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Discovery of rare cells from voluminous single cell
expression data
Aashi Jindal 1, Prashant Gupta 1, Jayadeva1 & Debarka Sengupta2,3

Single cell messenger RNA sequencing (scRNA-seq) provides a window into transcriptional

landscapes in complex tissues. The recent introduction of droplet based transcriptomics

platforms has enabled the parallel screening of thousands of cells. Large-scale single cell

transcriptomics is advantageous as it promises the discovery of a number of rare cell sub-

populations. Existing algorithms to find rare cells scale unbearably slowly or terminate, as the

sample size grows to the order of tens of thousands. We propose Finder of Rare Entities

(FiRE), an algorithm that, in a matter of seconds, assigns a rareness score to every individual

expression profile under study. We demonstrate how FiRE scores can help bioinformaticians

focus the downstream analyses only on a fraction of expression profiles within ultra-large

scRNA-seq data. When applied to a large scRNA-seq dataset of mouse brain cells, FiRE

recovered a novel sub-type of the pars tuberalis lineage.
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Unabated progress in technology over the past years has
made transcriptome analysis of individual cells1 a rea-
lity. Cells, the basic units of life, and building blocks

for complex tissues, are shaped by multiple factors that affect
their identity. Given a heterogeneous cell population, single-
cell RNA-sequencing (scRNA-seq) screens gene expression
levels in individual cells, as opposed to measuring their
population-level average expression-signature using, say, bulk
RNA-sequencing.

Comprehensive characterization of all major and minor cell
types in a complex tissue requires processing several thousand
single cells2. In other words, larger sample sizes better the odds of
capturing minor cell subpopulations in a tissue. It is primarily
because a large number of cell type-specific transcripts are not
detected in the sequencing, due to the failure at the amplification
stage. As a result, a small number of cell type-specific genes often
fail to influence the downstream analysis regime sufficiently.
Quite fortunately, recent discovery of the droplet-based single-
cell transcriptomics has enabled the parallel profiling of tens of
thousands of single cells, at a significantly reduced per-cell cost.
To date, many studies have been published with reported tran-
scriptomes ranging between ~20 k and ~70 k in number3–7.

The advent of single-cell transcriptomics has made rare cell
discovery a mainstream component in the downstream analysis
pipeline. Rare cells represent minor cell types in an organism.
When the number of profiled cells are in the hundreds, even an
outlier cell (singleton) deserves attention. With the increase
in throughput capabilities, however, the focus shifts to the dis-
covery of minor cell types rather than mere singletons. Examples
of rare cell types include circulating tumor cells, cancer stem
cells, circulating endothelial cells, endothelial progenitor cells,
antigen-specific T cells, invariant natural killer T cells, etc.
Despite low abundance, rare cell populations play an important
role in determining the pathogenesis of cancer, mediating
immune responses, angiogenesis in cancer and other diseases,
etc. Antigen-specific T cells are crucial to the formation of
immunological memory8–10. Endothelial progenitor cells, which
originate from the bone marrow, have proven to be reliable
biomarkers of tumor angiogenesis11,12. Stem cells have an ability
to replace damaged cells, and to treat diseases like Parkinson’s,
diabetes, heart diseases, etc.13. Circulating tumor cells offer
unprecedented insights into the metastatic process with real-time
leads for clinical management14.

Algorithms for detecting rare cell transcriptomes are scarce.
Prominent among these are rare cell-type identification
(RaceID)15 and GiniClust16. RaceID involves computationally
expensive parametric modeling for the detection of outlier
expression profiles. It uses unsupervised clustering as an inter-
mediate step to define populous cell types, which in turn are used
to determine outlier events (cells). GiniClust, on the other hand,
uses a rather straightforward two-pronged algorithm. First, it
selects informative genes using the Gini index. It then applies a
density-based clustering method, density-based spatial clustering
of applications with noise (DBSCAN)17, to discover outlier cells.
Notably, both RaceID and GiniClust use clustering to distinguish
between major and minor cell types. In fact, both these algo-
rithms compute the distance between each pair of cells. A number
of such design choices make both these algorithms slow and
memory inefficient for oversized scRNA-seq data.

