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Abstract

Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the
sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus
cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former
researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene
regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene
dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the
influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed
network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency
network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-
metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play
critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and
specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also
been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build
the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms
those classification models with published signatures. In conclusion, we have proposed a promising way to construct the
gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the
hidden mechanism of the biological process and identifying the gene signature for phenotypic change.

Citation: Zhou X, Liu J (2014) Inferring Gene Dependency Network Specific to Phenotypic Alteration Based on Gene Expression Data and Clinical Information of
Breast Cancer. PLoS ONE 9(3): e92023. doi:10.1371/journal.pone.0092023

Editor: Julio Vera, University of Erlangen-Nuremberg, Germany

Received October 24, 2013; Accepted February 19, 2014; Published March 17, 2014

Copyright: � 2014 Zhou, Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Science Foundation of China (61272274, 60970063), the program for New Century Excellent Talents in
Universities (NCET-10-0644), and the Fundamental Research Funds for the Central Universities (2012211020208). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: liujuan@whu.edu.cn

Introduction

In order to understand the regulatory mechanism in biological

process, it is important to identify gene regulatory network (GRN)

by using gene expression data. A lot of methods have been

proposed to solve this problem, such as Bayes network [1,2],

Boolean network [3], differential equations [4], linear program-

ming [5] and regression [6]. However, the performances of all

these methods are still unsatisfactory [7].

These days, many approaches based on mutual information

(MI) from information theory [8–12] are successfully applied in

network construction [7,13]. The information-theoretic approach-

es are widely used to infer GRNs because of two advantages. One

is that MI can measure nonlinear dependency relations and the

other one is that it can deal with a lot of variables with a few

samples [7]. However, most of the existing methods establish the

gene-gene causal relations by only considering gene expression

levels without including phenotype information in their calcula-

tions. In other words, almost former methods just pay attention to

identify whether one gene directly controls the expression of

another gene [14,15] instead of identifying their regulatory

relation underlying the phenotypic alteration. Although some

methods do use phenotype information to select genes related with

phenotypic changes and then establish the regulatory networks,

they may still ignore those genes that play critical roles in the

biological process yet are not significantly correlated with the

phenotype. As a result, the existing methods produce GRNs that

can only reveal the static regulatory relations, rather than identify

the gene dependency relations according to the phenotypic

change, while the later is essential for us to understand the

biological mechanism hidden behind the expression data.

Although constructing the dynamic GRNs based on time-course

data may reveal the regulatory relations in the dynamic process

[16], the lack of time-course data and the small size of samples

available make such methods inapplicable in practice.

Gene dependency is common in biological process. For

example, the activities of many transcription factors regulating

their targets depend on other modulators [17]; MYC activates

ATM to promote apoptosis and suppress tumorigenensis [18,19];

whether RAF1 influences the cancer prognosis or not relies on

HRAS [20]. Thus if we can identify all gene dependency pairs

underlying specific phenotypic change, we can better understand
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the biological mechanism related to the state change of the

phonotype.

In this work, we propose a novel method to construct the gene

dependency network underlying the alteration of the phenotype,

by integrating the phenotype information and the gene expression

data. We first apply conditional mutual information (CMI) to

identify the gene dependency pairs underlying the phenotypic

change (Each pair indicates that the mutual information of one

gene and the phenotype is dependent on another gene). We then

use permutation test to select the significant pairs. Finally we

construct the gene dependency network by combining all pairs

with significant gene dependency relationships.

Breast cancer has been widely researched and many multi-gene

markers [21–23], also called as gene signatures, have been

detected for the prediction of distant metastasis risks of cancer

patients. However, the performances of most published signatures

on independent data sets are very poor, even not significantly

better than random signatures with the same sizes [24]. What is

more, gene signatures detected by different methods may be little

common, which makes the identified signatures not robust across

different data sets and platforms. For example, Chuang et al. have

found that the well known 70-gene signature and 76-gene

signature for breast cancer have only three common genes [25].

