(2)	How	do	different	logging	
patterns	compare	to	constant,	low-	interval	logging	in	terms	of	mea-
suring	both	spatial	distribution	and	distance	traveled?	Respectively,	
addressing	these	questions	inform	issues	of	within-	herd	logger	rep-
lication	(and	overall	project	cost),	and	optimizing	sampling	intensity	
with	battery	life.

2  | MATERIAL S AND METHODS

2.1 | The GPS logger system

2.1.1 | Basic hardware

The	foundation	of	our	system	is	an	open-	source	microcontroller	
based	on	the	Arduino	electronics	platform.	Specifically,	our	hard-
ware	comes	from	the	Adafruit	Industries	Feather	series	(https://
www.adafruit.com/feather).	Adafruit’s	Feather	hardware	is	com-
patible	 with	 the	 Arduino	 Integrated	 Development	 Environment	
(IDE)	 for	 programming	 small	 electronics	 projects	 powered	 by	

https://www.arduino.cc
https://www.arduino.cc
https://www.adafruit.com/feather
https://www.adafruit.com/feather
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lithium	 ion	 polymer	 (Li-	Po)	 batteries	 for	 mobility.	 With	 pre-	
assembled	 boards	 fitted	 with	 various	 sensors,	 receivers,	 and	
other	peripherals	(referred	to	as	FeatherWings)	designed	as	part	
of	the	Feather	series,	even	a	novice	can	develop	customized	elec-
tronic	 solutions	 with	 minimal	 experience	 in	 either	 hardware	 or	
software.	 The	 components	 come	 as	 simple	 kits,	 and	 users	 sol-
der	 header	 pins	 to	 stack	 wings	 onto	 the	 microcontroller	 board	
and	seamlessly	connect	to	its	circuitry,	often	with	little	or	no	ad-
ditional	 wiring.	 Adafruit	 provides	 freely	 available,	 open-	source	
software	libraries	that	integrate	easily	with	the	IDE	and	Arduino	
programs.

Our	system	is	comprised	of	three	basic	components:	microcon-
troller,	 datalogger,	 and	 GPS	 receiver	 (Table	1).	 Adafruit	 has	 com-
bined	 the	microcontroller	 and	 datalogger	 into	 a	 single	 board	with	
the	Feather	M0	Adalogger,	which	 includes	a	ATSAMD21G18	ARM	
Cortex	M0	microchip	and	microSD	card	slot	(Figure	1).	Using	header	
pins,	the	FeatherWing	GPS	receiver	simply	slides	onto	the	top	of	the	
Adalogger.	The	system	is	powered	by	3.7	v	Li-	Po	batteries;	we	used	
the	highest	capacity	available	from	Adafruit,	6,600	mAh,	for	maxi-
mum	run-	time	(approx.	1	week	under	default	configurations	of	the	
Adalogger	+	GPS	FeatherWing).	These	batteries	are	easily	recharge-
able	via	USB	chargers.

2.1.2 | Attachment to livestock

The	GPS	dataloggers	were	deployed	on	livestock	by	sealing	them	
in	waterproof	 cases	 attached	 to	 heavy-	duty	 nylon	 collars	 sized	
for	 the	 species	 and	 age	 class	 of	 the	 animals.	We	 found	 a	 small	
plastic	case	designed	for	first	aid	kits—available	in	outdoor	equip-
ment	 stores	 and	online	 (Table	1)—	 that	was	perfectly	 suited	 for	
the	 6,600	mAh	 battery	 and	 stacked	 Feather	 logger/receiver.	
We	cut	 small	 pieces	of	 styrofoam	 to	 fit	 around	 the	Feathers	 to	 
reduce	 motion	 in	 the	 headspace	 of	 the	 case	 and	 prevent	 the	 
microSD	 card	 from	 being	 ejected.	We	 also	 included	 small	 silica	 

gel	packets	in	the	cases	to	absorb	moisture	and	reduce	corrosion	
on	 the	 Feathers.	 Prior	 to	 attachment,	 we	 reinforced	 the	 cases	
with	 rubberized	 electrical	 tape	 and	 heavy-	duty	 outdoor	 duct	
tape.

We	attached	the	sealed	datalogger	cases	to	the	livestock	col-
lars	 with	 hose	 clamps.	 Cattle	 were	 restrained	 in	 an	 adjustable	
headgate	while	collars	were	attached,	while	attachments	to	sheep	
were	made	 both	 in	 headgates	 and	while	 held	 by	 herders	 in	 the	
field	 (Figure	2).	Collars	were	fastened	at	the	top	of	the	neck	 just	
behind	 the	 head,	 tightly	 but	 allowed	 to	 rotate.	We	observed	 no	
evidence	 that	 the	 collars	 or	 the	 units—which	weighed	 less	 than	
300	g—	 impaired	 animal	 mobility	 or	 behavior.	 Collars	 were	 re-
trieved	 by	 rounding	 animals	 up	 in	 the	 field	 and	 simply	 undoing	
collar	fasteners.

