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Abstract: LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance
(LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost
and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit
sensitivities at the fT/

√
Hz level in the kHz range. However, since the equivalent magnetic field

noise of this type of sensor is greatly affected by the environment, weak signals are often submerged
in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine
why noise increases in unshielded environments, we analysed the noise levels of an LC resonance
magnetic sensor (L 6= 0) and a Hall sensor (L ≈ 0) in different environments. The experiments
and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led
to the observed increase in white noise level caused by environmental interference. Nevertheless,
ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated
when environmental interference exists. In response to this problem, we proposed a method that
uses matching resistors with various values to adjust the quality factor Q of the LC resonance
magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR
experiment in the laboratory showed that the SNR is improved significantly when the LC resonance
magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test
environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study
improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety
of environments.

Keywords: LC resonance magnetic sensors; ringing signals; noise level; detection sensitivity

1. Introduction

Nuclear magnetic resonance (NMR) technology is widely used in many fields such as biology,
chemistry, physics, materials and geophysics [1,2]. Compared with high-field (HF) NMR, NMR at
low-field Bm (LF) with Larmor frequency f L in the kHz range offers some advantages [3]. For lower
fields, i.e., surface nuclear magnetic resonance (SNMR) fields, the high homogeneity of the Earth’s
magnetic field (50–60 µT) increases the amplitude and duration of the free induction decay (FID)
signal [4]. In addition, the spin-lattice relaxation time T1 is more material dependent than in
high field cases, resulting in improved T1-contrast imaging [5]. However, the disadvantage that
accompanies the low-field is a weak signal. An effective method to improve the signal-to-noise
ratios (SNRs) of LF-NMR measurements is to increase the sensitivity of pick up sensors. Because
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superconducting quantum interference devices (SQUIDs) have the highest sensitivities, they have been
employed in LF-NMR measurements. The field resolutions of liquid-nitrogen-cooled (high-Tc) SQUIDs
and liquid-helium-cooled (low-Tc) SQUIDs reach 30~50 fT/

√
Hz and 1 fT/

√
Hz respectively [6–9].

Recently, low-Tc SQUIDs have also been used for SNMR detection [10]. Although SQUIDs yield the
best field sensitivity, they are not commonly applied because of their susceptibility to flux trapping,
their need for cooling to liquid He temperatures, and the operation difficulty. Hence, it is important to
explore a more robust and sensitive sensor for practical use.

LC resonance magnetic sensors, also called receiving antennae, have been used for LF-NMR
as well as SNMR systems to detect free induction decay (FID) signals of ground water due to their
high sensitivity, low fabrication complexity, robustness and cost effectiveness [11–13]. Due to their
weak signals, e.g., only nanovolts (10−9 V) in SNMR detections, large numbers of optimizations and
designs have been conceived to increase SNR for LC resonance magnetic sensors [14–16]. In general,
these improvements were mainly achieved by optimizing the coil physical characters and designing
an LC resonance circuit filter network. As the key component of LC resonance magnetic sensors,
different multi turn copper coils have been designed and sensitivity optimization was also studied
by Lin et al. The high-sensitivity cooled coil system (77 K) developed in Lin’s study when matched
with a low-noise preamplifier exhibits a sensitivity of approximately 2 fT/

√
Hz in a magnetically

shielded room, which is comparable to that of low-Tc SQUIDs [14]. In addition, Lin et al. improved the
ability of an LC resonance sensor to detect weak signals by changing the coil’s operating temperature
and optimizing the metre-level coils and used it for disaster water detection in a small underground
space [15]. To further improve SNR, Zhang et al. designed a matching network consisting of an LC
broadband filter in parallel with a capacitor, the capacitor was selected to increase the gain in the
passband of the filter and improve the sensitivity of the sensor system [16].

At present, the disclosed method increases the SNR of the detection signal to some extent by
changing the physical quantity of the sensor material and the temperature of the sensor application.
However, they ignored an interesting phenomenon whereby the signal quality collected by the LC
resonance magnetic sensor significantly differs in a magnetically shielded room and in the field.
Furthermore, no one has fundamentally analysed the mechanism of the noise increase of LC resonance
magnetic sensors in field environments or proposed corresponding solutions for that mechanism to
optimize SNR.