All above phenomena may be due to the fact that tumor cells often

have far more ‘passenger signals’ than ‘drivers’, and most genes of

these signatures tend to be ‘passengers’ instead of ‘drivers’ [26],

resulting in the lack of stability of the signatures across different

data sets. For more effective therapy purpose, it is essential to

identify the discriminative prognostic genes that can signal the

cancer metastasis and are stable across various data sets. Now that

the gene dependency network reflects the gene regulatory relations

during specific phenotypic change, it is expected to be a suitable

candidate to characterize the complex mechanism in the

metastasis process of breast cancer. Intuitively, we think the hub

nodes in the network are much more likely to be drivers instead of

passengers. Thus the discriminative hub nodes from the network

may be good signature genes for distinguishing the phenotype

states of breast cancer.

In this work, we first construct the gene dependency network of

breast cancer by integrating the gene expression data and the

corresponding metastasis clinic information. Then we functionally

analyze the hub nodes in the network to investigate their relations

with breast cancer and cancer metastasis. Finally, we select the

discriminative hub genes to form the signature to distinguish the

distant metastasis risks of breast cancer patients in six breast cancer

data sets.

Materials and Methods

Data sets and pre-processing
Gene expression data sets of breast cancer and the correspond-

ing clinic information were downloaded from NCBI (National

Center for Biotechnology Information Gene Expression Omnibus)

with accession number GSE2034 [21], GSE1456 [27], GSE3494

[28], GSE4922 [29], GSE7390 [30], GSE11121 [31] and

GSE12093 [32]. All these data sets have been normalized with

the algorithm MAS5 and the probes have been mapped to Entrez

Gene ID and averaged. GSE2034 was used for the construction of

the gene dependency network as well as the selection of the

signature genes, and the other data sets were used as the

independent test sets. All information of these data sets is shown

in Table S1.

In order to construct the gene dependency network, we first

discretized the clinic information and the gene expression levels. If

the distant metastasis occurred within 5 years, we set the

phenotype status as 1; if the distant metastasis occurred after 5

years, we set the phenotype status as 0; the other data were

abandoned. The gene expression value was set to 0 if it was lower

than the median of the gene expression levels of all samples;

otherwise, it was set as 1.

The human protein interaction data was downloaded from

HIPPIE (Human Integrated Protein-Protein Interaction rEfer-

ence) [33]. And the breast cancer related genes were obtained

from the database DGA (Disease and Gene Annotations) [34].

Inference of gene dependency network
Figure 1 describes the procedure of establishing the gene

dependency network. We first used CMI to infer the gene pairs

with dependency relationships. Then we used the permutation

method to test the significance of every gene pair. At last, we

constructed the gene dependency network by combining all

significant gene pairs.

Identification of gene dependency pairs. Our work aims

at identifying the gene dependency pairs such that the relationship

between one gene (denoted as A) and the phenotype (the clinic

information of breast cancer patients in this work, also called as

outcome and denoted as P) depends on another gene (denoted as

B). In this case, we say that gene A depends on gene B in the

context of phenotype P. In this work, we used CMI, calculated by

the way similar to [17], to infer such dependency relationship

between gene A and gene B. In order to make the calculation

results more reliable, we only considered those gene pairs

interacting with each other in the PPI network as candidates.

For every candidate pair (A, B), we got 286 triplets in the form of

(value of gene A, clinic information, value of gene B), each triplet

for one sample in GSE2034. We sorted all the triplets in ascending

order by the expression levels of gene B and then discretized the

gene expression levels of gene A and the clinic information

(Section ‘Data Sets and pre-processing’). Similar to [17], we

calculated MI between gene A and the phenotype according to the

bottom 35% triplets with the lowest expression levels of gene B,

denoted as Ilow. At the same time, the top 35% triplets with the

highest gene B expression levels were also used to calculate MI

between gene A and the phenotype, denoted asIhigh(the mutual

information was calculated by a tool [35]). Therefore, the

dependency relationship of gene A on gene B was calculated via

the CMI described as the following equation:

CMI(GeneA; outcomejGeneB)~

Ihigh(GeneA,outcome){Ilow(GeneA,outcome)

Significance test of the dependency relation. We used

permutation method to evaluate the significance of every gene-

gene dependency relation. For each candidate gene pair (A, B), we

first calculated its real CMI value as described above. Then we

randomly permuted the expression level of gene A and the

phenotype state value across the samples 1000 times and

calculated out 1000 CMI values as the null hypothesis distribution.