2.2 | Software

2.2.1 | Programming the datalogger

We	used	software	examples	from	Adafruit	to	program	the	GPS	da-
taloggers	in	the	Arduino	IDE.	The	basic	sketch	includes	two	main	
subroutines:	read	and	parse	location	information	from	the	GPS	re-
ceiver,	 and	write	data	 to	 the	microSD	card	 (Appendix	S1).	 In	 the	
GPS	 subroutine,	 functions	 from	 the	 Adafruit	 GPS	 library,	 called	
with	Adafruit _ GPS.h,	 get	 a	 fix	 from	 satellites	 and	 parse	 the	
data.	Data	are	read	once	per	program	cycle,	and	the	user	controls	
logging	 frequency	 by	 defining	 a	 delay	 between	 program	 cycles,	
which	we	 set	 to	 record	 a	 location	 every	 20	s.	 Data	 are	 handled	
as	 strings	 of	 ASCII	 characters	 formatted	 as	 an	 National	 Marine	
Electronics	Association	 (NMEA)	sentence	parsed	by	the	function	
GPS.parse.

Within	the	same	program	cycle,	the	next	subroutine	writes	data	
to	the	microSD	card	via	the	dataFile.print	command	from	the	
library	called	by	SD.h.	The	data	row	consists	of	specific	entries	from	

TABLE  1 Components	of	livestock	GPS	collar	system	designed	around	the	Arduino-	based	Feather	series	by	Adafruit	Industries.	See	
Figure	1	for	connections,	layout,	and	assembly

Component type Component Source Price (USD)

Core	hardware Feather	M0	Adalogger Adafruit	Industries $19.95

Ultimate	GPS	FeatherWing Adafruit	Industries $39.95

Additional	components Lithium	ion	polymer	battery Adafruit	Industries $8–30

micro	SD	card amazon.com $5–10

Lifeline	4430	waterproof	ABS	case amazon.com $3.99

Nylon	livestock	collar Nasco $9–15

Rubber	splicing	tape Hardware	store $10/roll

Hose	clamps,	nuts	and	bolts,	duct	tape Hardware	store $10

Micro	Li-	Po	USB	battery	charger Adafruit	Industries 5.95

TPL5110	Low	Power	Timer	+	JST	plug Adafruit	Industries $6.45

ADXL335	3-	D	accelerometer Adafruit	Industries $14.95

GPS,	Global	Positioning	Systems.
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the	 parsed	 NMEA	 sentence,	 in	 any	 specified	 order.	 By	 printing	 a	
comma	between	each	data	value	and	writing	a	single	 line	for	each	
observation,	 the	 program	 constructs	 a	 file	 comprised	 of	 comma-	
separated	values	readable	as	a.csv	file.

2.2.2 | Postprocessing data

While	the	data	file	created	on	the	microSD	card	is	human-	readable	
via	any	basic	text	editor,	spreadsheet	application,	or	data	analysis	
package	 capable	 of	 reading	 comma-	separated	 values,	 one	 quirk	
in	 the	 raw	NMEA	 data	 returned	 by	 Arduino’s	GPS.parse	 func-
tion	 requires	 postprocessing.	 The	 $GPGLL	 phrase—Geographic	
Position,	 Latitude/Longitude,	 and	 time—	 is	 in	 the	 format	 lll.ll,a,	
for	degrees,	decimal	minutes,	and	hemisphere.	Take,	 for	 illustra-
tion,	 the	 example	 from	 http://aprs.gids.nl/nmea/#gll:	 Latitude	

49	 degrees	 16.45	min	 North	 is	 stored	 as	 4916.46,N,	 which	 is	
not	 readily	 interpretable	 to	 data	 analysis,	 graphing,	 and	 most	
GIS	software.	However,	 this	obscure	but	standard	format	 is	eas-
ily	converted	 into	degrees/minutes/seconds,	decimal	degrees,	or	
the	Universal	Transverse	Mercator	(UTM)	coordinate	system,	for	
which	we	provide	script	written	for	the	freely	available	R	statisti-
cal	environment	(R	Core	Team	2017)	in	Appendix	S2.	We	assigned	

F IGURE  1 Top:	Illustration	of	our	Global	Positioning	Systems	
(GPS)	datalogger	electronics.	Basic	components	include	the	
Adafruit	Feather	M0	Adalogger	(a)	and	Adafruit	GPS	Wing	(b).	Also	
shown	are	the	TPL5110	low	power	timer	(c),	external	JST	battery	
plug	(d),	and	a	47uF	capacitor	(e)	to	stabilize	the	power	supply.	
Bottom:	The	assembled	GPS	Wing	and	Adalogger,	with	battery,	
case,	clamps,	and	collar

(a)

(b)

(e)

(c)

(d)

F IGURE  2 Top:	Attaching	a	collar	with	duct	tape-	wrapped	
Global	Positioning	Systems	datalogger	on	a	cow	ahead	of	initial	
release	onto	experimental	pastures	in	June.	Bottom:	Retrieving	a	
collar	from	a	sheep	in	the	field

http://aprs.gids.nl/nmea/#gll
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Coordinate	 Reference	 Systems	 in	R	 with	 functions	 from	 the	sp 
package	(Pebesma	&	Bivand,	2005).

