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Abstract: Various abnormalities of transcriptional regulation revealed by RNA sequencing (RNA-seq)
have been reported in cancers. However, strategies to integrate multi-modal information from RNA-
seq, which would help uncover more disease mechanisms, are still limited. Here, we present PipeOne,
a cross-platform one-stop analysis workflow for large-scale transcriptome data. It was developed
based on Nextflow, a reproducible workflow management system. PipeOne is composed of three
modules, data processing and feature matrices construction, disease feature prioritization, and
disease subtyping. It first integrates eight different tools to extract different information from RNA-
seq data, and then used random forest algorithm to study and stratify patients according to evidences
from multiple-modal information. Its application in five cancers (colon, liver, kidney, stomach, or
thyroid; total samples n = 2024) identified various dysregulated key features (such as PVT1 expression
and ABI3BP alternative splicing) and pathways (especially liver and kidney dysfunction) shared
by multiple cancers. Furthermore, we demonstrated clinically-relevant patient subtypes in four of
five cancers, with most subtypes characterized by distinct driver somatic mutations, such as TP53,
TTN, BRAF, HRAS, MET, KMT2D, and KMT2C mutations. Importantly, these subtyping results
were frequently contributed by dysregulated biological processes, such as ribosome biogenesis, RNA
binding, and mitochondria functions. PipeOne is efficient and accurate in studying different cancer
types to reveal the specificity and cross-cancer contributing factors of each cancer.It could be easily
applied to other diseases and is available at GitHub.

Keywords: TCGA; RNA-seq workflow; feature prioritization; cancer subtyping; somatic mutation;
alternative splicing; ribosome; mitochondria

1. Introduction

RNA sequencing (RNA-seq) has been widely used in functional genomics studies [1–3].
Various information can be obtained from RNA-seq, including gene expression levels, al-
ternative splicing (AS), alternative polyadenylation (APA), gene fusions, RNA-editing,
and single nucleotide polymorphisms (SNP). More than 90% of human genes undergo
AS [4,5], which largely increases the complexity of human transcriptome and proteome [6].
AS deregulation may lead to diseases [7], including cancer [8]. About 70% of pre-mRNAs
undergo APA and produce multiple transcript isoforms with various lengths of 3′ un-
translated regions (UTR) [9–11]. Gene fusions create chimeric genes, usually resulting
from chromosomal rearrangements [12]. Some fusions are cancer drivers, therapeutic
targets, and diagnostic biomarkers [13]. Large scale analyses of RNA-seq data from the
Genotype-Tissue Expression (GTEx) project [14] and The Cancer Genome Atlas (TCGA)
project [15] suggest that adenosine-to-inosine (A-to-I) RNA editing events are prevalent in
normal tissues [16] and in cancer [17].
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Besides mRNA, a large number of non-coding RNAs can be detected by RNA-seq, such
as circular RNAs (circRNA) [18], long non-coding RNA (lncRNA, linear) [19]. CircRNAs
are generated by a mechanism called back-splicing, in contrast to canonical splicing for
linear RNAs, and these two splicing mechanisms may compete with each other [20]. One
of the functions of circRNAs is serving as miRNA sponges [21]. LncRNAs have been
demonstrated to be functional in different cellular activities and dysregulated in various
cancers [22,23]. For example, lncRNA PVT1 drives oncogene MYC expression in various
types of cancer cells [24]. Furthermore, retrotransposons are a large group of mobile DNA
in the genome [25] that have the potential to be transcribed (retrotranscriptome) [26,27] and
may be involved in many diseases including cancer [28]. In particular, human endogenous
retroviruses (a type of retrotransposons) are stage-specifically transcribed during human
embryonic development [29].