Then the order (descending) of the real CMI value in the null

hypothesis distribution divided by 1000 was taken as the

significance p-value of (A,B). Finally we used a threshold (0.05 in

this work) to decide whether the pair was significant or not.

Construction of gene dependency network. The signifi-

cant gene dependency pairs were preserved to construct the gene

dependency network, in which, nodes are genes, and the directed

Gene Dependency Network Specific to Phenotype Alteration
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edge (BRA) represents the dependency relationship of gene A on

gene B, with CMI value being the corresponding edge weight.

Analysis of the gene dependency network
The flow chart of network analysis is shown in figure 2. Firstly,

we used evidence in literature to validate the gene dependency

pairs of our network. Then, we functionally analyzed the hub

genes with higher out-degrees to check whether they were

biologically meaningful. Finally, we selected the discriminative

hubs as gene signature to predict the distant metastasis risks of

cancer patients, and evaluated the performance of the selected

gene signature.

Hub genes selection. In the gene dependency network, the

out-degree of a gene indicates the number of genes related to

phenotypic alteration that it influences. Therefore, the genes with

higher out-degrees should be more critical to the phenotypic

change. In this work, we selected the top 20% genes with the

largest out-degrees (not less than 4) as hub genes of the network for

further analysis.

Functional analysis of hub genes. In order to find out the

biological functions of hub genes, we used DAVID [36] to check

the significance of the overlap between hub genes and genes in

each KEGG pathway. If the overlap is significant (Benjamin FDR

less than 0.05), the corresponding KEGG pathway is considered to

be the functional annotation of the hub genes.

Selection of gene candidates for signature. To select the

genes significantly related to the distant metastasis risks of the

patients, we adopted the strategy similar with ScoR [32] in this

work. Firstly, 75% of all 286 samples in GSE2034 were

randomly chosen. After that, Cox proportional hazards

regression was applied to estimate the coefficient between

each gene and the distant metastasis risk across the chosen

patients. The procedure was repeated 400 times and the genes

with Cox p-value,0.05 in more than 90% of the 400 runs

were regarded as the gene candidates. As a result, 442 genes

have been identified out in this way, and the final Cox

coefficient and Cox p-value of each selected gene were set as

the average values of 400 runs.

Calculation of the distant metastasis risk. In order to

evaluate the distant metastasis risk of a patient, we calculated the

Risk Score for each patient based on following formula by using

the determined signature genes. This method is similar to the

strategy of Gene expression Grade Index (GGI) [37]:

Risk Score~
X

xi{
X

xj

where xi (or xj) represents the expression level of the gene i (or gene

j) which has positive (negative) Cox coefficient with the metastasis

risk.

Figure 1. The main framework to construct the gene dependency network.
doi:10.1371/journal.pone.0092023.g001
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Evaluation of discrimination performance on one data

set. Following the general way, we divided the patients in a data

set into two groups with the same size. That is, we assigned 50% of

the patients with lower risk scores into the low risk group and vice

versa. After that, we used log rank test to test if the risks of the two

groups were significantly different (p-value#0.05). Kaplan Meier

curves and the log rank test were performed by a tool (http://www.

mathworks.com/matlabcentral/fileexchange/22317-logrank).

Evaluation of discrimination performance across several

data sets. In order to evaluate to what extent the signature can

discriminate patients with different risks in various data sets, we

defined the Discrimination score (Dscore) as follows:

Dscore~
Xn

i~1

{ log10 (P{valuei)

Where n is the number of the data sets, and P{valuei is the p-

value of log rank test on the ith data set (Because of the problem of

numerical precision, if the p-value is less than 1.00E-17, we set it as

1.00E-17). It is obvious that the larger the Dscore value is, the

better the discrimination performance would be.

Network topology and visualization
The gene dependency network was visualized by Cytoscape

2.8.2 and the topology analysis was performed by the Network

Analyzer plug-in for Cytoscape [38].

Results

Distant metastasis-specific gene dependency network
We used GSE2034 to infer the gene dependency pairs

underlying the breast cancer distant metastasis. As a result, we

got 17,511 significant gene dependency pairs (Table S2) involving

6,608 genes, and all the pairs constituted a directed network

consisting of one main sub-network with 6,364 nodes and a small

number of genes isolated from the main sub-network (Figure 3).

