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Abstract

Recent tools for aligning short DNA reads have been designed to optimize the trade-off between correctness and speed.
This paper introduces a method for assigning a set of short DNA reads to a reference genome, under Local Rank Distance
(LRD). The rank-based aligner proposed in this work aims to improve correctness over speed. However, some indexing
strategies to speed up the aligner are also investigated. The LRD aligner is improved in terms of speed by storing k-mer
positions in a hash table for each read. Another improvement, that produces an approximate LRD aligner, is to consider only
the positions in the reference that are likely to represent a good positional match of the read. The proposed aligner is
evaluated and compared to other state of the art alignment tools in several experiments. A set of experiments are
conducted to determine the precision and the recall of the proposed aligner, in the presence of contaminated reads. In
another set of experiments, the proposed aligner is used to find the order, the family, or the species of a new (or unknown)
organism, given only a set of short Next-Generation Sequencing DNA reads. The empirical results show that the aligner
proposed in this work is highly accurate from a biological point of view. Compared to the other evaluated tools, the LRD
aligner has the important advantage of being very accurate even for a very low base coverage. Thus, the LRD aligner can be
considered as a good alternative to standard alignment tools, especially when the accuracy of the aligner is of high
importance. Source code and UNIX binaries of the aligner are freely available for future development and use at http://lrd.
herokuapp.com/aligners. The software is implemented in C++ and Java, being supported on UNIX and MS Windows.
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Introduction

Novel high-throughput sequencing technologies generate up to

several millions of short DNA reads (30 to 400 nucleotides long)

from random locations in the genome. Putting together these reads

into a coherent whole is a significant computational challenge.

The first and most expensive step of this process is aligning each

read to a known reference genome. Recently, many tools designed

to align short reads have been proposed [1]. Sequence alignment

tools are designed to optimize the trade-off between correctness

and speed, usually sacrificing correctness over speed. This leaves

room for new tools for sequence alignment that can better satisfy

one of (or both) the two needs, namely efficiency and accuracy.

With broad applications from phylogenetic analysis to finding

motifs or common patterns in a set of given DNA sequences, new

alignment tools are of great interest for the entire community of

computational biology researchers.

This paper proposes a method for assigning a set of short DNA

reads to a reference genome, under Local Rank Distance (LRD)

[2]. Local Rank Distance is an extension of rank distance [3] that

is designed to work on overlapping k-mers instead of single

characters as rank distance. Despite the fact that LRD was only

recently introduced, it has already demonstrated its performance

in phylogenetic analysis [2] and native language identification [4].

The rank-based sequence aligner works as follows. Given a set

of reads that need to be aligned against a reference genome, the

aligner determines the position of each read in the reference

genome that gives the minimum Local Rank Distance. The

proposed aligner will be referred to as the LRD aligner through

the rest of this paper. Some strategies of optimizing the search for

the best positions of reads are also proposed and investigated. The

LRD aligner is improved in terms of speed by storing k-mer

positions in a hash table for each read. An approximate LRD

aligner that works even faster is obtained through the following

strategy. The approximate aligner considers only the positions in

the reference that are likely to give the minimum distance, by

previously counting the number of k-mers from the read that can

be found at every position in the reference.

The LRD sequence aligner is designed to work with genomic

data produced by Next-Generation Sequencing technologies.

These high-throughput technologies are able to produce up to

200 million DNA reads of length between 30 and 400 base pairs in

a single experiment. Despite this abundance of reads, their short
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length makes the problem of assembling them into the originating

genome a difficult one in practice. Therefore, methods for finding

the class, the order, the family or even the species of an unknown

organism, given only a set of short Next-Generation Sequencing

DNA reads originating from its genome, are of interest. A method

that can be used to solve this phylogenetic analysis task is proposed

in this work. The method works as follows: given a collection R of

short DNA reads, and a collection G of genomes, it finds the

genome G [ G that gives a minimum score. This method serves

two purposes. First, the method can be used to determine the place

of an individual in a phylogenetic tree, by finding the most similar

organism in the phylogenetic tree. This can be achieved by using

only a set of short DNA reads originating from the genome of the

new individual. Second, the method is used to evaluate the

performance level of the rank-based aligner and to compare it with

other state of the art alignment tools, such as BWA [5], BOWTIE

[6], or BLAST [7]. Experimental results on simulated reads were

obtained under two scenarios: low and high error rate. In the

former scenario, all the aligners besides BWA have full precision.

In the latter scenario, the LRD aligner is the only one that attains

full precision. It seems that the LRD aligner gives the most

accurate results, while being more computationally expensive than

the other aligners.

A set of experiments are conducted to determine the precision

and the recall of the proposed LRD aligner, in the presence of

contaminated reads. The task is to align reads sampled from

several mammals on the human mitochondrial DNA sequence

genome. The goal is to maximize the number of aligned reads

sampled from the human genome (true positives), and to minimize

the number of aligned reads sampled from the other mammals

(false positives). Again, the LRD aligner seems to have the best

performance, followed closely by BOWTIE and BLAST.

The proposed aligner is also tested on three human vibrio

pathogens with results that point towards the same conclusion of

[8,9]. In all the experiments presented in this work, the rank-based

aligner shows results that are better than the state of the art

alignment tools, in terms of accuracy. The results obtained in this

work can be considered as a strong argument in favor of using

rank-based distance measures for computational biology tasks, in

order to obtain results that are more accurate from a biological

point of view.

It is important to point out that the main focus of the

experiments is on the alignment accuracy of the aligner based on

LRD. Therefore, the simple strategy of assigning each read to the

genomic sequence with the best LRD distance was used. However,

in other biological problems, these alignments can be fed to other

more elaborate methods. For example, in profiling bacterial

species from a metagenomics sample, various tools, such as the

MG-RAST server [10], MEGAN [11] and metaBEETL [12],

align the reads to a reference taxonomy, but report as hit the

Lowest Common Ancestor node of a set of significant hits in this

taxonomic tree.

Related Work
Similarity Measures Between Genomes. Since most DNA

variations between organisms of the same species consist of point

mutations like single nucleotide polymorphisms, or small insertions

or deletions, edit distance is the standard string measure in many

biomedical analyses, such as the detection of genomic variation,

genome assembly [13], identification and quantification of RNA

transcripts [14–16], identification of transcription factor binding

sites [17], or methylation patterns [18].

In the case of genomic sequences coming from different related

species, other mutations are present, such as reversals [19],

transpositions [20], translocations [21], fissions and fusions [22].

For this reason, there have been a series of different proposals of

similarity between entire genomes, including rearrangement

distance [23], k-break rearrangements [24], edit distance with

block operations [25].

Some of the other popular distance measures for recent

computational biology techniques are the Hamming distance

[26,27] and the Kendall-tau distance [28], among others [29].

Rank distance [3] is another such measure of similarity, having

low computational complexity, but high significance in phyloge-

netic analysis [30,31] and in finding common patterns in DNA

sequences [32].

Sequence Aligners. One of the most widely used computa-

tional biology programs is BLAST [7]. Compared to the

previously developed techniques based on dynamic programming

[33], BLAST increases the speed of alignment by reducing the

search space. An interesting remark is that BLAST calculates the

statistical significance for each sequence alignment result.

While BLAST remains an essential tool for biologists, the vast

amount of data produced by the high-throughput sequencing

technologies led to the development of faster and more accurate

sequence aligners. Recently, many tools designed to align short

reads have been proposed [1]. The main efforts in the design of

such tools are on improving speed and correctness. Fast tools are

needed to keep the pace with data production, while the number

of correctly placed reads is maximized. Usually tools sacrifice

correctness over speed, allowing only few mismatches between the

reads and the reference genome. Tools that optimize such trade-

off are BOWTIE [6] and BWA [5]. Both the BWA and the

BOWTIE aligners work under the edit distance, and they use the

Burrows-Wheeler Transform to efficiently align short reads against

a large reference sequence, allowing mismatches and gaps. The

BOWTIE2 aligner [34] combines the full-text minute index with

the flexibility of hardware-accelerated dynamic programming

algorithms to achieve both speed and accuracy.