Biological processes in the cell interact with each other. For example, RNA-editing can
affect AS and circular RNA biogenesis [30], RNA regulators may affect AS and APA [31],
and gene fusions may dramatically change the transcriptome [32]. Focusing on only
one single type of information may result in failure to identify critical factors underlying
diseases. Therefore, combining multi-modal information in one model is critical to pinpoint
the key players in pathological conditions. However, such a tool integrating all types
of RNA-seq analyses is still lacking, although numerous analysis packages have been
developed to perform specific analysis aforementioned [33]. Here, we developed PipeOne,
a one-stop RNA-seq analysis pipeline that can integrate multi-modal information from large
scale RNA-seq data to systematically identify key factors underlying diseases and stratify
disease subtypes. Its application in five cancer types revealed shared cancer driver genes
and pathways, and clinically-relevant cancer subtypes with genetic support from somatic
mutations. PipeOne is freely available at https://github.com/nongbaoting/PipeOne.
(version 1.1.0, accessed on 7 September 2020).

2. Materials and Methods
2.1. Data Sources

Raw RNA sequencing reads of TCGA cancers (colon adenocarcinoma, COAD; liver
hepatocellular carcinoma, LIHC; kidney renal papillary cell carcinoma, KIRP; stomach ade-
nocarcinoma, STAD; and thyroid carcinoma, THCA) and associated sample clinical informa-
tion were downloaded from the GDC portal (https://portal.gdc.cancer.gov/, accessed on
20 October 2019). Annotations from GENCODE v32 [34] and LNCipedia v5.2 [35] were
downloaded from https://www.gencodegenes.org/, accessed on 12 October 2019 and
https://lncipedia.org/, accessed on 10 October 2019, respectively [36]. Expression lev-
els across cancers and normal tissues for UMOD, AQP2, and AQP3 were retrieved from
GEPIA [37].

2.2. Customized Reference lncRNAs Construction

Raw sequencing reads for each sample were aligned against the human genome (hg38)
with HISAT2 (v2.1.0) [38] (Baltimore, MD, USA) and subsequently assembled by StringTie
(v1.3.4d) (Baltimore, MD, USA) [39]. All assembled transcripts were merged by TACO
(v0.7.3) [40]. The newly assembled transcriptome was compared with GENCODE (v32) and
LNCipedia (v5.2) using GFFCompare (http://github.com/gpertea/gffcompare, accessed
on 20 December 2018, v0.10.1) to find novel transcripts, which were assigned class_code ‘i’,
‘u’, or ‘x’. CPAT (v1.2.4) (Rochester, NY, USA) [41], CPPred (Wuhan, China) [42], and PLEK
(v1.2) (Hefei, China) [43] were used to calculate the coding potential of those novel tran-
scripts. Newly assembled transcripts fulfilling the following criteria were consider novel
lncRNAs: (i) number of exons ≥ 2 or a single exon with length ≥ 2000 nt; (ii) ≥ 200 nt in
length; (iii) expression level (transcripts per million, TPM) > 0.1 in at least 2 samples; (iv) no
coding potential as determined by CPAT, CPPred, and PLEK. Similarly, LNCipedia was
compared to GENCODE with GFFCompare to find lncRNAs not derived from GENCODE,
but without performing the coding potential evaluation. Then, GENCODE, LNCipedia
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lncRNA, and assembled novel lncRNAs were concatenated into one file as the customized
reference transcriptome (Figure S1).

2.3. Sequencing Data Processing and Feature Matrix Construction for Machine Learning

First, quality control for raw sequencing data was performed by FASTP (version 0.20.0,
Shenzhen, China) [44]. Then, expression levels for protein-coding genes and lncRNAs
were quantified based on the customized reference transcriptome using Salmon (v0.11.2)
(Philadelphia, PA, USA) [45]. If total RNA was sequenced, circRNAs were identified and
quantified by CIRIquant (v1.0) (Beijing, China) [46]. Retrotranscriptome quantification was
performed by Telescope (1.0.3) (New York, NY, USA) [26]. Next, AS events were analyzed
by SplAdder (2.4.2) (New York, NY, USA) [47] and APA events were analyzed by QAPA
(v1.3.0) (Toronto, Canada) [48], which uses Salmon to quantify the identified APA events.
RNA editing sites were identified by SPRINT (v0.1.8) (Shanghai, China) [49] which does
not require matched DNA sequencing data for RNA-seq samples and SNP annotations of
the genome. Different from RNA editing, SNP sites detected by RNA-seq were called using
the well-established GATK pipeline (v3.8) (Cambridge, MA, USA) [50] and subsequently
annotated by ANNOVAR (v2018/4/16) (Philadelphia, PA, USA) [51]. Finally, gene fusions
for each sample were identified by Arriba (v1.1.0) (https://github.com/suhrig/arriba,
accessed on 25 March 2019), which was reported as fast and accurate [52]. Tools were used
with default parameters unless otherwise specified.