In this study, we designed an LC resonance magnetic sensor and optimized it based on the
mechanism whereby the sensitivity of LC resonance magnetic sensors depends on the environment.
First, we designed an LC resonance magnetic sensor and compared the performances of a Hall sensor
(L≈ 0) with LC resonance magnetic sensor (L 6= 0) in different environments. The ringing phenomenon
and the question of whether the sensitivity of an LC resonance magnetic sensor (L 6= 0) depends on its
working environment will be addressed through experiments and simulations. Proof will be given that
the superposition ringing of the LC resonance magnetic sensor caused by environmental interference
is the reason for the increase in noise level. To solve this problem, the mechanisms of the decreasing
sensitivity of LC resonance magnetic sensors should receive attention. By using matching resistors with
various values to adjust the quality factor Q of the LC resonance magnetic sensor, optimum sensitivity
can be obtained in different measurement environments. Finally, a LF-NMR experiment was used to
verify the effectiveness of the method. This optimized design can effectively improve the SNR of the
system by adjusting sensitivity according to the actual environment.

2. Materials and Methods

2.1. Device Selection of the LC Resonance Magnetic Sensor

The LC resonance magnetic sensor with non-negligible inductance L 6= 0 is based on Faraday’s law
of induction [17,18]. It is comprised of a receiving coil (L), a matching capacitor (C) and a preamplifier
(shown in Figure 1). The receiving coil is connected to the matching capacitor in parallel to form



Sensors 2018, 18, 1335 3 of 10

a resonant circuit for improving the Q value, thus increasing the sensor’s sensitivity and suppressing
the environmental noise outside the frequency range. In this work, an enamelled copper wire with
a diameter of 0.4 mm was selected to fabricate the coil of the magnetic sensor. The layers, number of
turns and diameter of the coil were 3, 147 and 80 mm, respectively. The coil’s direct current resistance
was 1.73 Ω (@300 K), and the measured inductance was approximately 1.68 mH. We used 2.7 µF
capacitors to match the coil to achieve a resonance frequency f 0 of 2362 Hz with Q = 10.3. An AD797
operational amplifier produced by Analogue Devices, USA connected to the LC resonance circuit was
employed as a preamplifier with a voltage noise of 0.9 nV/

√
Hz and current noise of 2 pA/

√
Hz in the

white noise region.
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Figure 1. LC resonance magnetic sensor. (a) Schematic diagram; (b) sensor prototype.

2.2. Sensitivity Analysis of the LC Resonance Magnetic Sensor

The intrinsic voltage noise of the LC resonance magnetic sensor consists of three parts [14]:
the thermal noise of the coil VT, the preamplifier’s voltage noise Vn and current noise In. The sensor’s
voltage noise VS is described as

VS =

√
V2

n + (I2
nZ)2 + (Q

√
4kBTRS)

2
(1)

where Q denotes the quality factor of the LC resonance circuit, Z denotes the impedance at the
resonance frequency, kB is Boltzmann’s constant, T is the coil temperature, and RS is the direct current
resistance of the coil. According to Equation (1), the calculated voltage noise of the developed LC
resonance magnetic sensor is approximately 2 nV/

√
Hz@300 K.

According to Faraday’s law of induction, the transfer coefficient of the sensor can be described as

∂V/∂B = QNSω (2)

where N denotes the number of coil turns, S is the average detection area, and ω = 2π f0 is the
resonance angular frequency.

By combining Equations (1) and (2), we can obtain the sensitivity of the LC resonance magnetic
sensor, which is expressed as

Bn =
VS

(∂V/∂B)
=

√
V2

n + (I2
nZ)2 + (Q

√
4kBTRS)

2

QNSω
(3)

To obtain the optimal detection sensitivity, the structure parameters of coil and the performance
of the preamplifier should be considered.

2.3. Manual Interference Sensor Noise Test Method

The noise of the LC resonance magnetic sensor with manual interference was tested in a shielded
room. A transmitter coil was placed 5 cm above the LC resonance magnetic sensor coaxially, and a signal
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generator was used to output the fixed amplitude and frequency waveforms on the transmitting
antenna to generate manual interference. At that point, the LC resonance magnetic sensor was used to
collect noise, and the data was finally displayed and saved by the dynamic signal analyser (Agilent
35670A produced by Agilent Technologies, Santa Clara, CA, USA). By setting different amplitudes and
different frequencies of the manual interference sources, the influence of environmental interference
on the sensitivity of the LC resonance magnetic sensors was explored. The detailed configuration of
this test method is provided with the results of the manual interference noise test.