The BFAST [35] tool moves towards favoring correctness over

speed, allowing alignments with a high number of mismatches and

indels. Another accurate tool able to align reads in the presence of

extensive polymorphisms, high error rates and small indels, is rNA

[27]. The experiments performed in [27] give an idea about the

different approaches of such tools for optimizing the trade-off

between correctness and speed. For example, in one experiment

BWA is 100 times faster than BFAST, while losing about 8:00% in

terms of accuracy.

Results

Data Sets
To evaluate the aligners proposed in this work, several

experiments are conducted on two data sets of genome sequences.

The first data set contains mitochondrial DNA sequence genomes

of 20 mammals. The genomes are available for download in the

EMBL database (http://www.ebi.ac.uk/ena/) using the accession

numbers given in Table 1. They belong to the following biological

orders: Primates, Perissodactylae, Cetartiodactylae, Rodentia,

Carnivora.

Mitochondrial DNA (mtDNA) is the DNA located in organelles

called mitochondria. The DNA sequence of mtDNA has been

determined from a large number of organisms and individuals,

and the comparison of those DNA sequences represents a

mainstay of phylogenetics, in that it allows biologists to elucidate

the evolutionary relationships among species. In mammals, each

double-stranded circular mtDNA molecule consists of 15,000 to

17,000 base pairs. DNA from two individuals of the same species
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differs by only 0:1%. This means, for example, that mtDNA from

two different humans differs by less than 20 base pairs. Because

this small difference cannot affect the study, the experiments are

conducted using a single mtDNA sequence for each mammal.

The second data set contains chromosomal DNA sequence

genomes of three vibrio pathogens available in the NCBI database

(http://www.ncbi.nlm.nih.gov): Vibrio vulnificus YJ106, Vibrio
parahaemolyticus RIMD 2210633, and Vibrio cholerae El Tor

N16961. The genomes of these three organisms consist of two

circular chromosomes. Additional information about these chro-

mosomes, including accession number and size (given in Megabase

pairs), is given in Table 2. The genomic sequences of these vibrio

species have been revealed by different studies [9,36,37]. Several

studies report that Vibrio vulnificus shares morphological and

biochemical characteristics with other human vibrio pathogens,

including Vibrio cholerae and Vibrio parahaemolyticus [8,9].

Alignment in the Presence of Contaminated Reads
In this experiment, reads sampled from the genomes of several

mammals are aligned on the human mtDNA sequence genome.

The reads were simulated with the wgsim tool [38], using the

default parameters. More precisely, the reads were generated using

an error rate of 0:02, a mutation rate of 0:001, a fraction of indels

of 0:15 (out of the total number of mutations) and a probability of

extending an indel of 0:30.

The LRD aligner is compared to the BWA, the BOWTIE2 and

the BLAST aligners, under two different scenarios. In the first

scenario, 10,000 contaminated reads are sampled from the

orangutan genome. In the second scenario, 50,000 contaminated

reads are sampled from 5 mammals, namely the orangutan, the

blue whale, the harbor seal, the donkey, and the house mouse.

There are actually 10,000 reads sampled from each of the 5
mammals. In both scenarios 10,000 reads simulated from the

human genome are included. The simulated reads are always 100

Table 1. The 20 mammals from the EMBL database used in the phylogenetic experiments. The accession number is given on the
last column.

Mammal Latin Name Accession No.

human Homo sapiens V00662

common chimpanzee Pan troglodytes D38116

pigmy chimpanzee Pan paniscus D38113

gorilla Gorilla gorilla D38114

orangutan Pongo pygmaeus D38115

Sumatran orangutan Pongo pygmaeus abelii X97707

gibbon Hylobates lar X99256

horse Equus caballus X79547

donkey Equus asinus X97337

Indian rhinoceros Rhinoceros unicornis X97336

white rhinoceros Ceratotherium simum Y07726

harbor seal Phoca vitulina X63726

gray seal Halichoerus grypus X72004

cat Felis catus U20753

fin whale Balaenoptera physalus X61145

blue whale Balaenoptera musculus X72204

cow Bos taurus V00654

sheep Ovis aries AF010406

rat Rattus norvegicus X14848

mouse Mus musculus V00711

doi:10.1371/journal.pone.0104006.t001

Table 2. The genomic sequence information of three vibrio pathogens consisting of two circular chromosomes.

Species Chromosome Accession No. Size (Mbp)

V. vulnificus YJ016 I (VV1) NC_005139 3:4

V. vulnificus YJ016 II (VV2) NC_005140 1:9

V. parahaemolyticus RIMD 2210633 I (VP1) NC_004603 3:3

V. parahaemolyticus RIMD 2210633 II (VP2) NC_004605 1:9

V. cholerae El Tor N16961 I (VC1) NC_002505 3:0

V. cholerae El Tor N16961 II (VC2) NC_002506 1:0

doi:10.1371/journal.pone.0104006.t002
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bases long. The goal is to maximize the number of aligned reads

sampled from the human genome (true positives), and to minimize

the number of aligned reads from the other mammals (false

positives). Unlike the other experiments presented in this paper,

reverse complement reads were not included in this experiment.

However, it is important to mention that the aligners are dealing

with a hard task, since the contaminated reads were sampled only

from organisms that are in the same class as the human. It may be

that contaminated reads from other species that are not in the

Mammalia class (such as viruses, for example) can be identified

and discarded more easily.

The parameters of the aligners were adjusted as described next.

For the BOWTIE2 aligner, two variants are evaluated. The first

one uses the local and the very-sensitive-local options. The second

variant uses the end-to-end and the very-sensitive options. For the

BLAST aligner, the megablast option is used. Two variants of the

LRD aligner based on 3-mers and a maximum offset between

paired 3-mers of 36 are also evaluated. One is based on the exact

search algorithm, while the other one uses the approximate

algorithm based on hash tables that runs much faster.

To evaluate and compare the aligners, the precision and recall

curve is used. Note that the precision is given by the proportion of

aligned reads that are positive, while the recall is given by the

proportion of true positive reads that are aligned. In order to

obtain the precision-recall curve for each aligner, the idea is to

vary the threshold that gives the maximum distance allowed for an

aligned read. In the case of the BWA and the BOWTIE aligners,

the edit distance threshold takes values from 0 to 30. The score of

the BLAST aligner ranges from 185 to 100. The LRD threshold

takes values from 50 to 600, for both variants of the LRD aligner.

Higher precision is obtained for lower distance thresholds, while

higher recall is obtained for higher distance thresholds. The only

aligner that works the other way around, and gives higher

precision for higher scores, and higher recall for lower scores, is the

BLAST aligner.

Several statistical measures, such as the Area Under the ROC

Curve (AUC), the F1 measure, and the F2 measure, are also

presented in order to better compare the aligners. The ROC curve

plots the fraction of true positive reads versus the fraction of false

positive reads, at various threshold settings. The AUC score

represents the area under the ROC curve. The F1 measure (also

known as the F1 score) can be interpreted as a weighted average of

the precision and recall at a certain distance threshold. The F2

measure is similar to the F1 measure, only that it weights recall

higher than precision. For each aligner, the highest F1 and F2

scores can indicate the thresholds that give a good trade-off

between precision and recall. The Fb measure is computed as

follows:

Fb~(1{b2)
precision:recall

b2:precisionzrecall
: ð1Þ

The F1 and the F2 scores are immediately obtained from

Equation 1, by replacing b with 1 and 2, respectively.

Human versus Orangutan Experiment. In this experi-

ment, there are 20,000 reads to be aligned on the human mtDNA

sequence. Half of them are sampled from the same human

mitochondrial genome, while the other half are sampled from the

orangutan mitochondrial genome. Thus, the contamination rate is

50%.