2.4. Disease-Related Feature Selection by Machine Learning

After preparation of the eight feature matrices, random forest algorithm (Python
package ‘scikit-learn’) was used to select disease relevant features. Only the top 1000 (users
may choose a different number) most variable features from each type of feature matrix
were combined together and used for machine learning. Samples were randomly separated
into training set (70% samples) and testing set (30%). First, random forest was applied
to the training set to obtain all features importance using the leave-one-out validation
strategy. Then, the top K (K = 10, 20, 50, 100, 200, all) important features were validated
using the testing set. For each chosen K, the subset training matrix with only those top K
features were used as the input for retraining as in the first step, and this time the subset
test matrix with only those top K features were used to evaluate the clustering accuracy.
Finally, features with non-zero importance scores were selected and regarded as disease
relevant, which can be further used for downstream analysis.

2.5. Cancer Subtyping Analysis

This module used non-negative matrix factorization (NMF) to obtain a latent feature
matrix of the disease samples, clustered those samples, and evaluated those clusters as
significant subtypes by using survival analysis. Similar to the feature selection module,
the top 1000 most variable features were selected first. First, a robust NMF integration
algorithm was applied to find latent features with corresponding feature weights. Then,
the K-Means clustering algorithm (Python package ‘scikit-learn’) was performed on the
latent feature matrix and clusters was evaluated by silhouette width [53]. Next, clinical
data with survival information was used to assess the clinical significance of clustered
subtypes by testing the survival difference between those subtypes (log-rank test, R package
‘survival’). Finally, a supervised random forest algorithm (Python package ‘scikit-learn’)
was applied to the subtype result with largest silhouette value among significant clustering
results (based on log-rank test p-values) to obtain the relative importance of all features
contributing to subtyping.

2.6. Other Bioinformatic Analysis

Pathway and disease enrichment analysis for cancer-contributing genes in each cancer
type was performed by invoking ToppGene API (https://toppgene.cchmc.org, accessed on
14 March 2021). Pathway enrichment for subtype-contributing genes shared across cancer
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types was performed by ToppGene webserver directly. Somatic mutation analysis and
visualization for cancer subtypes were performed by MAFtools (v2.2.10, Singapore) [54].

3. Results
3.1. PipeOne Workflow Overview

Studying diseases from multiple aspects proves to be effective in revealing disease
mechanisms. We developed PipeOne that uses multi-modal information from RNA-seq
data to comprehensively investigate transcriptomes. As shown in Figure 1A (see Methods),
PipeOne is composed of three modules, data processing and feature matrices construc-
tion, disease feature prioritization, and disease subtyping. The pipeline is based on
Nextflow [55], a reproducible workflow management system, and integrates eight different
tools to extract different information from RNA-seq data in the first module (Figure 1B).
Subsequently, module two applies random forest algorithm to the combined most variable
features extracted by algorithms in the first module to prioritize a number of disease-
relevant features for downstream analysis of disease mechanisms (Figure 1C). Module
three stratified patients according to evidences from multiple-modal information, as ex-
tracted similarly in module two, for better diagnosis and treatment (Figure 1D).

Compared with two previous RNA-seq pipelines, RNACocktail [56] and VIPER [57],
PipeOne integrated predictions for both novel lncRNAs and circRNAs, retrotranscrip-
tome, and alternative splicing (Table 1). PipeOne would also perform and focused on
comprehensive feature prioritization and subtyping analysis, instead of simply differential
expression analysis.

Table 1. Comparing PipeOne with two other pipelines, RNACocktail and VIPER.