The average number of neighbours (the sum of in-degree and out-

degree) of the network nodes is 4.834. Moreover, both in-degrees

and out-degrees of the nodes follow the power law distributions,

respectively with the correlation of 0.993 and 0.976, and the R-

square of 0.879 and 0.914 (Figure S1 and Figure S2). These results

suggest that this network is scale free, in accordance with the

characteristics of typical biological networks. It has been reported

that in a scale free biological network, a few ‘hubs’ with higher

degrees are more likely to be essential than others [39]. Thus, in

the dependency network, a gene with larger out-degree, meaning

that it can influence more genes related to the outcome of cancer

patients, is more likely to have greater effect on cancer. Therefore,

it is expected that the out-degree can be used to measure how

much a gene can influence the distant metastasis of cancer.

Moreover, experimental studies have demonstrated that only 20%

nodes or so in the network are essential in influencing the state of

the network [40,41]. As a result, we selected 1,281 genes with the

highest out-degrees (not less than 4), which took up about 20% of

all the 6,364 genes in the main network, as the hub genes for

further consideration (Table S3).

Figure 2. The flow chart of network analysis.
doi:10.1371/journal.pone.0092023.g002
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Investigation on the hub genes
Among the 1,281 hub genes, 380 (about 30% of hub genes)

genes are in the breast cancer related gene set (Figure 4),

including some famous breast cancer genes such as BRCA1

(Entrez gene ID: 672), BRCA2 (Entrez gene ID: 675) [42], MYC

(Entrez gene ID: 4609) [43], TP53 (Entrez gene ID: 7157) [44]

and BLC2 (Entrez gene ID: 596) [45]. Using hypergeometric

cumulative distribution function test, we evaluated the signifi-

cance of the intersection set between the hub genes and the

reported breast cancer genes, and found the overlap significant

(with p-value less than 10e-17).

By enrichment analysis, 64 KEGG pathways are shown to be

significant with the hub genes (with FDR less than 0.05) (Table

S4). Among these pathways, ‘Pathway in cancer’ is on the top

(with FDR of 1.03e-44). In addition, Cell cycle, ErbB signalling

pathway, Apoptosis, Adherens junction, MAPK signalling path-

way, Focal adhesion, TGF-beta signalling pathway, p53 signal-

ling pathway, Wnt signalling pathway, VEGF signalling pathway,

mTOR signalling pathway and Jak-STAT signalling pathway are

all significant. In fact, all of them are the sub-pathways of the

‘Pathway in cancer’ [46], and they almost compose a whole view

of ‘pathways in cancer’. It is interesting that three immune-

related pathways, T cell receptor signalling pathway, B cell

receptor signalling pathway and Natural killer cell mediated

cytotoxicit, are also enriched with the hub genes, while immune

system has been reported to have a key prognostic impact on

cancer [31,47]. Among these significant pathways, some are

related with the bone, lung and brain, such as Chronic myeloid

leukemia, Acute myeloid leukemia, Small cell lung cancer, Non-

small cell lung cancer and Glioma, while it has been reported that

these three organs suffer from metastasis most frequently in breast

cancer [48-50]. We also found some hormones-related pathways

significant, including Ubiquitin mediated proteolysis, Insulin

signalling pathway, Progesterone-mediated oocyte maturation,

Figure 3. The gene dependency network. It contains 6608 nodes and 17511 edges. The edge from node A to node B means that the correlation
between B and the phenotype is significantly dependent on gene A.
doi:10.1371/journal.pone.0092023.g003

Figure 4. The intersection between the hub genes and the
breast-cancer-related genes. Among the 1,281 hub genes in the
network, 380 were reported breast cancer genes, and p-value of the
intersection is smaller than 1.00E-17.
doi:10.1371/journal.pone.0092023.g004
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Aldosterone-regulated sodium reabsorption and GnRH signalling

pathway. In fact, hormones are associated with the metastasis risk

of breast cancer and can be used as therapies for breast cancer

[51], for example, progestin and GnRH are treatments for breast

cancer patients [52,53] and progesterone receptors are used as a

prognostic factor in Stage II breast cancer [54]. To sum up, the

hub genes are mainly enriched in four categories of pathways:

‘pathway in cancer’ and its sub-pathways, the immune-related

Table 1. The hub-based signature.