The precision-recall curves of the BWA, the BOWTIE, and the

BLAST aligners together with the precision-recall curves of the

two variants of the LRD aligner are presented in Figure 1. By

analyzing Figure 1, it can be observed that the aligners obtain

roughly similar results in terms of precision and recall. To better

assess the performance of the evaluated aligners, the AUC

measure and the best F1 and F2 scores for each aligner are

presented in Table 3. In terms of the AUC, the BOWTIE and the

LRD aligners attain the best results, while the other aligners fall

behind. In terms of the F1 measure, the BOWTIE aligner seems to

be slightly better than the LRD aligner, while in terms of the F2

measure, the LRD aligner achieves the best score, followed closely

by the BOWTIE aligner. The BLAST aligner comes in third place

after the LRD and the BOWTIE aligners. The results of the BWA

aligner are also not too far from the other top scoring aligners.

The results presented in Figure 1 indicate that all the aligners

obtain a good trade-off between precision and recall. Indeed, all of

them are able to align more than 90% of the human reads with a

precision that is higher than 90%. For instance, the hash LRD

aligner is able to align 98:6% of the humand reads with 97:02%
precision. However, it would be interesting to observe how the

LRD aligner behaves at the sequence level. For this purpose, some

metrics of the reads simulated from the human mitochondrial

genome are provided in Table 4. More precisely, the average

Hamming distance and the average edit distance of the human

reads that are mapped to the human genome (true positives) are

reported at different precision and recall levels. In the same time,

the average Hamming distance and the average edit distance of

the human reads that are not mapped to the human genome (false

negatives) are also reported. Perhaps it would be more interesting

to give the average number of errors and mutations in the true

positive reads versus the average number of errors and mutations

in the false negative reads. Unfortunately, the wgsim tool does not

output these values for the simulated reads. Nevertheless, the

simulation tool does output the exact location from which each

read was simulated. Therefore, a standard distance can be

computed between a simulated read and its corresponding original

substring (of 100 bases) from the human genome, that was used by

wgsim to generate the read. The Hamming distance and the edit

distance together should give some indication of the number of

changes in the human reads that are not mapped to the human

genome. It can be observed that for each LRD threshold presented

in Table 4, the average Hamming distance of the mapped reads is

always less than the average Hamming distance of the false

negative reads. The same statement is also valid for the edit

distance. For both distance measures, the difference between the

average distance of true positives and the average distance of false

negatives is not very high. Basically, only a few more bases are

different from the source substring for the false negatives

compared to the true positives. The highest difference is reported

for the LRD threshold of 250. Table 4 shows that, on average, the

reads that are mapped to the genome have less errors and

mutations than the reads that are not mapped. However, the

difference is not significant, since the false negative reads have at

most 3 more errors, on average, than the mapped reads. An

interesting remark is that the LRD aligner accepts more and more

errors and mutations in the aligned reads as the LRD threshold

increases, but even with the highest threshold of 539 that gives

100% recall rate, the precision of the hash LRD aligner is still very

high (90:18%). In other words, the LRD aligner does a good job at

discarding most of the reads simulated from the orangutan

genome (true negatives), while mapping all the human reads, even

those with higher error rates.

Human versus Five Mammals Experiment. In this second

experiment, there are 60,000 reads to be aligned on the human

mtDNA sequence. Only 10,000 reads are actually sampled from

the same human genome. The 50,000 contaminated reads where
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PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e104006



sampled from 5 different mammals. The mammals where chosen

to represent the 5 orders available in the first data set: Primates,

Perissodactylae, Cetartiodactylae, Rodentia, and Carnivora. The

contamination rate of 83:33% is much higher than in the previous

scenario.

The precision-recall curves of the BWA, the BOWTIE, and the

BLAST aligners versus the precision-recall curve of the two

Figure 1. The precision-recall curves of the state of the art aligners versus the precision-recall curve of the two LRD aligners, when
10,000 contaminated reads of length 100 from the orangutan are included. The two variants of the BOWTIE aligner are based on local and
global alignment, respectively. The LRD aligner based on hash tables is a fast approximate version of the original LRD aligner.
doi:10.1371/journal.pone.0104006.g001

Table 3. Several statistics of the state of the art aligners versus the LRD aligner, when 10,000 contaminated reads of length 100
sampled from the orangutan genome are included.

Aligner AUC Best F1 Score Best F2 Score

BWA 97:37% 97:38% 97:03%

BOWTIE local 99:46% 97:80% 98:30%

BOWTIE end-to-end 99:63% 98:13% 98:24%

BLAST 98:38% 97:67% 98:15%

LRD aligner 99:46% 97:25% 98:48%

Hash LRD aligner 99:63% 97:58% 98:61%

The AUC is computed from the ROC curve, while the best F1 and F2 measures where computed using different points on the precision-recall curve. The F2 measure
puts a higher weight on recall.
doi:10.1371/journal.pone.0104006.t003
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variants of the LRD aligner are presented in Figure 2. Among the

evaluated aligners, the BOWTIE local aligner has the lowest

results in terms of precision and recall. Figure 2 seems to indicate

that the LRD, the BLAST, and the BOWTIE end-to-end aligner

give fairly similar results.

To make a better distinction between the aligners, the AUC

measure and the best F1 and F2 scores for each aligner are

presented in Table 5. The results presented in Table 5, indicate

that the LRD aligner achieves the best AUC score, followed

closely by the BOWTIE end-to-end aligner. As in the previous

experiment, the BOWTIE aligner attains the highest F1 score,

while the LRD aligner attains the highest F2 score. The BLAST

aligner falls in third place.

An advantage of the LRD aligner is that it is the most flexible

aligner in terms of precision and recall. The aligner proposed in

this work is the only aligner that can be adjusted to go from 100%
precision to 100% recall. Even if the other state of the art aligners

do reach full recall, it is interesting to show the best recall that can

be obtain by each one. The BWA aligner reaches a maximum

recall of 97:57%, while the BLAST aligner reaches a maximum

recall of 98:63%. Both variants of the BOWTIE aligner go up to

99:91% recall. As mentioned before, the maximum recall obtained

by the LRD aligner is 100%.

Another interesting statistics is the recall when 100% precision is

achieved. The recall at best precision is recorded in two scenarios.

In the first scenario, only the contaminated reads from the

orangutan are included, while in the second scenario, the rest of

40,000 contaminated reads from all the other mammals, besides

the orangutan, are included. Since the orangutan and the human

belong to the Primates order, the first scenario is more difficult.

The recall at best precision for each aligner evaluated in the first

scenario is given in Table 6. When 10,000 contaminated reads

sampled from the orangutan genome are used, it seems that the

LRD aligner obtains the highest recall at 100% precision. The

LRD aligner is roughly 10% higher than the state of the art

aligners, which give similar recall values to each other.

The recall at best precision for each aligner evaluated in the

second scenario is given in Table 7. This time, the recall at 100%
precision for each aligner is much higher than in the first scenario.

This indicates that if contaminated reads do not belong to an

organism that is closely related to the human, the tools are able to

align most of the true positive reads with 100% precision. Again,

the best aligner is the LRD aligner based on the hash tables

implementation. It attains a recall of 81:43%, being roughly 13%
better than most of the state of the art aligners. In the second

scenario, it seems that the BOWTIE local aligner falls very far

behind the other alignment tools.

Overall, the LRD aligner seems to be the best tool among the

evaluated aligners, in the presence of contaminated reads. It is

closely followed by the BOWTIE end-to-end aligner. The high

accuracy of the LRD aligner comes with the cost of being the

slowest one among the evaluated aligners.

Clustering an Unknown Organism
The rank-based aligner is evaluated in the context of finding a

solution for the task of clustering a new (or unknown) organism,

given only a set of short Next-Generation Sequencing DNA reads.

More precisely, the task is to find the order, the family, or the

species of the unknown organism, without having to sequence its

genome first, by aligning its reads into several genomes in order to

obtain the nearest neighbor species (or the most similar species).