PipeOne RNACocktail VIPER

Raw data processing
Quality control

√
x

√

Alignment
√ √ √

Transcriptome reconstruction
√ √

x
Gene quantification

√ √ √

Novel lncRNA prediction
√

x x
CircRNA prediction

√
x x

Gene quantification
√ √ √

Fusion prediction
√ √ √

Variant calling
√ √ √

RNA editing prediction
√ √

x
Retrotranscriptome

√
x x

Alternative splicing
√

x x
viral DNA detection x x

√

Long-read x
√

x
Downstream analysis

Result visualization x x
√

Differential expression analysis x
√ √

Pathway analysis x x
√

Batch correction x x
√

immunological analysis x x
√

Virus analysis x x
√

Feature prioritization
√

x x
subtyping/clustering

√
x

√

Multi-modal integration
√

x x
Runtime

Management systems Nextflow Python Snakemake
Resume

√
x

√

Parrallel
√

x
√

Docker
√ √

x
Conda

√ √ √

Singularity
√

x
√
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Figure 1. Overall design of PipeOne. (A) Three modules of PipeOne: data processing and various feature identification 
(one), feature prioritizing (two), and disease subtyping (three). (B) Details of module one. Raw sequencing reads were 
quality controlled by FASTP and then went through eight tools to extract information from RNA-seq data, including ex-
pression levels of mRNA, lncRNA, circRNA, and retrotransposons, alternative splicing events, alternative polyadenyla-
tion, RNA editing, gene fusions, and SNPs. These information was used to construct the feature matrices for machine 
learning (only the top 1000 most variable features were used for each type of information) in module two and three. (C) 

Figure 1. Overall design of PipeOne. (A) Three modules of PipeOne: data processing and various feature identification (one),
feature prioritizing (two), and disease subtyping (three). (B) Details of module one. Raw sequencing reads were quality
controlled by FASTP and then went through eight tools to extract information from RNA-seq data, including expression
levels of mRNA, lncRNA, circRNA, and retrotransposons, alternative splicing events, alternative polyadenylation, RNA
editing, gene fusions, and SNPs. These information was used to construct the feature matrices for machine learning (only
the top 1000 most variable features were used for each type of information) in module two and three. (C) Details of module
two. First, feature importance was calculated by using random forest on all features from module one. Then the top K
(20, 20, 50, 100, 200, all) ranked by feature importance were used to test and validate the importance of those top features.
(D) Details of module three. First, a robust NMF integration algorithm was applied to obtain latent features and associated
weights for all samples. Then K-Means clustering evaluated by silhouette width was used to cluster samples based on the
latent feature matrix. Differential survival analysis by log-rank test was used to assess the clinical relevance of those stable
clusters as potential subtypes. Finally, similar to module two, random forest was used to select features contributing to the
subtyping results.
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3.2. Cancer Genes and Pathways Contributing to Multiple Types of Cancer

We then applied PipeOne to five cancer types (COAD, n = 325 (41 normal), KIRP,
n = 320 (32 normal), LIHC, n = 421 (50 normal), STAD, n = 403 (32 normal), and THCA,
n = 555 (58 normal)). For each cancer, we observed that many non-mRNA expression
cancer-associated features, especially AS, lncRNA expression and retrotranscriptome
(Figure 2A, Table S1), supporting our claim that integration of multimodal information
may help capture more relevant dysregulated disease factors.
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Figure 2. Cancer-associated features and pathways identified by PipeOne in five cancer types.
(A) Cancer-associated features grouped by feature types across five cancers. (B) Cancer-associated
features shared by at least two cancer types. (C–E) Cancer-associated multi-exon skipping AS event
of ABI3BP identified in three cancers, COAD (C), KIRP (D), and THCA (E). (F) Top three enriched
pathways (only two for STAD) of cancer-associated features in each cancer. (G) Shared enriched
disease annotations for cancer-associated genes in each cancer. Two annotations shared by four
cancer types were marked by red arrows.
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We found 23 features as shared cancer-associate factors among different cancers
(Figure 2B). In contrast to other cancers, STAD showed the least shared factors (n = 3),
and only one shared (KRT7 expression) with the gastrointestinal cancer COAD. KRT7
regulates cell differentiation and is involved in the regulating translation of human pa-
pillomavirus type 16 (HPV16) [58], which is oncogenic and contributes to both STAD
and COAD development [59,60]. One other shared factor of STAD is ERV3116A3_Xq28b
retroelement expression found in THCA. Surprisingly, we observed more frequent multi-
exon-skipping AS events near the same loci in ABI3BP in three tumors (COAD, KIRP, and
THCA), compared to adjacent normal samples (Figure 2C–E). ABI3BP was reported as
a tumor suppressor gene in thyroid cancer [61] and lung cancer [62], and dependent on
TP53 [63]. The exon-skipping AS event in this gene probably disrupts its tumor suppressor
function across cancers to promote tumorigenesis. Other shared factors included expres-
sion of known oncogenic lncRNA PVT1 and mRNA genes involved in programmed cell
death, such as BAX (apoptosis), LGALS3 (apoptosis), FBP1 (ferroptosis), and TMEM123
(oncosis), insulin growth factor gene IGF2, and macrophage inhibitory cytokine GDF15.
The functionalities of those unexplored factors specifically contributing to individual cancer
may be further investigated.