We propose Finder of Rare Entities (FiRE), a conspicuously
fast algorithm to estimate the density around each subjected
multidimensional data point. This is achieved by using the
Sketching technique18,19 as the workhorse algorithm. Unlike
the existing techniques, FiRE assigns a rareness score to each of
the individual expression profiles, thus giving the user a choice
for focusing only on a small set of potentially rare cells.

We evaluated FiRE on a number of real and simulated datasets.
FiRE discovered some acutely rare cell types from a large scRNA-
seq mouse brain dataset. We cross-referenced our findings
with in situ hybridization data obtained from the Allen Mouse
Brain Atlas20. We also demonstrated the efficacy of FiRE in
delineating human blood dendritic cell sub-types using ~68 k
single-cell expression profiles of human blood cells.

Results
Overview of FiRE. Both RaceID and GiniClust use clustering in
some form, as an intermediate step for detecting rare cells.
Clustering by its very nature is often dependent on a number of
sensitive parameters and works inefficiently as density varies
across data points. Another major problem is to decide the
resolution of group identities. Often, multi-level clustering
becomes essential as minor clusters get overlooked on the first
pass5. This happens since other major cell types influence the
expression variance in a data. We asked if it is possible to develop
an original, monolithic algorithm which bypasses clustering,
while straightforwardly estimating the rareness of a cell (multi-
dimensional data point).

To circumvent the above issues, we propose FiRE to identify
rare cell types. Design of FiRE is inspired by the observation that
rareness estimation of a particular data point is the flip side of
measuring the density around it. The algorithm capitalizes on the
Sketching technique18,19, a powerful technique for low-
dimensional encoding of a large volume of data points (Methods).
It works by randomly projecting points to low-dimensional bit
signatures (hash code), such that the weighted L1 distance
between each pair of points is approximately preserved. The
computation involved in the creation of hash codes is linear with
respect to (w.r.t.) the number of individual transcriptomes. A
hash code can be imagined as a bucket that tends to contain data
points which are close by in the concerned hyper-dimensional
space. The cell originating from a large cluster shares its bucket
with many other cells, whereas a rare cell shares its bucket with
only a few. To this end, FiRE uses the populousness of a bucket
as an indicator of the rareness of its resident data points. To ward
off biases, FiRE uses several such rareness estimates to arrive at
a consensus rareness score for each of the studied cells. This
score is termed as the FiRE score. The Methods section contains
an elaborate explanation of the various steps involved in FiRE
(Supplementary Methods). Figure 1 depicts a visual interpretation
of FiRE.

FiRE assigns a continuous score to each cell, such that outlier
cells and cells originating from the minor cell populations are
assigned higher values in comparison to cells representing
major subpopulations. A continuous score gives users the
freedom to decide the degree of the rareness of the cells, to be
further investigated. To illustrate this, we applied FiRE on a
scRNA-seq data containing ~68 k peripheral blood mono-
nuclear cells (PBMCs), annotated based on similarity with
purified, well-known immune cell sub-types3 (Methods).
Authors of the study performed unsupervised clustering of
the cells and annotated the clusters based on previously known
markers (Supplementary Figure 1a). We overlaid FiRE scores
on the two-dimensional (2D) map reported as part of the study
(Supplementary Figure 1c). The top 0.25% highest FiRE scores
exclusively corresponded to the smallest, unambiguously
annotated cluster harboring megakaryocytes (Fig. 2a). Of note,
megakaryocytes represent only 0.3% of the entire set of the
profiled cells. As we increased the proportion from 0.25%
to 2.0% and subsequently 5.0%, the next batches of minor cell
sub-types made their way into the extended set of rare
cells. These include sub-classes of monocytes and dendritic
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cell sub-types (Fig. 2b, c). The case study highlights the utility
of FiRE in discovering cells with varying degrees of rareness.