Other	steps	in	postprocessing	the	GPS	data	included	converting	
the	timestamp	to	a	time-	date	POSIXct	object	in	R	with	the	strp-
time	 function	 and	 correcting	 the	 default	 UTC	 time	 to	 local	 time	
with	the	hours	function	in	the	lubridate	package	(Grolemund	&	
Wickham,	2011),	which	allows	one	to	focus	on	livestock	activity	at	
specific	periods	within	days	and	seasons.	While	GIS-	related	steps	in	
the	analysis	are	discussed	below,	we	began	by	cropping	GPS	 loca-
tions	to	the	experimental	pastures	to	remove	positions	beyond	the	
pasture	boundaries	due	 to	 transport	of	 turned-	on	but	unattached	
collars,	a	couple	instances	of	sheep	getting	through	their	fence,	and	
very	 few	 inadvertent	 outlier	 positions	 likely	 due	 to	 poor	 satellite	
fixes.

2.2.3 | Precision and accuracy testing

As	we	could	find	no	information	on	the	geolocation	performance	
of	the	Adafruit	GPS	Wing,	we	modified	the	protocol	of	Clark	et	al.	
(2006)	 to	measure	 the	 average	 horizontal	 error	 or	 circular	 error	
probability	 (CEP)	 of	 our	 datalogger	 units:	 Essentially,	 we	 deter-
mined	how	closely	positions	 logged	by	our	dataloggers	matched	
up	with	a	known	position	on	the	Earth’s	surface,	specifically,	U.S.	
National	Geodetic	Survey	geodetic	survey	point	RP1098	in	Fargo,	
North	Dakota.	Dataloggers	were	arranged	on	the	top	of	a	1.2-	m	
fiberglass	stepladder	directly	above	the	survey	point	and	 logged	
positions	 at	 20-	s	 intervals	 for	 90	min.	 From	 these	 data,	 we	 cal-
culated	 both	 precision	 and	 accuracy	 for	 each	 unit,	 defined,	 re-
spectively,	 as	 how	 tightly	 positions	 from	 a	 single	 unit	 clustered,	
and	how	far	logged	positions	were	from	the	known	georeference	
point.	For	each	measure,	we	calculated	CEP	as	 the	95%	quantile	
for	each	unit	(Clark	et	al.,	2006).	Distances	between	individual	po-
sitions	and	either	the	centroid	of	a	unit’s	positions	(precision	cal-
culation)	or	 the	known	georeference	 (accuracy	 calculation)	were	
computed	with	the	distGeo	function	in	the	geosphere	package	
(Hijmans,	2016)	for	R.

2.3 | Field trials

2.3.1 | GPS datalogger deployments

We	made	4-	week-	long	deployments	in	the	summer	of	2017	on	ex-
perimental	rangeland	at	the	Hettinger	Research	Extension	Center	
in	Hettinger,	North	Dakota,	which	 included	 four,	 65	ha	 pastures,	
two	stocked	with	cattle	and	two	with	sheep.	An	initial	trial	in	June	
consisted	of	three	dataloggers	deployed	to	one	cattle	pasture	and	
another	three	dataloggers	deployed	to	one	sheep	pasture.	Collars	
were	attached	to	randomly	selected	animals,	while	they	were	being	
worked	through	livestock	handling	facilities	prior	to	initial	release	
to	 experimental	 pastures	 for	 the	 grazing	 season.	 Sampling	 effort	
was	doubled	for	July,	August,	and	September	trials	with	three	units	
deployed	 in	 each	 of	 two	 additional	 pastures,	 one	 cattle	 and	 one	
sheep.

2.3.2 | Data management

We	developed	a	workflow	for	loading	and	processing	Feather	GPS	
data	 in	R	 (Appendix	 S2).	We	begin	with	 a	 function	 that	 loads	 and	
combines	individual	.TXT	files	written	to	the	microSD	card	by	each	
Feather	M0	Adalogger	 into	a	single	R data.frame.	Then,	we	re-
move	 duplicate	 entries	 from	 the	 combined	 data.frame,	 which	
occur	 when	 data	 from	 a	 previous	 deployment	 remain	 on	 the	 mi-
croSD	card.	Subsequent	steps	convert	default	NMEA	format	for	lati-
tude	and	longitude	into	the	UTM	coordinate	reference	system	(UTM	
Zone	13,	datum	NAD83).

After	cropping	the	positions	to	pasture	boundaries,	we	combined	
the	positions	with	a	spatial	data.frame	containing	information	on	
location	names	and	management	status	using	the	sp	package	in	R. 
We	then	discarded	locations	incorrectly	assigned	to	the	wrong	pas-
ture	by	the	data.frame	merger,	which	occurred	where	experimen-
tal	pastures	shared	a	fence	boundary	and	locations	were	incorrectly	
recorded	on	the	wrong	side	of	the	fence	as	animals	tracked	along	it,	
or	 in	 a	 couple	 instances,	when	 sheep	actually	 crossed	 fences	 into	
neighboring	 pastures.	 For	 our	 analyses,	 we	 excluded	 any	 individ-
ual	logger	deployment	that	did	not	log	at	least	1,000	locations.	Full	
script	for	analysis	is	available	in	Appendix	S3.