Gene ID Gene Name Cox Beta Cox P-value Stability

701 BUB1B 0.46 1.07E-2 0.9625

718 C3 20.27 1.43E-2 0.9300

890 CCNA2 0.39 8.70E-3 0.9850

891 CCNB1 0.40 1.95E-2 0.9025

960 CD44 20.54 2.30E-3 1.0000

1917 EEF1A2 0.20 3.60E-3 1.0000

2146 EZH2 0.33 1.06E-2 0.9675

3091 HIF1A 0.44 1.94E-2 0.9150

3105 HLA-A 20.51 1.73E-2 0.9200

3106 HLA-B 20.39 1.06E-2 0.9600

3107 HLA-C 20.75 2.70E-3 0.9975

3493 IGHA1 20.39 9.72E-3 0.9675

3507 IGHM 20.34 9.60E-3 0.9750

3659 IRF1 20.51 1.61E-3 0.9300

3838 KPNA2 0.47 8.90E-3 0.9700

4591 TRIM37 0.58 3.90E-3 0.9950

4751 NEK2 0.38 1.80E-2 0.9200

4790 NFKB1 20.68 6.70E-3 0.9875

4798 NFRKB 20.78 1.53E-2 0.9300

5241 PGR 20.13 1.64E-2 0.9300

5501 PPP1CC 1.06 8.10E-3 0.9700

5688 PSMA7 0.59 7.30E-3 0.9700

5708 PSMD2 0.67 1.97E-2 0.9100

5998 RGS3 0.66 1.02E-2 0.9650

6241 RRM2 0.37 3.80E-3 0.9975

6626 SNRPA 20.64 1.49E-2 0.9525

6790 AURKA 0.53 2.60E-3 0.9975

6921 TCEB1 0.95 4.00E-4 1.0000

7133 TNFRSF1B 20.41 1.37E-2 0.9525

7138 TNNT1 0.13 1.60E-2 0.9275

7289 TULP3 0.55 1.64E-2 0.9275

7936 RDBP 0.74 3.90E-3 0.9900

8445 DYRK2 0.75 2.10E-3 0.9975

8668 EIF3I 20.70 2.01E-2 0.9025

9021 SOCS3 20.47 1.16E-2 0.9600

9459 ARHGEF6 20.52 3.30E-3 0.9975

10051 SMC4 0.71 2.00E-3 1.0000

10521 DDX17 20.34 1.44E-2 0.9525

11065 UBE2C 0.43 8.70E-3 0.9650

11260 XPOT 0.65 8.90E-3 0.9725

11335 CBX3 0.85 4.30E-3 0.9925

55257 C20orf20 0.67 1.92E-2 0.9025

57122 NUP107 0.60 1.42E-2 0.9300

Elements in column 3 are the average Cox correlations in the 400 runs; elements in column 4 are the average Cox p-values in the 400 runs; the stability is the ratios of
the genes which are significant in the 400 resampling runs.
doi:10.1371/journal.pone.0092023.t001
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pathways, cancer pathways related to metastasis organs of breast

cancer patients (bone, lung and brain), and the hormones-related

pathways.

Investigation on the gene dependency relations
In order to validate the inferred gene dependency relations, we

checked whether the relations between famous cancer genes have

been reported before.

As we know, TP53 is one of the most famous cancer genes and

its mutation has critical influence on cancer prognosis [55]. In the

constructed network, TP53 and MYC has a significant depen-

dency relation (with p-value of 0.048), which is in accordance with

the previous finding that TP53 may induce breast cancer by

stimulating MYC [54].

MYC is deregulated or overexpressed in most cancer cells

and MYC inhibition is a therapy for cancer [56]. BCL2 is

associated with the long term survival of breast cancer [57]. It

has been reported that MYC and BCL2 act synergistically to

promote primary cells into tumour cells [58], while in our

work, MYC is dependent on BCL2 to influence the outcome of

breast cancer (with p-value of 0.0119) and BCL2 also relies on

MYC significantly (with p-value of 0.0388).

In the dependency network, another famous breast cancer gene

BRCA1 has a significant dependency relation with gene JAK1

(Entrez ID: 3716) (with p-value of 0.0188), while BRCA1 has been

reported to up-regulate JAK1 to govern cellular proliferation,

differentiation, apoptosis and transformation; and all these

processes are involved in breast tumorigenesis [59].