While a continuous score is helpful, sometimes a binary
annotation about cell rarity eases out the analysis. To this end,
we introduced a thresholding scheme using the properties
of the score distribution (Methods). Supplementary Figure 1b
highlights cells in the ~68 k PBMC data which are detected
as rare going by the threshold-based dichotomization. As
expected, a majority of the detected rare cells originated from
known minor cell types such as megakaryocytes, dendritic cells
and monocytes.

It should be noted that unlike GiniClust and RaceID, FiRE
refrains from using clustering as an intermediate step to pinpoint
the rare cells. Clustering is done at a later phase for delineating
minor cell types from the detected rare cells.

FiRE recovers artificially planted rare cells. We designed a
simulation experiment to evaluate the performance of FiRE in the
presence of ground truth information pertaining to the cell-type
identity. For this, we used a scRNA-seq data comprising 293T
and Jurkat cells mixed in vitro in equal proportion (Methods)3.

The authors exploited the single-nucleotide variant (SNV) profile of
each cell to determine its lineage. We considered this genotype-
based annotation scheme to be near confirmatory. With this data,
we mimicked the rare cell phenomenon by bioinformatically
diluting Jurkat cell proportion in the data. We varied the proportion
of Jurkat cells between 0.5 and 5%. Besides GiniClust and RaceID,
we compare FiRE with a rare event detection algorithm called local
outlier factor (LOF). LOF is a widely used algorithm in the field of
data mining. The performance of various methods was measured
using F1 score (Methods) with respect to the minor population
of the Jurkat cells. F1 score reflects the balance between precision
and sensitivity. FiRE clearly outperformed LOF21, RaceID15 and
GiniClust16 on each of the test cases (Fig. 3a). Notably, RaceID
and GiniClust report dichotomized predictions for rare cells,
whereas FiRE and LOF offer both continuous scores and binary
prediction. FiRE implements an interquartile range (IQR)-based
thresholding technique for the dichotomization (Methods).

We took a closer look at working of the methods at a rare cell
concentration of 2.5%. We found FiRE scores of the rare cells to
be unambiguously higher compared to the abundant cell type
(Fig. 3c). Figure 3d–g marks the rare cells detected by each of the

Rare type 1

Assigning each cell
a hash code.

FiRE score
computation

using frequency of cells
corresponding to
each hash code.

Lower/higher
FiRE score denotes

abundant/rare
population

Rare type 2
Abundant type 1

0.32

0.38

0.31

0.33

0.38

0.390.03

0.02

0.02

0.02

0.02

0.02

0.02

Computation of FiRE score
Max Min

0.02

0.24

0.25

pil = 0.25

Abundant type 2
Abundant type 3

Cells in bucket (hash code) of celli
Total number of cells

pil =

L is total number of estimators

FiRE scorei = –2 * ∑ log(pil)
I = L

I = 1

i ∈(1, 2, . . . , N)
Where N is total number of cells

Fig. 1 Overview of FiRE. The first step is to assign each cell to a hash code. A hash code can be considered as an imaginary bucket since multiple similar
cells can share a hash code. For the robustness of rarity estimates, the hash code creation step is repeated for L times. For each cell i and estimator l, pil is
computed as the probability for any point to land in the bucket of i. The second step of the algorithm involves combining these probabilities to obtain a
rareness estimate for each cell

cba
0.25%

Dendritic

Megakaryocytes
CD14+
Monocyte

Dendritic
sub types

2% 5%
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algorithms. Among all algorithms, FiRE displayed the highest
level of congruence with the known annotations (Fig. 3h).
Supplementary Figure 5 shows the congruence between each pair
of methods.