2.3.3 | Data analysis

To	inform	the	minimum	number	of	dataloggers	required	to	estimate	
spatial	distribution	of	livestock	herds,	we	calculated	how	closely	col-
lared	 animals	within	 a	 pasture	 ranged	with	 respect	 to	 each	other.	
We	 wrote	 a	 script	 to	 compute	 distance	 matrices	 during	 the	 four	
datalogger	deployments	using	the	vegdist	function	in	the	vegan 
package	(Oksanen	et	al.,	2017)	for	the	R	statistical	environment.	By	
calculating	distance	matrices	with	 the	Euclidean	distance	measure	
based	on	UTM	coordinates,	 this	 function	returns	 the	shortest	dis-
tance	between	logged	positions	in	meters.	Our	script	used	only	the	
first	logged	position	per	minute	for	each	datalogger,	to	minimize	var-
iability	caused	by	differences	in	which	points	in	the	minute	a	given	
datalogger	spaces	its	20-	s	logging	intervals.	We	excluded	nighttime	
positions	from	the	analysis	 (22:00–04:00).	Our	script	returned	the	
mean	distance	among	collared	animals	per	minute	per	pasture,	based	
on	a	maximum	of	three	dataloggers/pasture.	When	only	two	data-
loggers	had	a	position	in	a	given	minute	due	to	the	third	registering	
an	outlier	or	being	nonfunctional,	 the	script	 returned	the	distance	
between	the	two	valid	points.	If	a	minute	contained	one	or	no	valid	
points	 for	 a	 given	 pasture,	 the	 script	 did	 not	 return	 any	 distance	
value	for	that	pasture	in	that	minute.

We	compared	different	patterns	and	frequencies	of	logging	GPS	
positions	 on	 two	measures	 of	 animal	 behavior	 frequently	 studied	
with	GPS	data:	 spatial	distribution	and	distance	 traveled.	Our	 two	
alternative	sampling	patterns	included	regular—	in	which	data	were	
subsampled	regularly	at	5-		and	10-	min	intervals—and	burst–	in	which	
all	positions	from	5-		and	10-	min	durations	were	sampled	from	each	
hour;	 the	combination	of	5-		and	10-	min	 intervals	between	regular	
and	burst	patterns	created	 four	potential	ways	a	datalogger	could	
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be	programmed	to	reduce	the	size	of	data	files	and/or	extend	bat-
tery	life.	Data	were	subsampled	with	the	cut	function	to	re-	format	
the	timestamp	of	each	position	to	fall	within	either	a	5-		or	10-	min	
window.	We	then	extracted	either	the	first	position	per	window	for	
regular	logging,	or	all	positions	within	the	first	window	of	each	hour	
for	burst	logging.

To	compare	patterns	of	 spatial	distribution,	we	 first	 calculated	
the	 proportion	 of	 all	 daytime	 locations	 logged	 at	 20-	s	 intervals	
(constant	 logging)	within	equal-	sized	patches	 in	each	pasture,	sub-
set	the	constant	logging	data	as	if	collected	under	each	of	the	four	
patterns,	and	determined	the	difference	between	the	proportional	
distribution	of	 these	data	within	each	patch	 to	 the	distribution	of	
the	constantly-	logged	data.	We	used	two	patch	sizes:	~16	ha,	cre-
ated	by	dividing	our	~64	ha	pastures	 into	 four	equal	patches;	 and	
1	ha,	created	by	subdividing	16	ha	patches	 into	100	×	100	m	grids.	
Because	these	divisions	created	many	more	1-	ha	patches	than	16-	ha	
patches,	and	1-	ha	patches	are	potentially	more	susceptible	to	error,	
we	employed	a	conservative	approach	and	report	the	maximum	dif-
ference	among	all	patches	per	datalogger	rather	than	the	mean.	We	
calculated	the	absolute	value	of	differences	to	ensure	positive	and	
negative	 differences	 between	 the	 distribution	 of	 positions	 under	
constant	and	subsampled	logging	did	not	cancel	out	the	magnitude	
of	difference	between	the	patterns.

To	compare	travel	distance,	we	summed	the	distance	between	
logged	positions	for	each	collared	animal	per	day	under	each	logging	
pattern	 and	 compared	 them	as	 a	percentage	of	 the	 total	 distance	
recorded	by	 constant	 logging	 at	 20-	s	 intervals.	Distance	between	
logged	GPS	positions	was	calculated	with	the	distGeo	function	in	
geosphere.	 To	 explore	 the	 utility	 of	 applying	 correction	 factors	
to	 underestimated	 travel	 distance	 by	 less-	frequent	 sampling	 (e.g.,	
Akasbi	et	al.,	2012),	we	used	the	maximum	likelihood	function	mle2 
in	the	bbmle	package	(Bolker	&	R	Core	Team,	2017)	to	estimate	re-
gression	 coefficients	 for	 each	 combination	 of	 logging	 pattern	 and	
interval	from	linear	models.	June	data	were	excluded	from	this	first	
step,	so	as	to	retain	a	novel	dataset	to	which	we	multiplied	estimated	
distances	for	each	 logging	pattern	by	that	pattern’s	estimated	cor-
rection	 factor	 and	 re-	calculated	 regression	 coefficients	 from	 the	
corrected	 linear	model	 fit	 to	 June	data.	We	calculated	95%	confi-
dence	 intervals	 for	 the	 slope	 coefficients	 to	 determine	 difference	
from	1;	a	slope	of	1	between	distance	determined	by	constant	log-
ging	and	estimated	by	different	logging	patterns	indicates	accurate	
estimation.

2.4 | Extending battery life

The	constant,	high	clock	speed	of	the	Feather	M0’s	processor	drains	
battery	life.	Adafruit’s	hardware	solution	is	the	TPL5110	low	power	
timer,	which	bypasses	the	direct	power	supply	between	battery	and	
board	and	only	supplies	power	at	set	durations.	Integration	with	the	
Feather	M0	Adalogger	is	simple	but	does	require	minor	external	wir-
ing	(Figure	1).