Pathway enrichment analysis of contributing factors for each cancer further demon-
strated accurate identification of disrupted functionalities in cancers (Table S2). The top-
ranked pathways were ‘smooth muscle contraction’ (p = 1.2 × 10−5, FDR = 0.015) and
‘erythrocytes take up oxygen and release carbon dioxide’ (p = 4.8 × 10−5, FDR = 0.028)
for COAD, Eplerenone (aldosterone antagonist associated with proteinuria reduction in
treating impaired renal function) and other drug metabolism pathways (p = 2.2 × 10−5,
FDR = 0.0048) for KIRP, ‘scavenging of heme from plasma’ (p = 6.8 × 10−6, FDR = 0.0024)
for LIHC, ‘formation of tubulin folding intermediates by CCT/TriC’ (p = 1.8 × 10−4,
FDR = 0.018) for STAD, and extracellular matrix-associated and platelet degranulation
pathways (p = 2.3 × 10−8, FDR = 2.1 × 10−5) for THCA (Figure 2F).

Interestingly, disease enrichment in our important LIHC genes showed drug toxicity
or adverse reaction to drug (p = 8.7 × 10−9 FDR = 1.6 × 10−5) (Table S2). Moreover, acute
kidney failure and secondary liver neoplasm were shared by four out five cancer types,
suggesting the presence of both liver and kidney dysfunction during tumor progression in
different cancers (Figure 2G).

3.3. Clinically-Relevant Cancer Subtypes Characterized by Distinct Somatic Mutations

We further analyzed PipeOne-derived cancer subtypes (Table S3). Three subtypes
were identified in LIHC (p = 0.014), KIRP (p = 0.012), and THCA (p < 1 × 10−4, six in
STAD (p = 0.033) (Figure 3A–D), but none in COAD. Most samples in KIRP and THCA
were classified into two subtypes, subtype-0 (S0) and subtype-1 (S1). We compared the
correlation between the PipeOne predictive subtypes and the pathological stages of the
cancer and the results showed that there were a few significant correlations, although in
most cases there was no correlation between them. (Supplementary Figure S2). This result
indicates that there may be a different genetic basis between PipeOne derived subtypes
and pathological subtypes, and may provide clues for the new stratification of patients for
further evaluation and appropriate treatment. To understand the genetic basis for these
cancer subtypes, we investigated somatic mutations in LIHC, KIRP, and THCA. For THCA,
S1 and S2 differed most for mutations in BRAF (69% vs. 53%) and HRAS (1% vs. 5%)
(Figure 3E). For KIRP, we observed strikingly higher MET (13% vs. 4%), KMT2D (10% vs.
3%), and KMT2C (9% vs. 5%) somatic mutations in S0 compared to S1 (Figure 3F). MET
is an oncogenic tyrosine kinase and KMT2C and KMT2D are histone methyltransferases
that could remodel chromatin. For the three subtypes of LIHC, S0 and subtype-2 (S2) were
similar and showed higher number of TP53 somatic mutations, while lower number of
TTN mutations, compared with S1 (Figure 3G).
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Figure 3. Disease subtypes identified by PipeOne in each cancer. (A–D) Disease subtypes and survival difference in KIRP
(A), LIHC (B), STAD (C), and THCA (D). (E–G) Different frequencies of somatic mutations between cancer subtypes in
THCA (E), KIRP (F), and LIHC (G). (H) Enriched gene ontology terms of subtype-associated features shared by at least
three cancer types. (I) Subtype-associated features (many mitochondria genes) shared by at least four cancer types.