To evaluate the performance of the techniques, we used two
additional datasets: ~2.5 k embryonic stem cells (ESCs)22, and
288 mouse intestinal organoid cells data15 (Methods). FiRE and
LOF could identify Zscan-4 enriched, 2C-like cells as reported by
the authors of the GiniClust algorithm16 (Supplementary
Figure 4a). In addition, FiRE had the least overlap with RaceID
which could not identify the 2C-like cell type. Supplementary
Figure 4b depicts the performance of the various methods in
detecting rare cell types in the secretory lineage of mouse small
intestine, as reported by the authors of the RaceID algorithm.
Both FiRE and LOF could detect almost all of the designated rare
cell types including the goblet, tuft, paneth and enteroendocrine
cells. GiniClust could detect only a fraction of these cells.

FiRE is sensitive to cell type identity. A simulation study was
designed to analyze the robustness and sensitivity of FiRE score
with respect to the number of differentially expressed genes. We
first generated an artificial scRNA-seq data consisting of 500 cells
and two cell types. The minor cell type represented about 5% of
the total population (Methods). We kept aside the differentially
expressed (DE) genes which we selected through a stringent
criterion. For every iteration of the experiments, we replaced a
fixed number of non-DE genes by the pre-identified DE genes.
We varied the count of differentially expressed genes between 1

and 150 to track the sensitivity of FiRE in detecting the minor
population.

With the given set of DE genes, FiRE scores were obtained and
used for computing the area under the curve of receiver operating
characteristics (AUC-ROC) with respect to the minor population.
For every count of DE genes, the aforementioned process was
repeated 1000 times to report an average AUC-ROC (Fig. 4).

With a small number of DE genes, FiRE struggled to detect the
minor cell population. However, FiRE predictions improved
sharply when 20 or more DE genes were introduced. It reflects the
robustness of FiRE against noise. A plausible explanation for the
same could be that a small number of differential genes fail to
stand out in the presence of cell type-specific expression noise
(biological plus technical).

FiRE is scalable and fast. Both RaceID and GiniClust are slow
and incur significant memory footprints. For both these methods,
clustering takes O(N2) time, where N is the number of cells.
RaceID additionally spends enormous time in fitting parametric
distributions for each cell–gene combinations. On the other hand,
LOF requires a large number of k-nearest neighbor queries to
assign an outlierness score to every cell. FiRE, on the other hand,
uses Sketching18, a randomized algorithm for converting
expression profiles into bit strings while preserving the weighted
L1 distance between data points (Methods). The main advantage
of randomized algorithms is that they usually save a lot of
computational time. FiRE generates a rareness estimation of N
cells in linear, i.e., O(N) time.
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We tracked the time taken by LOF, RaceID, GiniClust and
FiRE, while varying the input data size (Fig. 5, and Supplementary
Table 1), on a single core of a machine with a clock speed of 1.9
GHz, and 1024 GB DDR4-1866/2133 ECC RAM. FiRE turned
out to be remarkably faster as compared to LOF, RaceID and
GiniClust. For FiRE, we recorded ~26 s on the ~68 k PBMC data.
GiniClust reported a runtime error, when the input expression
profiles increased beyond ~45 k, while RaceID took ~79 h for just
5 k cells.

FiRE enables discovery of new rare cell types in mouse brain.
Often, clustering on the first pass fails to discover the minor
subpopulations. The second pass of clustering, thus, becomes
necessary on the first level clusters5,23. In fact, there is no clear
directive about the number of levels required for the compre-
hensive charting of the cell types from a given scRNA-seq dataset.
Clustering, being an NP-hard problem, requires significant
computing power. Making it scalable for large data demands
various compromises24. FiRE could be particularly helpful in
addressing this challenge. To illustrate this, we used an existing
scRNA-seq data containing ~20 k cells profiled from in and
around the Arcuate–Median Eminence (Arc-ME) region of the
mouse brain5.