In conclusion, the literature has confirmed the validity of

some gene dependency relations. The validation of the gene

dependency relations together with the significant biological

meanings of the hub genes may indicate that the gene

dependency network can indeed reveal hidden mechanism of

cancer metastasis.

Distinguishing distant metastasis risks of breast cancer
based on gene dependency network

To understand the metastasis mechanism, it is essential to

identify gene signature that can distinguish the metastasis risks of

cancer patients. Many gene signatures have been identified to

solve this problem, however, few of them are satisfactory because

of the poor generalization [26]. What is more, a recent report even

shows that most published signatures are not significantly better

than the random signatures with the same sizes [24]. The

phenomenon may be caused by the fact that there are more

passenger signals in tumour cells than in other types of cells and

thus the real cancer genes may be burned in the gene expression

profiles [26].

In the gene dependency network, a gene pair indicates that

the relation between one gene and the distant metastasis risk

depends on another gene. Thus, the distant metastasis-specific

gene dependency network may be more likely to identify the

hidden driver genes that influence the metastasis of cancer

patients by modulating other passenger genes, which is very

different from other methods that select the genes directly

associated with the outcome. Therefore, the hub genes in the

Figure 5. Survival analysis of the hub-based signature on GSE2034.
doi:10.1371/journal.pone.0092023.g005
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constructed network are more likely to distinguish metastasis

risks of cancer patients than those selected through other

methods.
Hub-based signature. Among 442 genes significantly

correlated with the metastasis risks (Materials and Methods)

(Table S5), 43 genes (Table 1) also belong to the hub genes of

the network. We therefore selected these 43 genes to form gene

signature, denoted as hub-based signature, to distinguish

metastasis risks of patients. The result of the survival analysis

(Materials and Methods) on the patients in GSE2034 shows

that the metastasis risks are significantly different between two

patient groups divided based on the signature (with HR

(hazard ratio) of 3.13, and p-value of 1.45e-8) (Figure 5).

To investigate the robustness of the signature, we did similar

discrimination test on other six independent data sets as well. The

results are shown in Figure 6. All the results demonstrate that the

hub-based signature can distinguish the metastasis risks of breast

cancer patients not only in the training data set, but also in the

independent data sets, suggesting that the hub-based signature is

superior to most published gene signatures that perform badly in

the independent tests [24].
Comparing with pseudo signature consisting of most

metastasis-risk related genes. From 442 genes significantly

correlated with the metastasis risks (Table S5), we chose 43 ones

that are most correlated with the metastasis risks (Table 2, denoted

as pseudo signature in this work) to perform survival analysis. The

results (Table 3) show that the pseudo signature cannot persistently

perform well across all the data sets. More importantly, we notice

that the Dscore value of pseudo signature on six independent data

sets is 11.4376, which is much smaller than the Dscore value of the

hub-based signature (18.9359) on the same data sets, showing that

the hub-based signature performs much more stable than the same

sized pseudo signature. In other words, though genes in the hub-

based signature are not necessarily the most metastasis risk related

genes, they are actually the ones that play critical roles in the

process of phenotypic change, illustrating that the gene depen-

dency network can uncover the biological mechanism of cancer

metastasis.

Comparing with random gene signatures. Considering

most published signatures on independent test sets have been

argued to be very poor, even not significantly better than random

signatures with the same sizes [24], we also compared the

performance of our signature with the random gene signatures of

the same sizes by two ways to check whether the former was

significantly better than the latters.

In the first test, we randomly selected 43 genes from the

whole gene set (13698 genes in total) to form a random

signature, and the patients from each of the six independent

data sets were divided into good and bad prognosis groups

according to the metastasis risks computed via the random

signature, based on which Dscore was calculated. The above

procedure was repeated 1000 times to obtain 1000 Dscore

values. As a result, we found the Dscore followed a chi-squared

distribution (Figure 7a), which is conform to the definition of the

Dscore. Therefore, we used the Fisher’s combined probability

test to evaluate the significance of the hub-based signature’

Figure 6. Survival analysis of the hub-based signature on six independent data sets.
doi:10.1371/journal.pone.0092023.g006
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distinguishing capability and got the p-value approaching to

zero (p-value less than 1.00E-17).