2.4. LF-NMR Experimental Method

The LF-NMR experiment was conducted in a magnetically shielded room. In the experiment, 3 L
of water was used as the sample to be tested and was placed in the centre of the static magnetic field Bm

generated by the Helmholtz coil. The excitation magnetic field Bp generated by the launch module was
used to excite the target water body. An FID signal acquisition module comprised of an LC resonance
magnetic sensor and a signal conditioning circuit was used for signal acquisition and preliminary
processing. The FID signal was finally displayed and stored by the data acquisition module. In this
experimental environment, by changing the resistance of the matching resistor Rm, the LC resonance
magnetic sensor collected noise and FID signals at different sensitivities and ultimately analysed the
quality of the acquired signal. The configuration details of this experiment are provided together in
the results.

3. Results

3.1. The Voltage Noise Comparation with or without Environmental Interference

To compare the voltage noise of the LC resonance magnetic sensor in different environments,
we placed it in a laboratory environment with abundant power line interference and in a magnetically
shielded room, with shielding factors of 68 dB@10 Hz and 80 dB@100 Hz, respectively. The results
are shown in Figure 2a. The measured white noise level of the sensor in the magnetically shielded
room was 2.8 nV/

√
Hz, as shown by the blue curve, which was close to the above-calculated value of

2 nV/
√

Hz. In contrast, the white noise (>5 Hz) reached up to 1.6 µV/
√

Hz in the lab environment,
although there was no interference below 50 Hz, as shown by the red curve. Here, many power line
peaks (50 Hz and its harmonics) were clearly observed. An interesting phenomenon is that the whole
noise level increased 3 orders of magnitude due to the interference.

For comparative analysis, a sensor was selected with a negligible inductance L ≈ 0, i.e., a Hall
sensor [19,20]. The Hall sensor’s white noise remained unchanged at 3.2 µV/

√
Hz both in the lab

environment and in the magnetically shielded room, as shown in Figure 2b. Here, the SS495A
Hall effect sensor produced by Honeywell Solid State Electronics Center was used. From Figure 2,
we learned that the noise behaviour of the LC resonance magnetic sensor with L 6= 0 differed in
different environments, whereas that of the Hall sensor with L ≈ 0 did not.
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Figure 2. Comparison of the measured voltage noise in unshielded lab environment and in
a magnetically shielded room. The blue curve represents the detection in magnetically shielded
room and the red curve represents the detection in unshielded lab environment. (a) The LC resonance
circuit with L 6= 0; (b) The Hall sensor with L ≈ 0. All noise spectra in this paper are recorded by
a dynamic signal analyzer (Agilent 35670A produced by Agilent Technologies, Santa Clara, CA, USA).

3.2. The Noise Test and Analysis of the Sensor with Manual Interference

Generally, there are two types of interference in a typical laboratory environment:
square-wave-shaped disturbances from digital instruments and sinusoidal waves of different
frequencies (i.e., power line interference and its harmonics).

To study the impact of the environmental interference on the sensitivity of the LC resonance
magnetic sensor, we placed it in the magnetically shielded room again and applied some manual
interference. One single turn coil with a diameter of 80 mm was employed as the transmitting antenna
to generate the manual interference. The antenna was coaxially placed next to the LC resonance
magnetic sensor at a distance of 5 cm. A function generator yielded a square wave with an amplitude
of 60 mA and a frequency of 10 Hz to the transmitting antenna. A transient ringing signal was clearly
detected, as shown in Figure 3. The inset reveals that the ringing signal appeared after each rising or
falling edge of the square wave. The 2362 Hz ringing frequency was the intrinsic resonant frequency
f 0. It exponentially decayed from an initial amplitude of ±2.1 V (here, the amplifier gain = 100).
After approximately 15 ms, it submerged below the system noise. The measurable ringing duration
was determined by its initial amplitude [21,22]. A ringing time constant of τr = 2Q/ω = 1.39 ms
was observed. The duration of the ringing signal could exceed 10 τr in this case. The initial ringing
amplitude increased with the increasing amplitude of the applied square wave.
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We also applied sinusoidal waves with amplitudes of 20 mA and frequencies of 200 Hz, 500 Hz,
1 kHz, 2 kHz, 3 kHz and 5 kHz to the transmitting antenna to generate a manual interference of
493 pT in the centre. The measured noise spectra are shown in Figure 4. With the exception of some
spectral peaks that were generated by manual interference, the noise figures remained almost constant.
However, the noise level increased up to 0.67 µV/

√
Hz, which was nearly 240 times larger than that

without interference.