Because	many	Arduino	projects	take	less	than	a	second	or	two	
to	initialize,	external	power	regulation	is	an	elegant	solution,	but	

GPS	logging	poses	a	potential	pitfall	in	that	satellite	fixes	are	lost	
when	the	unit	loses	power	and	longer	power-	off	periods	can	slow	
fix	 re-	acquisition	 when	 power	 is	 restored.	 As	 such,	 meaningful	
data	 require	 an	 adequate	 logging	 period	 balanced	 by	 a	 reason-
able	power-	off	period,	so	GPS	receiver	initialization	is	a	relatively	
infrequent	event	with	marginal	contributions	to	power	consump-
tion,	which	motivates	our	“burst”	sampling.

3  | RESULTS

3.1 | Unit performance

Mean	95%	circular	error	probability	(95%	CEP)	for	all	units	with	re-
spect	 to	 the	 known	georeference	point—our	measure	of	GPS	unit	
accuracy—	was	4.0	m	(±0.3	SE).	Unit	precision	was	1.8	m	(±0.2	SE).

Our	GPS	dataloggers	 performed	well	 in	 field	 trials	with	 lim-
ited	equipment	malfunction.	Only	two	datalogger	units	were	ex-
cluded	entirely	from	the	dataset	due	to	recording	less	than	1,000	
locations:	 one	 due	 to	 unrelated	 sheep	mortality,	 and	 one	when	
it	appeared	a	battery	was	incompletely	charged.	We	determined	
that	excessive	movement	within	the	case	could	cause	the	spring	
mechanism	 of	 the	 microSD	 card	 holder	 to	 eject	 the	 cards.	We	
cut	scrap	styrofoam	to	fit	around	the	Feather	units	and	take	up	
headspace	 in	 the	 case,	 after	 which	 all	 units	 logged	 for	 at	 least	
109	hr	 (16,000	 valid	 positions)	 and	up	 to	190	hr	 (nearly	 32,000	
valid	 positions)	 per	 week-	long	 deployment,	 with	 an	 average	 of	
171	logging	hours.

Each	step	 in	 the	data	processing	workflow	 intended	 to	clean	
up	 the	 GPS	 data	 removed	 rows	 from	 the	data.frame,	 but	 the	
proportion	 of	 positions	 removed	 for	 low-	quality	 fixes	 and	being	
beyond	pasture	boundaries	was	extremely	low.	After	cleanup,	we	
used	718,510	logged	positions	in	our	analysis	from	a	total	of	4,962	
functioning	datalogger	hours	over	33	successful	 individual	data-
logger	deployments	of	39	deployments	attempted.	Focusing	anal-
ysis	on	positions	recorded	between	04:00	and	22:00	is	justified	by	
low	activity	levels	as	evidenced	by	lower	distances	traveled	than	
any	other	period	in	the	day	among	both	cattle	and	sheep	through-
out	the	season	(Figure	3).

3.2 | Distance between units

Collared	animals	within	the	same	pasture	generally	remained	close	
to	 each	 other	 throughout	 the	 grazing	 season	 (Figure	4).	Despite	
having	many	more	animals	per	herd,	sheep	maintained	closer	dis-
tances	than	cattle:	Collared	sheep	were	within	25	m	of	each	other	
in	50%	of	all	daytime	positions	versus	64	m	for	cattle.	Sheep	spent	
75%	of	the	daytime	period	within	51	m,	whereas	cattle	spent	75%	
of	 the	 daytime	 period	 within	 111	m.	 The	 mean	 distance	 among	
collared	 animals	 was	 greatest	 among	 cattle	 in	 August	 (100	m),	
and	 otherwise,	 the	 mean	 distance	 between	 collared	 cattle	 was	
72–79	m	 (Figure	4).	 Sheep	 averaged	 no	 more	 than	 42	m	 apart	
(Figure	4).
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3.3 | Logging pattern comparison

We	found	very	little	difference	in	the	proportion	of	positions	re-
corded	 in	 patches	within	 pastures	 by	 four	 different	 logging	 pat-
terns	 compared	 to	 constant	 logging	 (Figure	5).	 There	 was	 very	
little	 difference	 in	 the	 proportion	 of	 locations	 recorded	 in	 1-	ha	
versus	 16-	ha	 patches.	 The	 maximum	 degree	 of	 difference	 oc-
curred	 among	 cattle	 sampled	under	 the	burst	 logging	pattern	 in	
July	at	both	5	and	10-	min	durations,	which	differed	from	constant	
logging	by	an	average	of	3%	and	a	mean	maximum	among	data-
loggers	 of	 8%	 (Figure	5).	Otherwise,	 the	maximum	 difference	 in	

the	proportion	of	positions	recorded	in	a	given	1-		or	16-	ha	patch	
under	burst	or	regular	logging	did	not	exceed	6%,	with	a	mean	dif-
ference	of	2%.

Regular	 logging	 was	 the	 least	 variable,	 with	 no	 maximum	 dif-
ference	 from	 constant	 logging	 above	 5%	 (Figure	5)	 and	mean	 dif-
ferences	always	under	1%	difference	across	months	and	 livestock	
types.	 Figure	6	 provides	 an	 example	 of	 how	 the	 different	 logging	
patterns	 compare	 to	 constant	 logging	 for	 one	 sheep	pasture	on	 a	
randomly	selected	day	in	July.