In the second test, we randomly selected 43 genes from 442

genes that were significantly associated with the metastasis risk

(Table S5) and performed the similar procedure as above. Dscore

values of 1000 runs are found to follow a Gaussian distribution

(Figure 7b). Among the 1000 Dscore values, only six are not less

than 18.9359, illustrating that the p-value of the significance test is

Table 2. The pseudo signature.

Gene ID Gene Name Cox Beta Cox P-value Stability

28 ABO 20.77 7.50E-4 1.0000

86 ACTL6A 0.69 1.50E-3 1.0000

960 CD44 20.54 2.30E-3 1.0000

1917 EEF1A2 0.20 3.60E-3 1.0000

3537 IGLC1 20.28 1.00E-3 1.0000

6810 STX4 20.78 3.90E-3 1.0000

6921 TCEB1 0.95 4.00E-4 1.0000

9541 CIR 20.89 1.40E-3 1.0000

9648 GCC2 20.25 3.30E-3 1.0000

9675 KIAA0406 0.63 2.80E-4 1.0000

9764 KIAA0513 0.53 3.70E-3 1.0000

9837 GINS1 0.41 1.10E-3 1.0000

10051 SMC4 0.71 2.00E-3 1.0000

10057 ABCC5 0.57 4.20E-4 1.0000

10628 TXNIP 20.50 1.10E-3 1.0000

10961 ERP29 20.77 2.50E-3 1.0000

23167 EFR3A 0.69 1.60E-3 1.0000

23174 ZCCHC14 0.87 1.40E-3 1.0000

25793 FBXO7 21.08 2.60E-3 1.0000

27250 PDCD4 20.46 2.00E-3 1.0000

27350 APOBEC3C 20.54 4.70E-3 1.0000

28813 IGLV2-23 20.23 1.00E-3 1.0000

28814 IGLV2-18 20.33 1.10E-3 1.0000

28816 IGLV2-11 20.24 8.90E-4 1.0000

29035 C16orf72 20.39 1.40E-3 1.0000

29127 RACGAP1 0.65 1.30E-4 1.0000

50802 IGK 20.24 3.30E-3 1.0000

51110 LACTB2 0.57 8.60E-4 1.0000

51222 ZNF219 20.68 9.80E-4 1.0000

54732 TMED9 0.59 1.50E-3 1.0000

55110 FLJ10292 0.35 1.80E-3 1.0000

55508 SLC35E3 0.41 1.60E-3 1.0000

55596 ZCCHC8 1.00 7.60E-4 1.0000

57092 PCNP 0.91 2.00E-3 1.0000

58189 WFDC1 0.44 3.10E-4 1.0000

79822 ARHGAP28 20.45 7.30E-4 1.0000

80700 UBXD1 20.68 1.90E-3 1.0000

118433 RPL23AP7 0.47 4.90E-3 1.0000

259266 ASPM 0.34 3.80E-3 1.0000

442334 ARF1P1 0.35 1.80E-3 1.0000

650405 LOC650405 20.34 5.10E-4 1.0000

652493 LOC652493 20.26 1.50E-3 1.0000

652694 LOC652694 20.32 2.70E-3 1.0000

The 43 genes are used as the pseudo signature for comparing purposes: elements in column 3 are the average Cox correlations in the 400 runs; elements in column 4
are the average Cox p-values in the 400 runs; the stability is the ratios of the genes which are significant in the 400 runs.
doi:10.1371/journal.pone.0092023.t002
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0.006. That is to way, the hub-based signature also significantly

outperforms this kind of random signatures (Figure 7b).

It has been argued that most published signatures are not

significantly better than the random signatures [24]. However,

above two significance tests illustrate that our hub-based signature

significantly outperform the random ones. The results demonstrate

that the gene dependency network can reveal the biological

mechanism in cancer metastasis, thus the hub genes in the network

are more likely to be the driver nodes underlying the phenotypic

change.