DropClust-based clustering of the FiRE detected 727 rare cells
(using IQR-based thresholding criterion) yielding 12 cell subpopu-
lations (Fig. 6a). We labeled these cell groups as R1–R12. Among
these, R6 (0.15%), R10 (0.12%) and R11 (0.057%) were found to be
inscribed almost exclusively within some of the single, minor
subpopulations reported by the authors of the original study
(Supplementary Table 2). Cell counts in these clusters varied
between 12 and 32. The cell-type identity of the newly observed

clusters was discovered trivially by referring to their respective
parent clusters as reported by Campbell et al.5 (Fig. 6b, Supple-
mentary Figure 6). Clusters R10 and R11 originated from one of the
sub-types of the pars tuberalis cells and mural cells, respectively. R6
emerged from the cluster containing endothelial cells.

We performed differential expression analysis to find cell type-
specific genes for the newly retrieved cell subpopulations
(Methods). Every cluster was found to have a number of
differentially up-regulated genes, clearly distinguishing it from
the remaining cell types (Fig. 6c). Cells in the R6 cluster displayed
numerous erythrocyte markers including Alas225 and various
hemoglobin subunits (Hba-a1, Hba-a2 and Hbb-bt). These cells
co-clustered with the endothelial cells due to their hematopoietic
origin. Cluster R10, which emerged as a sub-type of pars tuber
type 1C, expressed Cyp2f2, a marker of its parent cell type
(Fig. 6e). R10 did not get resolved even after applying a second
level clustering, which otherwise yielded three sub-types includ-
ing pars tuber 1C5. Also, we found R10 to be visually
undetachable from its parent cluster. Cells from R10 displayed
high expression levels of Hesx1, which is known to play an
essential role in the formation of the pituitary gland26 (Fig. 6d).
We also found a mural cell sub-type, i.e., R11, with a spectrum of
cell type-specific markers. However, we could not zero in on its
biological relevance. Upon cross-referencing with the in situ
hybridization (ISH) data from the Allen Mouse Brain Atlas20, we
could spot the presence of Maob, an R10 marker, in the arcuate
hypothalamus (Arc) region (Fig. 6f).

We asked if any of the newly detected cell types harbor doublets.
None of the cells from the three newly discovered clusters matched
with the top thousand putative doublets as identified by
DoubletFinder27 (Methods). Of note, only 31 out of the 727 FiRE
predicted rare cells were enlisted among the thousand.

FiRE resolves heterogeneity among dendritic cells. Dendritic
cells (DCs) play a central role in antigen surveillance. DCs are
among the rarest immune cell types, constituting about 0.5%
of the PBMCs28. A recent study by Villani29 delineated six dif-
ferent sub-types of dendritic cells by analyzing the expression
profiles of fluorescence-activated cell sorting (FACS) sorted
population of DCs and monocytes. DC sub-types reported by the
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authors are as follows: CD141+ DCs (DC1), CD1C+_A conven-
tional DCs (DC2), CD1C+_B conventional DCs (DC3), CD1C
−CD141− (DC4), DC5 and plasmacytoid DCs (DC6, pDCs)29.

We asked if some of these dendritic cell sub-types could be
identified in unfractionated PBMC data. To this end, we applied
FiRE on the ~68 k PBMC data. FiRE reported a total of 4238 rare
cells (using IQR-based dichotomization), which we then clustered
using dropClust24. Out of the 13 clearly distinguishable clusters
(R1–R13), R4, R8, R9 and R13 exclusively consisted of dendritic
cells as per the annotations provided by Zheng et al.3 (Fig. 7a, c,
Supplementary Figure 2). For these 4 DC clusters, we conducted
differential expression analysis to find the cell type-specific genes
(Methods). By overlaying our differential genes with the ones
reported by Villani29, we could confidently resolve four (DC1, DC3,
DC4, DC6) out of the six sub-types reported by Villani 29 (Fig. 7d).

To summarize, when applied to the ~68 k PBMC data, FiRE
helped in delineating four distinct DC sub-types, of which DC1,
DC3 and DC4 were unresolved by the unsupervised clustering used
in the original study3. In fact, in the t-distributed stochastic
neighbor embedding (t-SNE)-based 2D embedding, these cell types
were visually co-clustered within themselves or the monocytes.