Next, we examined subtype-contributing features in each cancer and across cancers.
We observed 232 features (Table S4) shared by at least three cancer types, among which 41
were shared by at least four cancers. These 232 features included 155 mRNA features that
were enriched in ribosome constitution (p = 9.5 × 10−33 and RNA binding (p = 1.7 × 10−19
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(Figure 3H). Disrupted ribosome homeostasis and RNA binding probably contributed
to different subtypes with distinct prognosis. Interestingly, among the 41 features, we
observed the strongest signals from mitochondria genes (Figure 3I), possibly reflecting
the reprogramming of cellular metabolism from oxidative phosphorylation (OXPHOS) to
glycolysis observed in cancer cells [64].

4. Discussion

During RNA-seq raw data processing, PipeOne not only included classical procedures
of data analysis, e.g., quality control, alignment, transcriptome reconstruction, gene quan-
tification, but also contained novel lncRNA prediction, circRNA prediction, RNA editing
prediction, fusion prediction, retrotranscriptome quantification, alternative splicing event
detection, variants calling. Compared to RNAcocktail and VIPER, PipeOne harbored more
functions, including prediction of novel lncRNAs and circRNAs, retrotranscriptome, and
alternative splicing event detection. These will greatly enrich the information derived
from RNA-seq data for downstream analysis, in which PipeOne focused on integrating
multi-modal information to perform feature prioritization and disease subtyping. To
the best of our knowledge, existing tools did not utilize such broad aspect information
from RNA-seq for integration analysis. PipeOne did not implement many functions pro-
vided in VIPER, however, most of those procedures in RNA-seq analysis are classical, and
could be performed by using common tools. For example, differential expression analysis
could be perform by edgeR [65] or DESeq2 [66]. PipeOne was built based on Docker and
Nextflow [55], making installation and management of workflow easy. Considering that
users may not have root permission, PipeOne also provided the option of using Conda [67]
for installation. These will alleviate users from tedious installation, configuration, and
management. By using the Nextflow management system, advanced users could modify
PipeOne to adapt their own research purposes.

One limitation of PipeOne is that it currently focuses on RNA-seq data only. Still, it
may also be expanded to include features from other high-throughput data, for example,
genome sequencing, DNA methylation profiling by microarray or sequencing, and pro-
teomics by mass spectrometry, where any of these data are available Another limitation is
subtyping evaluation. In this study, we only assessed the subtyping clusters by Silhouette
values and log-rank test-based overall survival analysis. In the future, more choices would
be implemented to allow other ways to evaluate subtypes, for example, by comparing
patient drug responses when this information is available. That will enable subtyping
analysis for other diseases without survival information. In addition, future version of
PipeOne could include features from other high-throughput data as mentioned above to
perform multi-omics base subtype analysis and proper reduce noise effects may help to
better subtyping. For example, DefFusion [68] can make better survival predictions by
taking the noise effect into account when integrating multiple omics data.

In short, we presented a cross-platform analysis pipeline integrating all kinds of RNA-
seq analysis to model diseases comprehensively and demonstrated the power of PipeOne
in five cancer types. These results encourage us and other researchers to confidently apply
PipeOne to more cancer types and other complex diseases with a large number of RNA-seq
samples available. Our pipeline and analysis results provide new opportunities and clues
for cancer research, and may inspire future multi-omics analysis to add more information
from RNA-seq data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12121865/s1, Figure S1: The detailed processing pipeline to construct customized
reference annotations with novel lncRNA genes, Figure S2: Comparison of PipeOne subtypes
with cancer pathological stages in cancers, including KIRP (A), STAD (B), THCA (C) and LIHC
(D), Table S1: Cancer-associated features shared across multiple cancer types, Table S2: Enriched
pathways and disease annotations of cancer-associated features for each cancer type, Table S3:
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