3.4 | Distance traveled comparison

Logging	 fewer	 GPS	 positions	 resulted	 in	 underestimated	 total	
daily	 distance	 traveled	 for	 collared	 animals,	 when	 the	 four	 log-
ging	patterns	were	compared	against	constant	(20-	s	interval)	log-
ging	(Figure	7).	Not	surprisingly,	regular	logging	performed	better	
than	burst	logging	in	terms	of	less	severe	underestimation	of	total	
daily	distance.	Shorter,	5-	min	intervals	performed	better	than	10-	
min	 intervals,	 especially	 for	 sheep.	 On	 average,	 cattle	 traveled	
4,399	m	 (±201	SE)	 per	day,	while	 sheep	 traveled	5,406	m	 (±221	
SE)	per	day.

Using	 linear	 regression	 coefficients	 from	 maximum	 likelihood	
estimation	as	correction	factors	was	effective	in	compensating	for	
underestimations	 in	 total	 daily	 distance	 traveled	 (Figure	8).	 As	 in-
dicated	by	 the	degree	of	underestimation	 (Figure	7),	 linear	models	
fitting	total	daily	distances	from	constant	logging	against	those	esti-
mated	by	different	logging	patterns	had	regression	coefficients	sub-
stantially	above	1.0,	with	burst	 logging	approaching	2.0	 (Figure	8).	
But	in	each	case,	multiplying	novel	data	by	these	estimated	regres-
sion	 coefficients	 prior	 to	 comparison	 with	 constant	 logging	 pro-
duced	95%	confidence	intervals	centered	around	1.0,	meaning	they	
accurately	predicted	actual	total	daily	distance	traveled.

F IGURE  3 Mean	distance	traveled	per	
animal,	per	hour,	across	all	days	within	
each	month.	Low	activity	levels	between	
22:00	and	04:00	justify	removing	this	
nighttime	period	from	subsequent	
analysis.	Data	from	two	cattle	and	two	
sheep	pastures	in	Hettinger,	North	
Dakota,	with	2–3	collared	animals	per	
pasture	(actual	number	within	each	mean	
varies	with	individual	collar	performance	
and	battery	life)
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3.5 | Battery life extension

Fitting	 the	 GPS	 dataloggers	 with	 the	 TPL5110	 low	 power	 timer	
(Figure	1)	and	programming	the	unit	for	the	5-	min	burst	logging	pat-
tern	substantially	increased	battery	life	in	laboratory	tests.	Use	of	the	
low	power	timer	increased	battery	life	by	a	factor	of	7.5,	which	when	
applied	to	our	average	battery	life	of	171	logging	hours	suggests	bat-
tery	life	could	be	extended	to	as	long	as	1,306	hr,	or	54	days.	While	
actual	 performance	 in	 the	 field	 is	 likely	 affected	 by	 battery	 age,	
operating	 temperature,	 and	 time	 spent	 re-	acquiring	 satellite	 fixes,	
these	 results	 suggest	 incorporating	 the	power	 timer	might	greatly	
increase	the	utility	of	the	system	for	situations	where	animals	can	
be	handled	at	monthly	but	not	weekly	intervals.	Alternatively,	users	
satisfied	with	shorter	deployments	can	use	batteries	that	weigh,	and	
cost,	less.

4  | DISCUSSION

The	purpose	of	 this	study	was	 twofold:	First,	we	sought	 to	create	
a	 low-	cost	 GPS	 datalogger	 with	 high	 data	 storage	 capacity,	 high-	
frequency	logging,	and	sufficient	durability	for	attachment	to	range-
land	 livestock.	Second,	we	used	these	high-	frequency	data	 to	 test	
general	questions	related	to	datalogger	replication	within	herds	and	
trade-	offs	between	battery	life	and	accurately	representing	animal	
behavior.	The	dataloggers	functioned	well	in	the	field	trial,	and	inte-
grating	the	TPL5110	low	power	timer	can	potentially	extend	battery	
life	by	a	factor	of	seven,	which	means	up	to	50	days	of	burst	logging	
with	a	6,600	mAh	battery.	Our	20-	s	logging	interval	certainly	quali-
fies	as	high-	frequency	for	the	purposes	of	comparing	error	created	
by	less-	frequent	intervals:	While	some	studies	logged	at	10-	s	inter-
vals	and	calculated	error	from	there	(Liu,	Green,	Rodríguez,	Ramirez,	
&	Shike,	2015;	Swain,	Wark,	&	Bishop-	Hurley,	2008;	Zhao	&	Jurdak,	
2016),	 other	 studies	 used	 baseline	 data	 from	 intervals	 as	 long	 as	

4–5	min	(Johnson	&	Ganskopp,	2008;	Mills	et	al.,	2006)	and	15	min	
(Akasbi	et	al.,	2012).