Discussion
Of late, single-cell transcriptomics has considerably refined our
understanding about the true nature of cellular phenotype. It
has also accelerated the discovery of new cell types. Most of these

new cell types are rare since it is quite improbable for an abundant
cell type to remain unobserved for a very long time. A truly rare
cell type can only be found by profiling several thousands of cells2.
While technological advances over the past years have enabled
us to perform ultra high-throughput single-cell experiments,
scalable methods for rare cell detection are nearly non-existent.
FiRE attempts to fill that gap, with a number of pragmatic design
considerations. Most notable among these is its ability to avoid
clustering as an intermediate step. A typical clustering technique is
not only time consuming, but also incapable of comprehensively
charting the minor cell types in a complex tissue on a single go5.

While RaceID15 and GiniClust16 offer binary predictions, FiRE
gives a rareness score to every individual expression profile. We
demonstrated how these scores might help the users focus their
downstream analyses on a small fraction of the input scRNA-
seq profiles. A score is particularly helpful since a number of
complex techniques such as pseudo-temporal analysis30, shared
nearest neighborhood-based topological clustering31 et cetera are
applicable only on a few hundreds of cells.

FiRE makes multiple estimations of the proximity between
a pair of cells, in low-dimensional spaces, as determined by
the parameter M. The notion of similarity for LOF21, on the
other hand, is confounded by the arbitrary scales of the input
dimensions. As a result, even though LOF consistently outper-
forms RaceID and GiniClust, it struggles to match the perfor-
mance of FiRE.
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Fig. 6 Identification of novel, rare cell types from mouse brain cell data5. a Clustering of rare cells detected by FiRE from the ~20 k mouse brain data using
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FiRE, in principle, does not discriminate between an outlier
and cells representing minor cell types. For clustering FiRE
detected rare cells, in all our analyses, we adhered to dropClust24

that does not administer any special treatment to outliers. As
a result, outlier cells, if any, get submerged into the minor cell
clusters. However, one may wish to use hierarchical or density-
based clustering techniques to flag outlier cells.

Doublet detection may be a potential application of FiRE.
However, doublet rate may vary between 1% and 30%32 which is
a considerably wide range and does not necessarily comply with
the notion of cell rareness.

FiRE took ~31 s to analyze a scRNA-seq dataset containing
~68 k expression profiles. Such unrivaled speed, combined with
the ability to pinpoint the truly rare expression profiles, makes the
algorithm future proof.

Methods
Description of datasets. For the various analyses, we used five publicly available
scRNA-seq datasets. For a simulation experiment of artificially planted rare cells,
we used 293T and Jurkat cell data containing a total of ~3200 cells, with an almost
equal number of representative transcriptomes of each type. The cells were mixed
in vitro at equal proportions. Authors of the study resolved the cell types bioin-
formatically exploiting their SNV profiles3.

Our second data contained ~20 k scRNA-seq profiles from around the Arc-ME
region of the mouse brain5. The authors grouped the neuronal cells into 34 clusters,
and non-neuronal cells into 30 clusters through a two-pass clustering approach.
We found the neuronal cell classification to be exhaustive and therefore focused on
the 30 non-neuronal clusters.

We used a large-scale scRNA-seq data containing expression profiles of ~68 k
PBMCs, collected from a healthy donor3. Single-cell expression profiles of 11

purified subpopulations of PBMCs were used as a reference for cell-type
annotation.

We applied FiRE on a publicly available ~2.5 k mouse ESC data22. Mouse
embryonic cells were sequenced at different points after the removal of leukemia
inhibitory factor. Similar to Jiang et al.16, we used day 0 data where stem cells were
undifferentiated. Data contained a total of 2509 cells.

Our fifth scRNA-seq data contained single-cell expression profiles of mouse
intestinal organoids15. A set of 288 organoid cells were randomly selected and
sequenced using a modified version of the cell expressions by linear amplification
and sequencing (CEL-seq) method. Unique Molecular Identifiers (UMIs) were
used to count transcripts.