Sensors 2017, 17, x FOR PEER REVIEW  6 of 10 

 

We also applied sinusoidal waves with amplitudes of 20 mA and frequencies of 200 Hz, 500 Hz, 
1 kHz, 2 kHz, 3 kHz and 5 kHz to the transmitting antenna to generate a manual interference of  
493 pT in the centre. The measured noise spectra are shown in Figure 4. With the exception of some 
spectral peaks that were generated by manual interference, the noise figures remained almost 
constant. However, the noise level increased up to 0.67 μV/√Hz, which was nearly 240 times larger 
than that without interference. 

 
Figure 4. The spectra of the LC resonance magnetic sensor with and without manual sinusoidal 
waves’ interference in a magnetically shielded room. 

To understand the mechanism of the white noise increase due to the ringing effect, we 
performed a numerical simulation using MATLAB software with 2016 version. White noise with a 
mean value of 0 and standard deviation of 0.2 μA was randomly added to the LC resonance magnetic 
sensor. The sampling rate and recording time were set to 50 kHz and 10 s respectively. Its power 
spectrum density is shown by the black line in Figure 5. Sinusoidal (S) waves with different 
amplitudes (A) and frequencies (f) were superposed with the above mentioned random noise, i.e., 
wave S1 with A = 0.1 A and f = 500 Hz and wave S2 with A = 100 μA and f = 5 kHz. For both 
superimposed signals, at each point where the sinusoidal waves passed zero, one ringing with a 
frequency of 2362 Hz was added to the superimposed signals. The amplitudes of the ringing signals 
were chosen randomly from 100 to 1000 μA, and the phase was switched between 0 and π. The 
spectra of the superimposed signals are shown by the blue and red lines in Figure 5. As expected, the 
white noise levels for both of the sinusoidal waves increased by approximately five orders of 
magnitude, which can be explained by the superimposed ringing. 

 
Figure 5. The simulated noise level with and without ringing. 

Figure 4. The spectra of the LC resonance magnetic sensor with and without manual sinusoidal waves’
interference in a magnetically shielded room.

To understand the mechanism of the white noise increase due to the ringing effect, we performed
a numerical simulation using MATLAB software with 2016 version. White noise with a mean value
of 0 and standard deviation of 0.2 µA was randomly added to the LC resonance magnetic sensor.
The sampling rate and recording time were set to 50 kHz and 10 s respectively. Its power spectrum
density is shown by the black line in Figure 5. Sinusoidal (S) waves with different amplitudes (A) and
frequencies (f ) were superposed with the above mentioned random noise, i.e., wave S1 with A = 0.1 A
and f = 500 Hz and wave S2 with A = 100 µA and f = 5 kHz. For both superimposed signals, at each
point where the sinusoidal waves passed zero, one ringing with a frequency of 2362 Hz was added to
the superimposed signals. The amplitudes of the ringing signals were chosen randomly from 100 to
1000 µA, and the phase was switched between 0 and π. The spectra of the superimposed signals
are shown by the blue and red lines in Figure 5. As expected, the white noise levels for both of the
sinusoidal waves increased by approximately five orders of magnitude, which can be explained by the
superimposed ringing.
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Due to L ≈ 0, the Hall sensor and SQUID did not present the ringing effect. Therefore,
their sensitivities remained unchanged in the distributed environments. The environmental
interferences were the primary reason for the reduction in the detection sensitivity of the LC resonance
magnetic sensor. To achieve optimal sensitivity for applications in ambient environments, adjusting
the Q of the LC resonance magnetic sensor by connecting a resistor to the matching capacitor in parallel
is an effective method.