We	found	 that	collared	animals	within	 the	same	pasture	spent	
most	of	 their	 time	 close	 to	one	 another,	 suggesting	 that	 few	GPS	
datalogger	units	per	herd	are	necessary	to	monitor	spatial	distribu-
tion.	 Collared	 cattle	were,	 on	 average,	within	 76	m	of	 each	 other,	
and	 sheep	 within	 42	m	 of	 each	 other,	 on	 pastures	 approximately	
800	×	800	m	square.	Clearly,	sheep	herd	very	tightly;	collared	sheep	
were	closer	together	despite	their	herds	being	an	order	of	magnitude	
larger	(stocking	rates	were	approximately	25	cattle	vs.	175	sheep	per	
pasture).	Distances	 among	 animals	were	 generally	 consistent	with	
other	research:	Schwager,	Anderson,	Butler,	and	Rus	(2007)	showed	
high	 variability	 around	mean	distances	 to	 cattle	 herd	 centroids	 of	
50–60	m	in	466	ha	of	arid	rangeland,	and	Guo	et	al.	(2009)	showed	
high	variability	around	mean	cow-	cow	distances	of	20–25	m	in	small	
(7	ha)	paddocks.

Based	on	these	data,	we	suggest	that	one	datalogger	is	probably	
sufficient	to	record	herd	locations	at	a	landscape	level,	but	recom-
mend	at	least	2–3	to	ensure	data	redundancy	in	the	face	of	equip-
ment	malfunction	or	animal	mortality.	Conversely,	Liu	et	al.	 (2015)	
suggest	up	to	75%	of	animals	in	a	group	should	be	fitted	with	collars	
to	 estimate	 spatial	 occupancy,	 which	 for	 most	 researchers	 would	
be	cost-	prohibitive:	Such	a	 sampling	 intensity	 for	our	 sheep	herds	
would	require	130	dataloggers	per pasture	for	the	animals	we	found	
to	cluster	the	tightest.	At	the	very	 least,	sufficient	sampling	inten-
sity	likely	varies	with	species,	environmental	heterogeneity,	and	re-
search	question	(Augustine	&	Derner,	2013).	For	work	in	rangelands	
and	wildlands,	 investigators	are	 likely	 to	gain	more	 information	by	
distributing	equipment	across	replicate	herds	in	heterogeneous	en-
vironments	despite	possible	loss	of	accuracy.

Each	of	our	four	logging	patterns	provided	low	rates	of	error	in	
determining	occupancy	of	both	small	(1	ha)	and	large	(16	ha)	patches	
in	 our	 experimental	 landscapes.	 The	 accuracy	 of	 determining	 the	
spatial	distribution	of	animals	with	GPS	data	declines	as	the	interval	

F IGURE  5 Maximum	percentage	
difference	among	each	datalogger	
deployment	between	proportion	of	
locations	in	each	1-		and	16-	ha	patches	
under	four	logging	patterns	(hourly	
bursts	of	5-		or	10-	min	duration,	regular	
5-		or	10-	min	intervals)	compared	to	the	
proportion	of	locations	in	each	patch	
under	continuous	logging.	Differences	
expressed	as	absolute	values.	Data	consist	
of	positions	logged	between	04:00	and	
22:00	during	4–7-	day	trials	on	two	cattle	
and	two	sheep	pastures	in	Hettinger,	
North	Dakota
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between	 logged	positions	 increases;	hourly	 intervals	produce	pre-
diction	error	rates	of	90%	for	even	slow-	moving	cattle	(Swain	et	al.,	
2008).	Our	maximum	error	rate	was	8%,	and	averages	were	around	

2%–3%.	According	to	Swain	et	al.	(2008),	an	under-	appreciated	fac-
tor	 in	GPS	data	quality	 is	 how	quickly	 the	GPS	 receiver	obtains	 a	
“fix”	on	 satellites,	 and	 they	describe	a	 solution	very	 similar	 to	our	

F IGURE  6 An	example	of	four	logging	patterns	(hourly	bursts	of	5-		or	10-	min	duration,	regular	5-		or	10-	min	intervals)	compared	to	
constant	logging	at	20-	s	intervals	for	three	sheep	fitted	with	DIY	GPS	dataloggers	at	the	Hettinger	Research	Extension	Center,	Hettinger,	
North	Dakota.	Data	are	from	between	04:00	and	22:00	on	7	July	2017.	Pasture	divisions	represent	the	patches	used	to	compare	space	use	
patterns	by	the	four	logging	settings	(Figure	5).	These	maps	also	illustrate	how	different	logging	patterns	might	vary	in	their	estimation	of	
total	distance	traveled,	especially	over	nonlinear/tortuous	routes
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burst	logging	pattern	that	greatly	reduces	error	from	slow	fixes	by	
remaining	on	and	connected	to	satellites	for	the	duration	of	the	log-
ging	period.

Total	 daily	 distance	 traveled	 by	 collared	 animals	 in	 our	 study	
was	consistent	with	other	data	published	from	rangeland	systems.	
Lomillos	Pérez,	Alonso	la	Varga,	García,	and	Gaudioso	Lacasa	(2017)	
reported	cattle	in	rangeland	pastures	traveled	an	average	of	3.3	km	
per	day	during	warm	months	 in	pastures	of	a	similar	 size;	our	cat-
tle	traveled	an	average	of	4.3	km	per	day	with	a	daily	photoperiod	
exceeding	16	hr	in	midsummer.	Our	data	do	suggest	the	frequently	

reported	bimodal	activity	pattern	(Figure	3)	created	by	early	morn-
ing	and	late	afternoon	grazing	periods	(Bailey,	Keil,	&	Rittenhouse,	
2004;	 Lomillos	 Pérez	 et	al.,	 2017;	 Schlecht,	 Hiernaux,	 Kadaouré,	
Hülsebusch,	&	Mahler,	2006),	indicating	we	are	able	to	detect	broad	
patterns	of	animal	activity	from	the	GPS	data	alone.