Data preprocessing. Mouse ESCs and mouse small intestine datasets were
screened for low-quality cells. For mouse ESC data, cells having more than 1800
detected genes were selected for analysis. For the intestine dataset, the cutoff for the
number of detected genes was set at 1200. The remaining datasets were already
filtered.

For each dataset, genes which had a read count exceeding 2 in at least 3 cells
were retained for downstream analysis. Each scRNA-seq data were normalized
using median normalization. The 1000 most variable genes were selected, based on
their relative dispersion (variance/mean) with respect to the expected dispersion
across genes with similar average expression3. The normalized matrix was then log2
transformed after addition of 1 as a pseudo count.

The preprocessed mouse brain data was downloaded from the Single cell Portal
(https://portals.broadinstitute.org/single_cell). We applied anti-log to all elements
of the matrix before subjecting the same to dispersion-based gene selection.

Simulation to assess sensitivity of FiRE to DE genes. To analyze the sensitivity
of FiRE to cell-type identity, we generated an artificial scRNA-seq data using the
splatter R package33. The following command was used to generate these data:

splatSimulate(group.prob=c(0.95, 0.05),
method=groups, verbose=F, batchCells=500,
de.prob=c(0.4, 0.4), out.prob=0, de.facLoc=
0.4, de.facScale=0.8, nGenes=5000).
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The generated dataset had 500 cells and 5000 genes per cell. Out of the 500
cells, 472 cells represented the major cell type, whereas 28 cells defined the
minor one.

Genes for which expression counts exceeded 2 in at least 3 cells were considered
for analysis. The filtered data was log2 transformed after adding 1 as a pseudo
count. On the transformed data, differential genes were detected using Wilcoxon’s
rank sum test with the false discovery rate (FDR) cutoff of 0.05 and as an inter-
group absolute value of fold-change cutoff of 2.32 (log2 (5)). The differentially
expressed genes, which were 180 in number, were removed from the data and kept
as a separate set. Genes with a p value of more than 0.05, 2387 in number, were
kept as a separate set of non-differential genes.

Sketches. A Sketch encodes a high-dimensional data point to a bit vector. The
length of the bit vector is usually much smaller than the data dimension. These bit
vectors are constructed using a randomized algorithm as outlined below: For each
cell, c in a given scRNA-seq data, a Sketch or bit vector (containing 0 s and 1 s) of
size M is generated by randomly selecting M genes at a time and applying
thresholds on each of them. A threshold is a randomly chosen numeric value lying
between the minimum and maximum values observed in a given expression
matrix. A weight vector w is generated randomly such that w 2 R

M . The dot
product between a Sketch and w is mapped to one of the predetermined hash codes
using the modulo hashing technique. The hamming distance between a pair of
Sketches approximates the L1 distance between their corresponding high-
dimensional data points (cells)18,19.

Steps involved in FiRE. FiRE is a two-stage algorithm. In the first stage, the
Sketching process is repeated L times. On each pass, hash codes are generated for
the entire set of expression profiles. A hash code can be thought as a bucket.
Sketching ensures that cells which share their bucket are nearby in the original
high-dimensional space. The density estimate for the i-th cell on the l-th pass is
expressed as follows.

pil ¼
Number of cells in the bucket hash codeð Þ containing cell i

Total number of cells
:

Here l denotes the index of the estimator, where 1 ≤ l ≤ L. In other words, pil is the
probability that any randomly picked cell is assigned to the bucket that contains the
i-th cell.

At the second stage, we aim at reducing the variance of our density estimates for
the individual cells. This is important due to the intrinsic dimensionality of a
typical scRNA-seq data. FiRE reduces the variance by combining the L density
estimates for each cell. A FiRE score is defined as follows.