The LRD aligner is compared to the BWA, the BOWTIE2 and

the BLAST aligners. In the case of the BOWTIE2 aligner, two

variants are evaluated, one based on local alignment and the other

based on global alignment. The LRD aligner is based on 3-mers

with a maximum offset between paired 3-mers of 36. A maximum

distance threshold of 1000 was used in the case on the LRD

aligner. The distance threshold for the LRD aligner was adjusted

in order to allow more reads to be aligned, especially for the

mammals that are more distantly related, more precisely, that are

not from the same order. The approximate hash LRD aligner

achieves similar results to the basic LRD aligner, when it aligns

reads only in the positions that have at most 5 similar k-mers less

than the maximum number of k-mers from the read that can be

found at any given position in the reference sequence. For this

reason, only the results of the approximate LRD aligner are

reported in the following experiments.

One by one, each of the 20 mammalian genomes from the

EMBL database will be considered to be unknown for the purpose

of this experiment. The unknown individual will be represented by

a set .. of short DNA reads randomly sampled from its genome.

The task is to find the most similar individual (or species) from the

remaining 19 individuals, for each unknown individual. In order

to solve the task, the collection R of reads (that represents an

unknown individual) is aligned on each of the 19 genomes from

Table 4. Metrics of the human reads mapped to the human mitochondrial genome (true positives) by the hash LRD aligner versus
the human reads that are not mapped to the genome (false negatives).

LRD Precision Recall TP FN TP Ham. FN Ham. TP edit FN edit

51 100% 24:79% 2479 7521 40:63 40:95 30:66 31:17

100 99:91% 46:92% 4692 5308 39:98 41:67 30:29 31:72

150 99:72% 66:70% 6670 3330 40:03 42:57 30:37 32:41

200 99:34% 81:43% 8143 1857 40:37 43:09 30:66 32:74

250 98:87% 90:36% 9036 964 40:56 43:82 30:81 33:26

300 98:06% 95:74% 9574 426 40:78 42:99 30:97 32:76

350 97:02% 98:16% 9816 184 40:84 42:97 31:02 32:61

400 95:85% 99:24% 9924 76 40:87 41:83 31:04 31:92

539 90:18% 100% 10000 0 40:87 - 31:05 -

The average Hamming distance and the average edit distance are reported for true positive (TP) and false negative (FN) reads, respectively. The average distances are
given for several points on the precision-recall curve of the hash LRD aligner, going from 100% precision to 100% recall. The points are obtained by varying the LRD
threshold from 51 to 539.
doi:10.1371/journal.pone.0104006.t004
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the collection G of genomes. Reads are aligned under a maximum

distance threshold. Thus, only a subset S(R of reads is aligned

on each genome. An alignment score is computed for each

genome in order to obtain the most similar individual. The score is

given by the average minimum distances of the reads in S divided

by the number of aligned reads. The minimum distance for a

specific read is given by the best positional match in the reference

genome. Lower scores indicate greater similarity between species,

and higher scores indicate a greater dissimilarity between species.

The individual (or the species) with the lowest score is considered

to be the most similar one. Finally, the unknown organism is

considered to be part of the same order as its most similar

individual. The unknown individual is correctly clustered if it is

indeed a member of the order predicted by the aligner. Thus, the

performance of each aligner on this task is determined by the

number of correctly clustered unknown individuals. The evalua-

tion procedure can also be described as the leave-one-out cross-

validation procedure. It is important to notice that the procedure

described above does not generate a partitioning of the data set,

but rather assigns a newly discovered (or unknown) organism to a

specific cluster in an existing phylogenetic tree. An evaluation tool

to obtain this score has also been added to the software package.

An interesting remark is that the tools evaluated on this task

align reads under a given maximum distance threshold and,

hence, many reads remain unaligned. The distance measure

depends on the aligner. While the BWA and the BOWTIE

aligners are based on the edit distance, the BLAST aligner uses a

score of its own. The rank-based aligner is based on Local Rank

Distance. Therefore, the alignment score is obtained by the

average distance divided by the number of aligned reads. In other

words, a genome with more aligned reads is more likely to be

similar to the unknown individual.

The aligners are evaluated and compared under two different

scenarios. In both scenarios, reads of 100 bases long were

simulated using the wgsim tool [38]. In the first scenario, 20,000
short DNA reads per mitochondrial genome are sampled using the

default parameters of the simulation tool. More precisely, the

reads were generated using an error rate of 0:02, a mutation rate

of 0:001, a fraction of indels of 0:15 (out of the total number of

mutations) and a probability of extending an indel of 0:30. With

an average base coverage of 100, the number of reads should be

Figure 2. The precision-recall curves of the state of the art aligners versus the precision-recall curves of the two LRD aligners, when
50,000 contaminated reads of length 100 from 5 mammals are included. The two variants of the BOWTIE aligner are based on local and
global alignment, respectively. The LRD aligner based on hash tables is a fast approximate version of the original LRD aligner.
doi:10.1371/journal.pone.0104006.g002
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far than enough to correctly determine the order of unknown

organisms. This scenario is designed to simulate a real-world

setting where a high number of Next-Generation Sequencing

reads is usually available. In the second scenario, only 200
simulated short DNA reads per genome are used in order to make

the task harder to solve. The alignment methods should be

challenged by the small amount of available reads. The generated

reads also have more errors. More precisely, the reads for this

second test case were simulated using an error rate of 0:08, a

mutation rate of 0:008, a fraction of indels of 0:15 (out of the total

number of mutations) and a probability of extending an indel of

0:30. In both test cases, half of the simulated reads from each

genome are reverse complements.

Real-World Setting Experiment on Mammals. In the first

test case, 20,000 simulated DNA reads of length 100 per genome

are used, which corresponds to an average base coverage of 100.

Table 8 compares the results of the LRD aligner with the other

state of the art aligners.

The BWA aligns only the reads that fall under a certain edit

distance threshold. The BWA aligner based on the default

threshold 5 is listed in Table 8 under the name of BWA edit 5.

Another BWA aligner with a threshold of 10 was used in the

experiments. Since the latter one aligns more reads, it should be

able to give more accurate results than the default BWA aligner.

In this scenario, it seems that the BLAST, the BOWTIE and the

LRD aligners achieve perfect results. More precisely, they are all

able to identify the most similar individual as being part of the

same order as the unknown organism, for the entire set of 20
mammals. On the other hand, the BWA edit 5 aligner is only able

to predict the correct order for 17 out of 20 mammals. It clusters

the cat as Primates, and the fin whale and the gorilla as part of the

Carnivora order. The BWA edit 10 aligner works even worse,

correctly predicting the order for 14 mammals.

It is interesting to observe that all the methods are usually able

to determine not only the correct order, but also the most similar

species in the group. For example, the horse is always clustered

near the donkey, rather than the Indian or the white rhinoceros,

despite the fact that they are all members of the same order,

namely Perissodactylae. The same situation can be observed in the

case and the gray seal, which is always considered to be most

similar with the harbor seal rather than the other member of the

Carnivora order, namely the cat.

The empirical results show that, with the exception of the BWA

aligner, all the other methods work very well. This also

demonstrates that the evaluation procedure gives a relevant

measure of similarity between a set of reads and a reference

genome, that can be used for solving the task of clustering

unknown organisms.

Hard Setting Experiment on Mammals. The first test case

is not enough to make a clear distinction between the compared

methods, with respect to the accuracy and the biological relevance.

To better assess the performance levels of these aligners, another

experiment is conducted using only 200 short DNA reads of length

100 per genome. As described above, the reads also contain more

errors and mutations than in the previous test case.