Discussion

Although many methods have been proposed to construct gene

regulatory networks, few of them investigates the gene dependency

relationships specific to phenotypic change that are common in

biological process. In this work, we have proposed a novel

methodology to infer the gene dependency pairs underlying the

specific phenotypic change. Concretely, we applied CMI to identify

the gene dependency pairs, each of which indicates that the

correlation between one gene and the phenotype is dependent on

another gene. All the significant gene pairs are combined together to

construct the gene dependency network that could characterize the

gene regulatory mechanism underlying the alteration of the

phenotype. When applied to sample based gene expression data

of breast cancer (with distant metastasis or non-distant metastasis

clinic information), the network has been demonstrated to be able to

uncover the biological mechanism in the metastasis process. The

hub genes in the network have significant intersection with the

breast cancer related genes, and the functional analysis shows that

the hub genes in the network are biologically significant. Moreover,

many gene dependency relations reported previously in literature

can be detected in the network. Furthermore, the hub-based

signature can distinguish the cancer prognosis of breast cancer

patients with robust performances across various independent data

sets, which is significantly superior to most published gene signatures

Table 3. Performance of the pseudo signature.

data sets HR HR 95% CI- HR 95% CI+ log rank p-value

GSE2034 4.65 2.95 7.33 3.14E-13

GSE1456 1.90 1.00 3.60 3.20E-02

GSE3493 2.05 1.18 3.59 5.56E-03

GSE4922 1.72 1.11 2.66 9.60E-03

GSE7390 1.76 1.06 2.93 5.40E-02

GSE11121 2.02 1.11 3.67 1.30E-02

GSE12093 3.84 1.37 10.73 2.90E-03

GSE2034 is the train data set and the other six are the independent data sets.
doi:10.1371/journal.pone.0092023.t003

Figure 7. The significance test of the hub-based signature with the random signatures. a. The random signatures were randomly selected
from all of the 13,698 genes; b. The random signatures were randomly selected from the 442 genes that are significantly correlated with the
metastasis risk. In both sub-figures, the red line is the Dscore of the hub-based signature (18.9359), and the blue bars are the distribution of the 1,000
random signatures’ Dscores.
doi:10.1371/journal.pone.0092023.g007
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that have been argued to perform badly in the independent tests and

even not to be significantly better than the random signatures [24].

The good performance of hub-based signature may owe to

the following merits of our method. First, we directly included

the phenotype information in the inference of the gene

dependency relations, thus the gene dependency network can

reveal the gene regulatory relation during the alteration of the

phenotype. Second, gene dependency network focuses on

modulators that can influence the phenotype via other genes,

so the network can uncover the hidden biological mechanism

that may be ignored by former researches. Therefore, the hub

genes modulating the largest number of genes may be the key

genes influencing the distant metastasis of breast cancer and

have robust discrimination capability across different data sets.

As illustrated from the results, our methodology can reveal the

hidden mechanism in the metastasis of breast cancer. In fact, it can

also be applied in other fields, such as the mechanism in the

disease progress, embryo development, and other aspects as long

as there are enough gene expression data and the corresponding

phenotype information. In this work, our methodology succeeded

in the binary phenotype data sets (metastasis and non-metastasis).

However, it is also suitable for the data sets with more than two

phenotype states.

Of course, the methodology proposed in this paper only works on

the sample based data with more than one phenotype states. In the

case of single phenotype state, for example, only non-metastasis

samples, our method fails to work. In addition, the calculation of

CMI would be inaccurate if there are not enough samples in the

data set. These limitations should be addressed in future study.

Supporting Information

Figure S1 The power law fit of the in-degree.

y~1594:1a{1:687. The correlation is 0.993 and the R-square is

0.879.

(TIF)

Figure S2 The power law fit of the out-degree.

y~3204:3a{1:967. The correlation is 0.976 and the R-square is

0.914.

(TIF)

Table S1 Data sets used in this work. All the data sets are

available at NCBI GEO.

(XLSX)

Table S2 All significant gene dependency pairs. All the

gene pairs in the table are with p-values less than 0.05. Genes in

the first column are the modulators of the gene pairs.

(XLSX)

Table S3 The selected hubs in the network. The genes

with the highest out-degrees are selected as hubs (20% of all the

genes).

(XLSX)

Table S4 Enriched pathways. The significant enriched

pathways in the table are with Benjamini FDRs less than 0.05.

(XLSX)

Table S5 All the candidate genes which are significant
with the metastasis risk of breast cancer. A gene is selected

as a candidate when it is significant in 90% of the 400 runs.

(XLSX)
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