FiRE scorei ¼ �2
XL

l¼1

logeðpilÞ:

The above formulation is inspired by the Fisher’s score. The highest FiRE
scores are thus assigned to rarest of the expression profiles present in a scRNA-
seq data.

Parameter value selection for FiRE. The process of hashing cells to buckets is
repeated L times. For obvious reasons, a large value of L ensures rareness estimates
with low variance.

For every estimator, the Sketching technique randomly sub-samples a fixed set
of M features. While a very small choice of M requires a commensurately large
number of estimators, a very large M might make the FiRE scores sensitive to noisy
expression readings.

For all experiments, the hash table size, i.e. H, was set 1,017,881. It should be a
prime number large enough to avoid unwanted collisions between dissimilar cells.
In practice, H is chosen to be a prime number greater than 10 times of the number
of items to be hashed.

On two independent datasets, we experimented with different values of L and
M. We found L = 100 and M = 50 were a reasonably good choice to be considered
as default values of L and M, respectively (Supplementary Figure 3).

IQR thresholding criteria for rare selection identification. FiRE marks a cell as
rare if its FiRE score is ≥q3+ 1.5 × IQR, where q3 and IQR denote the third
quartile and the interquartile range (75th percentile−25th percentile), respectively,
of the number of FiRE scores across all cells.

F1 score computation for the simulation study. Both RaceID15 and GiniClust16

provide a binary prediction for rare cells. The contamination parameter in scikit-
learn package implementation of LOF gives a threshold for the identification of
outliers. In a two-class experiment (293T and Jurkat cells), it is straightforward to
construct a confusion matrix. The F1 score on a confusion matrix can easily be

computed as follows:

F1score ¼ 2
precision ´ recall
precisionþ recall

:

For the simulation experiment, rare cells were considered ones whose FiRE
scores satisfied the IQR thresholding criterion.

For all algorithms, the F1 score has been calculated with respect to the minor
population of the Jurkat cells.

Identification of differential genes. A traditional Wilcoxon’s rank sum test was
used to identify DE genes with an FDR cutoff of 0.05 and an inter-group absolute
fold-change cutoff of 1.5. Fold-change values were measured between group-wise
mean expression values of a given gene. We qualified a gene to be a cell type-
specific one if it was found differentially up-regulated in a particular cluster, as
compared to each of the remaining clusters.

ISH data from Allen Mouse Brain Atlas. We cross-referenced a number of genes
specific to the newly discovered cell types with ISH data of mouse brain cells from
the Allen Mouse Brain Atlas20. One must note that such cross-referencing is of
limited utility. Images depicting ISH-based expression measurements mark the
enrichment and abundance of a certain gene in a specific anatomical area under
study. It is usually impossible to zero down on the cell type.

Identification of doublets. We used DoubletFinder27 to select top thousand
putative doublets from the ~20 k mouse brain data5. The below command was used
to identify the doublets:

doubletFinder(seu, expected.doublets=1000,
proportion.artificial=0.25, proportion.NN=
0.01)

Time complexity analysis. Performance measures reported in this article are
recorded on a workstation with 40 cores using Intel Xeon E7-4800 (Haswell-EX/
Brickland Platform) CPUs with a clock speed of 1.9 GHz, 1024 GB DDR4-1866/
2133 ECC RAM and Ubuntu 14.04.5 LTS operating system with 4.4.0-38-generic
kernel. The time taken by each algorithm has been measured by running it on a
single core.

Code availability. FiRE software package is available at: https://github.com/
princethewinner/FiRE.

Data availability
The study uses various publicly available scRNA-seq datasets. Both PBMC and
293T–Jurkat cell data that support the findings of this study are available from
https://support.10xgenomics.com/single-cell-gene-expression/datasets. The pre-
processed mouse brain data profiled from the Arc-ME region is available from
https://portals.broadinstitute.org/single_cell. The mouse ESC dataset can be
accessed at the GEO under accession code GSE65525. The mouse intestinal
organoid cell data can be accessed at the GEO under accession code GSE62270.
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