The results of the state of the art aligners together with the

results of the LRD aligner are shown in Table 9. Compared to the

previous scenario, the results of the state of the art aligners are

much lower this time. The BWA aligners predict the correct order

for 10 and 16 mammals, respectively. Unlike the previous test case,

the BWA edit 10 aligner works better than the BWA edit 5 aligner,

probably because it is able to align more reads with high error and

Table 5. Several statistics of the state of the art aligners versus the LRD aligner, when 50,000 contaminated reads of length 100
sampled from the genomes of 5 mammals are included.

Aligner AUC Best F1 Score Best F2 Score

BWA 97:52% 97:20% 96:75%

BOWTIE local 99:55% 95:41% 97:32%

BOWTIE end-to-end 99:84% 97:93% 98:16%

BLAST 98:57% 97:15% 97:93%

LRD aligner 99:86% 96:49% 98:04%

Hash LRD aligner 99:92% 97:25% 98:29%

The AUC is computed from the ROC curve, while the best F1 and F2 measures where computed using different points on the precision-recall curve. The F2 measure
puts a higher weight on recall.
doi:10.1371/journal.pone.0104006.t005

Table 6. The recall at best precision of the state of the art aligners versus the LRD aligner, when 10,000 contaminated reads of
length 100 sampled from the orangutan genome are included.

Aligner Recall at Best Precision Best precision

BLAST 12:83% 100:0%

BWA 12:84% 100:0%

BOWTIE end-to-end 12:84% 100:0%

BOWTIE local 13:87% 100:0%

LRD aligner 22:36% 100:0%

Hash LRD aligner 24:79% 100:0%

doi:10.1371/journal.pone.0104006.t006
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mutation rates. The BOWTIE aligners obtain results that are

roughly similar to the results of the BWA aligners. The BOWTIE

local aligner predicts the right order for 13 out of 20 mammals,

while the BOWTIE end-to-end aligner is able to correctly cluster

two more mammals, reaching a total of 15 correctly clustered

mammals. The BLAST aligner works fairly well, predicting the

correct order for 17 mammals. It wrongly predicts the order for

the cat and for the two members of the Rodentia order, namely

the house mouse and the rat. It seems that all the aligners, besides

the LRD aligner, have trouble predicting the right order for the

Rodentia members. On the other hand, it seems that the aligners

find it very easy to predict the correct order for the Primates.

Finally, the LRD aligner is able to predict the correct class for the

entire set of mammals. The LRD aligner seems to be more robust

to high error and mutation rates, as it achieves the best results

among all the evaluated aligners.

It is interesting to observe that the BWA with an edit distance

threshold of 10 is not able to align any reads at all, for two of the

mammals. This is the reason why no similar mammal is found for

the cat or for the rat. The same problem occurs in the case of the

BWA edit 5 aligner, which is not able to find any similar genomes

for 10 mammals, due to the lack of aligned reads. This problem is

likely caused by the high error and mutation rates, that were used

to sample the reads from the original genomes. It may be

concluded that the BWA aligner is the most fragile aligner with

respect to high error and mutation rates.

Time Evaluation. The time taken by each aligner to produce

the results for the two test cases of the experiment on clustering

unknown organisms is shown in Table 10. For both test cases,

there are 20,200 short DNA reads that must be aligned for each

mammal on the rest of 19 mammalian genomes. In total, each tool

must align 7,676,000 short DNA reads of 100 bases long, on a

reference mtDNA genome of roughly 15,000{17,000 bases. Note

that the reference genome is not necessarily always the same, since

the reads sampled from a genome are aligned into the remaining

19 genomes. The time was measured on a computer with Intel

Core i7 2:3 GHz processor and 8 GB of RAM memory using a

single Core.

Among the evaluated aligners, the BWA aligner is the fastest

one, taking just over 3 minutes to align all the reads. The

BOWTIE2 aligner is also very fast. It takes roughly 7 minutes to

align the reads when the local option is used, and 9{10 minutes

for the end-to-end option. The BLAST aligner takes 30 minutes

when the megablast option is turned on. Finally, the LRD aligner

is the slowest one, but it also has the advantage of being the most

accurate on all the test cases. The approximate LRD aligner based

on the hash optimization implemented in C++ needs 16{17
hours to align all the reads. The Java implementation of LRD

aligner based on hash tables is roughly 3 times faster, with a total

time of 5{6 hours. The speed gain of the Java implementation is

given by the optimized hash table implementation available in the

Java API. It is important to mention that the parameters of the

approximate LRD aligner are optimized for accuracy, not for

speed. Even so, the approximate hash LRD aligner implemented

in Java is roughly 50 times faster than the basic LRD aligner. The

reported time of the approximate hash LRD aligner is comparable

to that of the other tools that favor correctness over speed, such as

BFAST [35]. Parallel or GPU processing could be used to further

reduce the running time of the LRD aligner and to make it run as

fast as BOWTIE2 or BLAST.

An important advantage of the LRD aligner is that it obtains

very accurate results even for a very low base coverage. For

instance, the LRD predicts the correct order for the entire set of 20
mammals by aligning 200 reads per genome (with high error and

mutation rates), while the BWA edit 5 aligner is only able to

predict the correct order for 17 mammals using 20,000 reads per

genome (with low error and mutation rates). Considering this fact,

the LRD aligner obtains better results than the fastest aligner

(BWA) in the same amount of time (roughly 3 minutes). This being

said, the LRD aligner can produce accurate results in an amount

of time which is comparable the other state of the art aligners,

simply by aligning considerably less reads than the other tools

would require.

Experiment on Vibrio Species
In [9], a comparative study of the V. vulnificus YJ106, V.

parahaemolyticus RIMD 2210633, and V. cholerae El Tor N16961

genomes was conducted to compare relative positions of conserved

genes and to investigate the movement of genetic materials within

and between the two chromosomes of these vibrio species. The

study shows that V. vulnificus has a higher degree of conservation

in gene organization in the two chromosomes relative to V.
parahaemolyticus rather than to V. cholerae. This implies that V.
vulnificus is closer to V. parahaemolyticus than to V. cholerae from

the evolutionary point of view. This result is also supported by the

study of [8], which determines that the block-interchange distance

between V. vulnificus and V. parahaemolyticus is smaller than that

between V. vulnificus and V. cholerae.

The goal of this experiment is to determine if the LRD aligner

can achieve similar results to [8,9], using the evaluation procedure

for clustering an unknown organism proposed in this work. Thus

the experiment consists of aligning simulated reads from the V.
vulnificus chromosomes into V. parahaemolyticus and V. cholerae.

It is important to note that three test cases were considered. In the

first test case, simulated reads of chromosome VV1 are aligned

into VP1 and VC1, respectively. In the second case, simulated

Table 7. The recall at best precision of the state of the art aligners versus the LRD aligner, when 40,000 contaminated reads of
length 100 sampled from the blue whale, the harbor seal, the donkey, and the house mouse genomes are included, respectively.

Aligner Recall at Best Precision Best precision

BLAST 68:95% 100%

BWA 66:84% 100%

BOWTIE end-to-end 66:84% 100%

BOWTIE local 13:87% 98:58%

LRD aligner 52:25% 100:0%

Hash LRD aligner 81:43% 100:0%

doi:10.1371/journal.pone.0104006.t007
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reads of chromosome VV2 are aligned into VP2 and VC2,

respectively. Finally, the simulated reads from both chromosomes

of V. vulnificus are aligned into the two chromosomes of V.
parahaemolyticus on one hand, and into the two chromosomes of

V. cholerae on the other hand.

In this experiment, reads of 100 bases long were simulated using

the default parameters of the wgsim tool [38]. More precisely, the

reads were generated using an error rate of 0:02, a mutation rate

of 0:001, a fraction of indels of 0:15 (out of the total number of

mutations) and a probability of extending an indel of 0:30. In this

experiment, 30,000 simulated reads per chromosome are used,

which corresponds to an average base coverage of 1. As in the

previous experiment, half of the simulated reads from each

genome are reverse complements. The LRD aligner is based on 3-

mers with a maximum offset between paired 3-mers of 36. As in

the previous experiments, the maximum distance threshold is set

to 1000.