3.3. LF-NMR Experiment using the LC Resonance Magnetic Sensor

We connected a resistor (Rm) to the matching capacitor in parallel to change the Q value of the
LC resonance magnetic sensor to explore its ability to suppress noise with different sensitivities for
detecting an actual water signal. A simple LF-NMR experiment was carried out inside the magnetically
shielded room. LF-NMR experimental models with different sensitivities are shown in Figure 6.
They were mainly comprised of four parts. (i) A Helmholtz coil pair was used to generate a static
magnetic field Bm = 54.78 µT, which determined the Larmor frequency fL = 2.333 kHz. The 3 L
water sample was located in the centre of the Helmholtz coil; (ii) A Bp transmitting coil made of
multi-turn enamelled wire with a diameter of 2.26 mm was placed 30 cm above the water sample to
generate a 0.8 mT Bp pulse for polarizing the water samples. The driver was a controllable current
source used to provide current to the Bp coil for 7 s; (iii) The FID signal acquisition unit included
the LC resonance magnetic sensor (receiving coil L, matching capacitor C, matching resistor Rm and
preamplifier) and signal processing circuit. The value of the matching capacitor was slightly modified
for the LC resonance frequency corresponding to the Larmor frequency of the static magnetic field.
After the Bp pulse was over, a release time of 30 ms passed before initiating collection of 500 ms
signals. The signal processing circuit was a bandpass filter comprised of an eighth-order Butterworth
low-pass filter and eighth-order Butterworth high-pass filter and had cut-off frequency of 1.5 kHz–3.7
kHz [15]; (iv) Regarding the experimental controller and data sampling, Altera’s EPM1270T144C5N
Complex Programmable Logic Device (CPLD) was used to control the working status of each part.
The data sampling was completed using a dynamic signal analyser (Agilent 35670A). The data for each
experiment was saved after 30 superpositions to avoid influences due to chance factors. The sensing
directions of the receiving coil, Bp and Bm, were perpendicular to each other.
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As mentioned above, to explore the sensors’ ability to suppress noise with different sensitivities
for detecting the actual water signal, we used a parallel resistance Rm to adjust the Q value. Through
several experiments, we obtained the diagram between the SNR and Rm values shown in Figure 7,
where SNR was calculated according to the effective signal and noise powers. The red dots represent
the averages of three sets of parallel data, and the blue line represents standard deviation. It can be
seen from the Figure 7 that for Rm below 1 kΩ, the SNR of the FID signal was generally lower and
that with the continuous increase in Rm, the SNR improved, but the error fluctuation was large. When
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Rm = 10 kΩ, the SNR of the FID signal reached a summit, and the deviation was minimal. As the
value of Rm continued to increase, the SNR of the signal slightly decreased, but the deviation range
greatly increased. Based on the above experimental results, we believe that noise suppression can be
achieved to some extent by changing the value of the parallel resistance Rm. Therefore, in an NMR
actual application, the SNR can be improved by modifying the value of the parallel resistance of the
LC resonance sensor in accordance with the noise levels of different detection areas.
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To further demonstrate that changing the matching resistor Rm can improve the SNR of the signal,
we analysed the frequency spectrum of the FID signal by extracting two groups of data from the
LF-NMR experiment with values of Rm = 57 kΩ and Rm = 10 kΩ, as shown in Figure 8. The x-axis and
y-axis represents the frequency of the signal and the amplitude of the FID signal, respectively. The black
lines represent the unprocessed raw data, and the red lines represent the fitting curve. The frequency
of the FID signal was 2333 Hz, i.e., the peak of the red lines. By comparison, in addition to 50 Hz
power frequency harmonics, the amplitude of the FID signal with Rm = 10 kΩ was obviously higher
than that for Rm = 57 kΩ. Therefore, the experimental results further confirmed that choosing the right
LC resonance magnetic sensor matching resistor value according to the measurement environment
can achieve the best sensitivity and obtain high quality FID signals in NMR applications. The signal
processing process was divided into two steps. First, a Fourier transform was performed on the
collected time domain signal and then the fitting curve was marked, as shown by the red curve
in Figure 8.
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4. Discussion and Conclusions

In the present study, we compared the behaviours of magnetic sensors with L ≈ 0 and L 6= 0 in
a magnetically shielded room and in an unshielded field environment to observe the changes in the
noise levels of different sensors. The results showed that the noise behaviours of the LC resonance
magnetic sensor with L 6= 0 differed in the various environments, whereas those of a Hall sensor with
L ≈ 0 were constant. We then explored the ringing phenomenon and approved that the superposed
ringing effects caused by environmental interference adjusted the detection sensitivity of the LC
resonance magnetic sensors. In response to that problem, we proposed a method that uses matching
resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in
different measurement environments to suppress the noise. Additionally, in the future a special design
structure of the LC resonance magnetic sensor can be adopted to reduce the inductance L, thereby
suppressing the noise levels of the sensors.

A LF-NMR experiment was used to verify the effectiveness of the method. We analysed the
SNRs and frequency spectra from multiple test results, when the matching resistance was 10 kΩ,
the SNR was 3.46 times than that of 510 Ω, and the amplitude of the FID signal with Rm = 10 kΩ was
obviously higher than that of Rm = 57 kΩ in the test environment. On that basis, it was concluded
that for different measurement environments, adjusting the matching resistor can improve the quality
factor Q of the LC resonance magnetic sensor to obtain the best sensitivity, thus suppressing noise and
improving SNR in NMR applications.
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