Also	consistent	in	our	daily	distance	data	was	the	increase	in	pre-
diction	error	as	the	interval	between	logged	positions	increased.	The	
degradation	of	accuracy	as	 logging	 interval	 increases	 is	 frequently	
reported	 (Johnson	 &	 Ganskopp,	 2008;	 Marcus	 Rowcliffe	 et	al.,	
2012;	Mills	 et	al.,	 2006)	 and,	when	explicitly	 quantified,	 shows	an	

F IGURE  7 Differences	in	total	daily	
distance	traveled	for	collared	animals	
under	four	logging	patterns	(hourly	bursts	
of	5-		or	10-	min	duration,	regular	5-		or	
10-	min	intervals)	compared	to	continuous	
logging.	Data	consist	of	positions	logged	
between	04:00	and	22:00	during	3–7-	
day	trials	on	two	cattle	and	two	sheep	
pastures	in	Hettinger,	North	Dakota
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F IGURE  8 Slope	parameters	from	linear	regression	models	comparing	estimated	daily	distance	traveled	for	collared	animals	under	four	
logging	patterns	(hourly	bursts	of	5-		or	10-	min	duration,	regular	5-		or	10-	min	intervals)	to	continuous	logging.	Corrected	models	multiply	
the	estimated	distance	in	June	data	by	the	slope	parameter	from	the	uncorrected	model,	which	was	determined	by	maximum	likelihood	
estimation	on	data	from	July,	August,	and	September;	the	closer	the	corrected	parameter	is	to	1,	the	better	the	correction	factor	performs	in	
increasing	the	accuracy	of	distance	estimates.	Data	consist	of	positions	logged	between	04:00	and	22:00	during	3–7-	day	trials	on	two	cattle	
and	two	sheep	pastures	in	Hettinger,	North	Dakota
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exponential	 decay	 that	 can	 be	 corrected	 by	multiplying	 observed	
distances	by	coefficients	from	the	best-	fit	line	(Akasbi	et	al.,	2012).	
Our	data	suffered	the	same	declines,	with	travel	distance	underes-
timations	 ranging	 from	15%	to	60%	depending	on	 logging	pattern	
(burst	logging	was	the	worst;	Figures	7	and	8).	However,	when	cor-
rection	factors	were	determined	by	maximum	likelihood	estimation	
and	 multiplied	 by	 observed	 distances,	 predicted	 daily	 distances	
matched	1:1	with	actual	distances	traveled	for	even	novel	data	an-
alyzed	under	the	burst	pattern	(Figure	8).	Thus,	it	appears	possible	
to	correct	distance	estimations	collected	under	burst	logging	if	the	
coefficient	can	be	determined,	but	we	acknowledge	this	is	likely	not	
sufficient	 for	 research	questions	 that	 require	accurate	estimations	
of	traveled	distance.

Although	it	is	frequently	reported,	traveled	distance	alone	is	not	
necessarily	the	best	measure	of	animal	activity	(Ungar	et	al.,	2005).	
Often,	finer-	scale	data	including	instantaneous	speed	and	head	po-
sition	predict	individual	behavior,	and	such	data	are	easily	obtained	
from	 high-	frequency	GPS	 logging	 intervals	 and	 additional	 sensors	
such	as	3-	D	accelerometers	(Moreau,	Siebert,	Buerkert,	&	Schlecht,	
2009).	Many	commercial	 systems	can	be	ordered	with	accelerom-
eters,	 and	 Adafruit	 offers	 several	 options	 that	 can	 be	 integrated	
with	the	system	we	describe	here;	in	fact,	we	quickly	soldered	the	
Adafruit	ADXL335	(Table	1)	onto	a	datalogger	and	updated	the	pro-
gram	prior	to	the	final	round	of	field	trials.	However,	these	raw	data	
are	not	immediately	useful	as	it	is	standard	procedure	among	studies	
reporting	accurate	predictions	of	activity	and	behavior	 from	GPS/
accelerometer	data	 to	calibrate	activity	classifications	with	human	
observations	(e.g.,	Augustine	&	Derner,	2013;	Schlecht,	Hülsebusch,	
Mahler,	&	Becker,	2004),	but	 the	models	are	not	necessarily	com-
plicated.	 Augustine	 and	Derner	 (2013)	 found	 that	 binary	 grazing/
not	grazing	classification	had	the	highest	accuracy	in	modeling	cat-
tle	 activity	on	 rangeland,	 and	distance	 traveled	per	5-	min	 interval	
combined	with	head	position	data	were	the	two	best	predictors	of	
grazing	 activity.	The	burst	 logging	pattern	 is	 ideal	 for	 these	 types	
of	data,	providing	high-	frequency	observations	for	the	duration	of	
the	burst.	Assuming	activity	can	be	sampled	at	some	hourly	interval	
rather	than	constantly	monitored,	burst	logging	is	a	potential	solu-
tion	for	gaining	high-	frequency	data	over	long	time	periods	through	
extended	battery	life,	especially	if	highly-	accurate	estimates	of	daily	
travel	are	not	required.
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