The scores of simulated reads from V. vulnificus chromosomes

I and II aligned into V. parahaemolyticus and V. cholerae using the

LRD aligner are shown in Table 11. The empirical results for all

the three test cases are presented in this table. Each score is given

by the average minimum Local Rank Distances of the aligned

reads divided by the number of aligned reads on each genome.

The results of the LRD aligner are similar to the results obtained

in [8,9]. More precisely, the score between V. vulnificus and V.
parahaemolyticus is lower than that between V. vulnificus and V.
cholerae for both chromosomes of the three vibrio species. Even if

chromosomes I and II are combined, V. vulnificus is found to be

more similar to V. parahaemolyticus.
Some concern regarding the results obtained in this experiment

might be that the results are influenced by the length difference

between the reference genomes of V. parahaemolyticus and V.
cholerae. First of all, the difference between the scores obtained by

the LRD aligner is much higher than the difference between the

lengths of the chromosomes VP1 and VC1. However, the study

might be affected by the significant length difference between VP2

and VC2. While the number of simulated reads is fixed, the

alignment tool excludes the reads that show a distance that is

higher than the maximum threshold of 1000. The threshold

should remove most of the reads that are aligned by chance, thus

giving a score that is not influenced by the longer length of the

VP2 chromosome.

Discussion

The results of the LRD aligner presented in this work are

obtained using 3-mers and a maximum offset of 36. The

maximum offset depends on the read length, more precisely it

should be less or equal to the read length. The k-mers length

should also be adjusted with regard to the read length. For reads of

length 100, 3-mers are a reasonable choice since the chances of

finding matching pairs of 3-mers between a read and the genome

are very high. But even 4-mers and 5-mers work well, especially if

the reads and the reference genome belong to the same species. If

longer reads are considered for alignment, even longer k-mers can

be used for a better accuracy and speed. On the other hand,

longer k-mers are likely to reduce the accuracy of the aligner when

the mutation and error rates are high, since the longer is the k-mer

the greater is the probability of containing a mutation or error. For

instance, if a k-mer contains a point mutation, the k-mer will not

be matched correctly when LRD is computed. Even if LRD is

designed to handle such situations, a carefully chosen k-mer length

can make the most of the aligner proposed in this work. For

instance, the work of [2] shows that LRD can be used with k-mers

ranging from 3 to 20 letters. In the phylogenetic analysis of

mammals presented in [2], the best results are obtained with k-

mers ranging from 6 to 18 letters. When the LRD aligner is used

for a specific application, it is recommended to tune the

parameters of the aligner on a validation data set first, by

considering the guidelines provided in this work.

Overall, the LRD aligner gives the most accurate results and it

seems to be very robust for reads that contain many errors or

mutations. However, the accurate results of LRD come with a

cost. The time that LRD takes to align the same number of reads is

higher than the time of the state of the art aligners evaluated in this

paper. Nevertheless, the empirical results presented in this work

show that the LRD aligner can produce very accurate results in

the same amount of time as the other alignment tools, simply by

using a lower base coverage. There is still enough room to speed

up the LRD algorithm. By implementing it on GPU, the LRD

aligner will be comparable (in terms of time) with the other

aligners that favor efficiency over correctness. The LRD aligner

can be considered as an useful tool for sequence alignment, being

highly accurate from a biological (or evolutionary) point of view.

It is worth mentioning that another aligner based on rank

distance (RD) was also proposed and evaluated. Despite the fact

that the RD aligner is twice as fast as the BLAST aligner, the

results obtained by the RD aligner on the set of experiments

presented in this paper were not very convincing in terms of

Table 10. The running times of the BWA aligner, the BLAST aligner, the BOWTIE aligner and the LRD aligner.

Method Time

BWA edit 5 3 minutes 14 seconds

BWA edit 10 3 minutes 50 seconds

BOWTIE local 9 minutes 43 seconds

BOWTIE end-to-end 7 minutes 14 seconds

BLAST 30 minutes

LRDa 285 hours

LRDa + hash (C++ implementation) 16 hours 33 minutes

LRDa + hash (Java implementation) 326 minutes

The aligners are compared on the task of aligning 7,676,000 short DNA reads of 100 bases long on a reference mtDNA genome of roughly 15,000{17,000 bases. The
aligners were evaluated on a computer with Intel Core i7 2:3 GHz processor and 8 GB of RAM memory using a single Core.
doi:10.1371/journal.pone.0104006.t010
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accuracy. More precisely, it seems that the RD is not able to

distinguish contaminated reads when a high recall is desired. On

the other hand, it was able to identify the order of unknown

organisms at a success rate comparable to the state of the art

aligners. The RD aligner is included in the software package

provided by this work for future development.

The results presented in this work can be considered as a strong

argument in favor of using Local Rank Distance for computational

biology tasks, in order to obtain results that are often more

accurate from a biological point of view. Local Rank Distance [2]

is related to the rearrangement distance [39]. The rearrangement

distance works with indexed k-mers and is based on a process of

converting a string into another, in a similar fashion to the edit

distance. Unlike the edit distance or the rearrangement distance,

LRD does not impose such global constraints. Instead, LRD tries

to capture only the local changes in DNA. This seems to be more

natural from an evolutionary point of view, since changes in DNA,

such as point mutations or indels, occur at the local level. Perhaps

this is the key insight of why Local Rank Distance should be

expected to give more accurate results than the other distance

measures. For instance, the edit distance counts the minimum

number of operations required to transform one string into the

other. It is clear that the actual number of DNA changes that did

occur may be higher than the minimum number of operations.

The Hamming distance sides with Local Rank Distance regarding

the local aspect. However, the Hamming distance is greatly

affected by indels. A single character that is inserted (or deleted)

into one of the two strings will damage the Hamming distance

computation for the rest of string. On the other hand, Local Rank

Distance is more robust to changes such as indels or duplications,

since it sums up the positional offsets of identical k-mers. When

two DNA sequences are identical, the positional offsets of identical

k-mers sum up to zero. If the two DNA sequences are affected by

various types of DNA changes, the positional offsets of identical k-

mers increase mostly in the affected DNA regions. Consequently,

the Local Rank Distance will be higher, since it finds displaced k-

mers. When more point mutations, indels, reversals or other kinds

of errors occur in the DNA, LRD will indicate an even higher

distance between the DNA sequences. Intuitively, Local Rank

Distance reflects the total amount of local changes between two

DNA sequences. This intuition can be better observed in Figure 3,

which shows how the Local Rank Distance between two DNA

sequences changes when one of the two sequences is affected by

different types of DNA polymorphisms. Another key insight of why

the rank-based approach should work better is that Local Rank

Distance can capture very fine differences between strings, unlike

the more commonly used edit distance or Hamming distance.

More results that support this statement are presented in the

empirical study performed in [32], which compares rank distance

with Hamming distance and edit distance, respectively.

Conclusion and Further Work
This paper presented a tool for aligning a set of short DNA

reads inside a reference genome, under Local Rank Distance.

Several strategies for improving the speed of the LRD aligner were

proposed. First of all, the k-mer positions were stored in a hash

table for each read. Second of all, only the positions in the

reference that are likely to give the minimum distance were

considered, by previously counting the number of k-mers from the

read that can be found at each position in the reference.

A set of experiments were conducted to assess the performance

of the rank-based aligner in the presence of contaminated reads. In

another set of experiments, the proposed aligner was used to find a

solution for the task of clustering an unknown individual, given

only a set of short DNA reads. Compared to the other evaluated

tools, the LRD aligner has the important advantage of being very

accurate even for a very low base coverage. To conclude, the

empirical results showed that the LRD aligner can be considered

as a viable alternative to standard alignment tools, since it can

often be more accurate. Furthermore, the results obtained by the

LRD aligner stand to support the studies of vibrio species

performed in other studies [8,9], showing that the proposed

aligner can indeed obtain conclusive results from an evolutionary

point of view.

Methods

This section introduces the sequence aligner that work under

Local Rank Distance. First, mathematical preliminaries about the

rank-based distance measures are discussed. The LRD aligner and

several optimization strategies are presented next.

Preliminaries
Given a string x over an alphabet S, and a character a [ S, the

length of x is denoted by DxD, the number of occurrences of the

character a in x is denoted by DxDa. Strings are considered to be

indexed starting from position 1, that is x~x½1�x½2� � � � x½DxD�.
Moreover, x½i : j� denotes its substring x½i�x½iz1� � � � x½j{1�.

Given two strings x and y over S, the rank distance (RD)

between x and y, denoted by DRD(x,y), is defined through the

following algorithmic process: both strings are scanned (from left

to right) and for each character a in the first string, and for each of

Table 11. The results of the rank-based aligner on vibrio species.

Reads Source Reference LRDa Score

VV1 VP1 606:2

VV1 VC1 643:9

VV2 VP2 773:0

VV2 VC2 849:9

VV1 + VV2 VP1 + VP2 641:7

VV1 + VV2 VC1 + VC2 697:7

The LRD aligner is based 3-mers, a maximal offset of 36, and a LRD threshold of 1000. The scores obtained by the LRD aligner for simulated reads of V. vulnificus
chromosomes I and II aligned into V. parahaemolyticus and V. cholerae are presented in this table. The first column indicates the source chromosome of the simulated
reads. The second column indicates the reference chromosome. The third and fourth columns show the scores of the two aligners computed with the evaluation tool
provided in the software package.
doi:10.1371/journal.pone.0104006.t011
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its k-th occurrence in x (1ƒkƒ minfDxDa,DyDag), the algorithm

sums up the absolute difference between the position of its k-th

occurrences in x and y. Moreover, for each of the DDxDa{DyDaD non-

matched occurrences of a in one of the two strings, the algorithm

adds to the sum the arithmetic mean of DxD and DyD, as described in

([30], Definition 2). The total sum computed by this algorithm

represents the rank distance. Rank distance [3] is a low

computational complexity measure of similarity with various

applications in computational biology, from phylogenetic analysis

[30,31] to finding common patterns in DNA sequences [32].

A recently introduced distance measure, termed Local Rank

Distance [2], comes from the idea of better adapting rank distance

to string data, in order to capture a better similarity (or

dissimilarity) between strings, such as DNA sequences or text.

Local Rank Distance (LRD) has already shown promising results

in computational biology [2] and native language identification

[4].

Local Rank Distance is inspired by rank distance, the main

differences being that it uses k-mers instead of single characters,

and that it matches each k-mer in the first string with the nearest

equal k-mer in the second string. Given a fixed integer k§1, a

threshold m§1, and two strings x and y over S, the Local Rank
Distance between x and y, denoted by DLRD(x,y), is defined

through the following algorithmic process. For each position i in x
(1ƒiƒDxD{kz1), the algorithm searches for that position j in y
(1ƒjƒDyD{kz1) such that x½i : izk�~y½j : jzk� and Di{jD is

minimized. If j exists and Di{jDvm, then the offset Di{jD is added

to the Local Rank Distance. Otherwise, the maximal offset m is

added to the Local Rank Distance. An important remark is that

LRD does not impose any mathematically developed global

constraints, such as matching the i-th occurrence of a k-mer in x
with the i-th occurrence of that same k-mer in y. Instead, it is

focused on the local phenomenon, and tries to pair equal k-mers at

a minimum offset. To ensure that LRD is a (symmetric) distance

function, the algorithm also has to sum up the offsets obtained

from the above process by exchanging x and y. LRD can be

formally defined as follows.

Definition 1 Let x,y [ S� be two strings, and let k§1 and
m§1 be two fixed integer values. The Local Rank Distance between
x and y is defined as:

DLRD(x,y)~Dleft(x,y)zDright(x,y),

where Dleft(x,y) and Dright(x,y) are defined as follows:

Dleft(x,y)~
XDxD{kz1

i~1

minfDi{jD : 1ƒjƒDyD{kz1 and

x½i : izk�~y½j : jzk�g|fmg,

Dright(x,y)~
XDyD{kz1

j~1

minfDj{iD : 1ƒiƒDxD{kz1 and

y½j : jzk�~x½i : izk�g|fmg:

Notice that in order to be a symmetric distance measure, LRD

must consider every k-mer in both strings. The symmetric

property of LRD is ensured by computing both Dleft and Dright.

It is easy to observe that Dleft(y,x)~Dright(x,y). An interesting

remark is that overlapping k-mers are permitted in the compu-

tation of LRD, since there is no restriction that tells where k-mers

should start or end in a DNA string. Another interesting remark is

that the search for matching k-mers is limited within a window of

fixed size. The size of this window is determined by the maximum

offset parameter m. This parameter must be set a priori and should

be proportional to the size of the alphabet, the k-mers, and to the

lengths of the DNA strings. Finding similar matches beyond this

window is costly and it may also bring unwanted noise in the

process. More details about the setting up the parameters of LRD

are given in [2].

To better understand how LRD actually works, it is useful to

consider the following example where LRD is computed between

two strings using 2-mers.

Example 1 Given two strings x~abcaa and y~cabca, a fixed
maximal offset m~3, and a fixed size of k-mers k~2, Dleft and
Dright are computed as follows:

Dleft(x,y) ~D1{2DzD2{3DzD3{4Dz3~6,

Dright(x,y) ~D1{3DzD2{1DzD3{2DzD4{3D~5:

By summing up the two partial sums, Local Rank Distance is
obtained

DLRD(x,y)~Dleft(x,y)zDright(x,y)~11:

LRD Aligner
The aligner proposed in this paper is based on Local Rank

Distance. It aligns a read of length l against a reference DNA

sequence of length n. For efficiency reasons, it actually computes

only Dleft from Definition 1 between the read and a certain

substring from the reference genome. It is perfectly reasonable to

use only one of the two partial sums, Dleft or Dright, since the

symmetric property of LRD is no longer needed in the context of

sequence alignment.

The basic alignment algorithm compares the read with the first

substring in the reference and remembers the offset of each k-mer

in the read. As it continues to compare the read with the following

substrings at position 2,3,:::,n{lz1 in the reference genome,

respectively, the algorithm only needs to update the offset of each

k-mer to obtain the new Dleft distance at a certain position. The

read is aligned in the position that gives the minimum Dleft

distance, but only if the obtained distance is less than a certain

threshold. This basic LRD aligner is provided in the software

package. It is worth mentioning that the algorithm described

above is also applied for the short DNA string obtained by reverse

complementing the original read. Several efficiency improvements

are described next. In the end, they lead to the development of the

faster LRD aligner presented in Table 12.

Indexing Strategies and Efficiency Improvements. The

main efficiency improvement brought to the LRD aligner is to

store k-mer positions in a hash table for each read. More precisely,

the hash table h constructed from a short DNA read r will contain

an array for each k-mer in the read. The array will contain all the

positions of that k-mer in the read r. This hash table is actually a

positional inverted index structure that is very popular in

information retrieval. When LRD is computed for the read at a

certain position i in the reference genome s, it is no longer

necessary to do an extensive search within a window of fixed size

to find equal k-mers between the read and the substring

s½i : izDrD�. The alternative solution is to take every k-mer in

s½i : izDrD� and to look it up in the hash table h. Let j denote the

position of the currently considered k-mer in s½i : izDrD�. If the k-
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mer is found in h, the next step is to try a binary search in the

positional array that is stored in h(s½izj{1 : izj{1zk�), in

order to find the nearest position p that minimizes Dj{pD. The

offset Dj{pD is added to the distance sum only if Dj{pD is less than

the maximal offset m, otherwise, m is added. If the k-mer is not

found in h, m is added to the distance sum. The final sum obtained

by this algorithm is the Dright partial sum from Definition 1. As

mentioned before, one of the two partial sums can be left out for

efficiency reasons, without affecting the accuracy. Thus, the hash

LRD implementation is based only on Dright, as opposed to the

basic implementation that uses only Dleft. Consequently, there are

some minor differences in the results obtained by the two

implementations, but the accuracy levels are very similar and in

some cases almost the same. For instance, in the experiments

performed to evaluate the aligners in the presence of contaminated

reads, the hash LRD aligner is only slightly better, while for the

task of clustering unknown organisms, the results of the two LRD

aligners are exactly the same.

The following strategies are designed to further improve the

hash LRD aligner, in terms of speed. First of all, a boolean array f

of size DsD{kz1 is used. Each element f ½i� indicates if the k-mer

s½i : izk� is in the hash table h. When the algorithm tries to align

the read at every position i in the reference sequence s, by

computing the distance from the read r to the substring s½i : izDrD�,
it will have to look up some of the k-mers in h, several times (more

precisely, DrD times). Despite the fact that the hash table look up

takes O(1) time in theory, it is still faster to check the value of f ½i�
instead of doing a hash table look up. Another improvement is to

stop the alignment at a certain position i, if the distance sum

computed between r and s½i : izDrD� becomes greater than the

minimum Dright obtained so far.

The next efficiency improvement is to count the number of k-

mers that are found in h, for every substring s½i : izDrD� in the

reference genome. These counts are stored in an array c of length

DsD{DrD. The algorithm can now consider the alignment only in the

positions in the reference that are more likely to give the minimum

Dright distance. It is fairly easy to observe that the more equal k-

mers r and s½i : izDrD� have in common, the lower

Dright(r,s½i : izDrD�) should be, since LRD is first based on finding

equal k-mers between the two strings and, then, on minimizing the

offsets between these k-mers. However, there is no guarantee that

this is always the case. Therefore, the approach to skip the

alignment for some positions i with low c½i�, in order to speed up

the hash LRD aligner, gives approximate alignment results. More

Figure 3. Local Rank Distance computed in the presence of different types of DNA changes such as point mutations, indels and
inversions. In the first three cases (a), (b) and (c), a single type of DNA polymorphism is included in the second (bottom) string. The last case (d)
shows how LRD measures the differences between the two DNA strings when all the types of DNA changes occur in the second string. The
nucleotides affected by changes are marked with bold. To compare the results for the different types of DNA changes, the first string is always the
same in all the four cases. Note that in all the four examples, LRD is based on 1-mers. In each case, DLRD~DleftzDright.
doi:10.1371/journal.pone.0104006.g003
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precisely, lower distances can probably be obtained for some of the

disregarded positions. These positions are disregarded by the two

rules described next. The first rule is to eliminate the position i if

c½i�v maxfcg{d , where d is a new input parameter of the

aligner. This parameter can take values in the interval ½0,maxfcg�.
When d~0, more positions are disregarded. When d~ maxfcg,
no positions are disregarded at all, since c½i� is always greater than

0. If the parameter d is set to eliminate more positions during the

alignment, the algorithm will be faster, but it will also give less

accurate alignment results. However, choosing d~5 for reads of

length 100 gives similar results to the basic LRD aligner in terms of

accuracy, while drastically reducing the computational time, as the

empirical results presented in this paper show. In all the

experiments, the results of the approximate hash LRD aligner

Table 12. Algorithm 1. The hash LRD aligner algorithm.

Input:

r – a short DNA string of length l;

s – a reference DNA sequence of length n;

k – the size of the k-mers to be compared;

m – the maximum offset;

th – the maximum rank distance threshold accepted for the aligned read;

d – the threshold that can be adjusted to skip the alignment at some positions.

Initialization:

1. Dmin~th;

2. bestPos~0;

Computation:

3. for i [ f1,:::,l{kz1g
4. add i in the array stored at h(r½i : izk�);

5. for i [ f1,:::,n{kz1g
6. if Dh(s½i : izk�)Dw0 then f ½i�~true ;

7. else f ½i�~ false ;

8. count~0;

9. for i [ f1,:::,l{kz1g
10. if f ½i�~~true then countzz;

11. c½1�~count;

12. for i [ f2,:::,n{lz1g
13. if f ½i{1�~~ true then count{{;

14. if f ½izl{kz1�~~ true then countzz;

15. c½i�~count;

16. for i [ f1,2,:::,n{lz1g
17. if c½i�§ maxfcg{d and (DrD{k{c½i�):mvDmin then

18. D~0;

19. for j [ f1,:::,l{kz1g
20. if DwDmin then

21. abort and proceed to the next value of i in the loop from step 12;

22. else

23. if f ½izj{1�~~true then

24. do a binary search in the array stored at h(s½izj{1 : izj{1zk�)
to obtain the position p that minimizes Dj{pD

25. D~Dz minfDj{pD,mg;
26. else

27. D~Dzm;

28. if DvDmin then

30. Dmin~D;

31. bestPos~i;

Output:

bestPos – the position were the read r was aligned;

Dmin – the minimum LRD (or Dright to be more precise) obtained at position bestPos.

doi:10.1371/journal.pone.0104006.t012
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are obtained with d~5. The second rule used by the approximate

aligner is to eliminate the position i, if (DrD{k{c½i�):m is greater

than the minimum Dright distance obtained until position i. The

difference DrD{k{c½i� gives the number of k-mers in s½i : izDrD�
that are not found in h. For each of these missing k-mers, the

maximal offset m is added to the Dright sum. Thus,

Dright(r,s½i : izDrD�) is always greater than (DrD{k{c½i�):m. But, if

(DrD{k{c½i�):m is already greater than the minimum Dright

distance obtained so far, there is no point in aligning the read at

position i.
All the improvements described above are actually combined

together to obtain an efficient LRD aligner. It is fairly obvious that

these efficiency improvements and indexing strategies produce a

different yet more efficient algorithm than the basic LRD aligner.

The approximate hash LRD aligner algorithm is described in

Table 12. As for the basic LRD aligner, a read is only aligned if

the minimum LRD (or Dright, to be more precise) obtained by the

algorithm is less than a certain threshold.

The algorithm described in Table 12 is also applied for the

short DNA string obtained by reverse complementing the original

read. But, another speed improvement is considered here. The

alignment tool tries to align the reverse complement only if the

minimum distance for the original read is not acceptable. An

internal threshold is used to determine if the minimum Dright is

acceptable (lower than the threshold) or not. This threshold is

computed as follows:

t~ minfth, minfk,mg:(DrD{kz1)g:

The threshold t is low enough to ensure, with a certain

probability, that if Drightvt then the read is aligned in the right

place. This parameter speeds up the alignment tool especially

when the reads and the reference genome belong to the same

species. If the reads belong to other species (as in the case of

contaminated reads, for example), the aligner will most likely try to

align the reverse complements too.

Finally, the computational complexity of the algorithm

described in Table 12 is O(n|l| log l
DSDk

). Unlike the basic

LRD aligner, the computational time of the approximate hash

LRD aligner is no longer limited by the maximal offset m of LRD.

This is a clear advantage of this faster implementation. However,

in the experiments, the results of both the basic LRD aligner and

the approximate hash LRD aligner are obtained with m~36 in

order to compare the results of the two aligners and to show that

they produce almost the same results.

In practice, the input parameters of the algorithm described in

Table 12 should be carefully adjusted with respect to length of the

DNA reads and to the amount of mutations and errors in DNA.

For example, setting k~10 to use 10-mers for reads of 100 or 200
bases is not reasonable, since finding similar 10-mers in such short

DNA strings is rare, if not almost impossible. But 3 to 5-mers are

probably more suitable for aligning short DNA reads. Notice that

the maximum offset parameter m should be adjusted accordingly.

Using 5-mers and a maximum offset that is too small (less than 10,

for example) might result in finding almost no similar 5-mers in the

search window. The best practice to choose the parameters of the

aligner is to tune them on a validation data set first.
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