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Abstract

TGFb-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is
considered a key intermediate in a multitude of innate immune signaling pathways. Yet, the specific role of TAK1 in the
myeloid compartment during inflammatory challenges has not been revealed. To address this question, we generated
myeloid-specific kinase-dead TAK1 mutant mice. TAK1 deficiency in macrophages results in impaired NF-kB and JNK
activation upon stimulation with lipopolysaccharide (LPS). Moreover, TAK1-deficient macrophages and neutrophils show an
enhanced inflammatory cytokine profile in response to LPS stimulation. Myeloid-specific TAK1 deficiency in mice leads to
increased levels of circulating IL-1b, TNF and reduced IL-10 after LPS challenge and sensitizes them to LPS-induced
endotoxemia. These results highlight an antiinflammatory role for myeloid TAK1, which is essential for balanced innate
immune responses and host survival during endotoxemia.
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Introduction

TGFb-activated kinase 1 (TAK1) was originally identified as a

key regulator of TGFb/bone morphogenetic protein signaling [1].

Since then a wealth of information has been generated placing

TAK1 as part of a more complex signaling network that governs

basic cellular activities. Studies using complete and conditional

TAK1 knockout mice revealed that TAK1 integrates signals

emanating from TGFb, TNF, IL-1b, Toll-like receptors (TLRs),

B-cell receptors and T-cell receptors, to coordinate homeostasis

and immunity, and that its absence can lead to carcinogenesis,

inflammation or death [2–13]. In Drosophila, TAK1 is critical for

antibacterial innate immunity as TAK1 mutants are highly

susceptible to Gram-negative bacterial infection and do not

produce antibacterial peptides [14]. In mammals, there are

several lines of evidence supporting a critical role for TAK1 in

innate immunity [8,11,15]. Genetic evidence demonstrating a role

for TAK1 during innate immunoreceptor signaling has been

obtained in mature immune cells by using B cell-specific TAK1-

deficient mice [8]. TAK1-deficient B cells fail to activate

transcription factor NF-kB and mitogen-activated protein kinases

(MAPKs) in response to TLR ligands and have impaired

production of IL-6, supporting an evolutionary conserved role

for TAK1 in innate immunity. However, the role of TAK1 during

TLR innate immune responses has not been addressed in the main

cellular mediators of innate immunity, the myeloid cells.

Myeloid cells (macrophages and neutrophils) are the chief

cellular agents of the inflammatory cascade during microbial

infection. They initiate coordinated innate immune defenses

through activation of pathogen recognition receptors that

recognize specific pathogen-associated molecular patterns [16].

As a result of these interactions, immune cellular activation occurs

with the release of cytokine and non-cytokine mediators. A key

event in the immune response to Gram-negative bacteria is the

recognition of lipopolysaccharide (LPS) by TLR4 [17]. LPS plays

a key role in Gram-negative sepsis by inducing production of

proinflammatory and antiinflammatory mediators, the most

critical being IL-1b, TNF, IL-6 and IL-10 [18]. Cytokine

production significantly influences the quality, duration, and

magnitude of most inflammatory reactions.

During LPS-induced endotoxemia, serine/threonine kinase

cascades are activated with pleiotropic downstream effects that

include activation of protein kinases such as the MAPKs and the I-

kB kinases. Although key molecules in these signaling pathways

have been identified, there are still substantial gaps in our

knowledge, including the role of members of the MAPK kinase

kinase (MAP3K) family. Here we investigated the myeloid-specific

role of the MAP3K TAK1 during LPS inflammatory responses.

TAK1 deficiency in macrophages led to impaired activation of

NF-kB and JNK following LPS stimulation, identifying TAK1 as

an important upstream signaling molecule that regulates LPS-

induced NF-kB and JNK activation in macrophages. Cytokine

profile analysis of TAK1-deficient macrophages upon stimulation

with LPS, revealed a hyperinflammatory phenotype characterized

by increased proinflammatory (IL-1b, TNF, and IL-6) and
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reduced antiinflammatory (IL-10) cytokine production. A similar

inflammatory cytokine profile was observed in LPS-stimulated

neutrophils, although no reduction in IL-10 production was

observed. Consistent with the above, mice with defective myeloid

TAK1 mount an enhanced innate immune response to LPS by

exhibiting increased circulating levels of IL-1b and TNF, reduced

IL-10, and subsequently significantly increased mortality to LPS-

induced shock. We conclude that myeloid TAK1 acts by

regulating the balance between proinflammatory and antiinflam-

matory cytokine production thereby preventing unrestrained

inflammatory responses.

Results and Discussion

Generation of ubiquitous and myeloid-specific TAK1
mutant mice

We generated mice with conditional expression of a Map3k7

allele encoding a kinase-dead truncated form of TAK1, following a

similar targeting strategy to previous studies [8]. The targeting

vector was constructed by placing two loxP sites flanking exon 2 of

Map3k7 (Fig. 1A). Exon 2 encodes part of the kinase domain

including the ATP binding pocket and can be deleted without

disrupting the remainder of the reading frame. To generate mice

that ubiquitously express the truncated TAK1 (Map3k72/2 mice),

we crossed Map3k7flox/flox mice with transgenic mice expressing

Cre in germ cells [19]. Of 101 newborn pups (19 litters) obtained

by intercrossing Map3k7+/2 mice, we had 71 Map3k7+/2, 30

Map3k7+/+ and no Map3k72/2 mice, confirming previous studies

that TAK1 deficiency leads to embryonic lethality [4,8,11].

To investigate the role of myeloid-specific TAK1 in innate

immunity, we crossed Map3k7flox/flox mice with LysM-Cre knockin

mice, which express the Cre recombinase in macrophages and

neutrophilic granulocytes [20]. This resulted in a 50% deletion in

macrophages as it was assessed by Southern blot analysis of DNA

extracted from bone marrow-derived macrophages (BMDMs)

(Fig. 1B). Additionally, PCR analysis was performed on FACS-

sorted CD11b+F4/80+ resident peritoneal macrophages and

CD11b+Gr1+ splenic neutrophils for an approximate indication

of deletion, suggesting a similar percentage of deletion in the

macrophage population, while a higher deletion percentage was

observable in neutrophils (Fig. 1C). Mice with myeloid-restricted

TAK1 deficiency (Map3k7Dmyel) were born at the expected

Mendelian ratio, developed normally, and did not show any

gross morphological changes in the overall histology of lymphoid

organs and other organs rich in myeloid cells, such as the

gastrointestinal tract (data not shown). In the control groups, we

observed no phenotypic difference among Map3k7flox/flox and

LysM-Cre mice and thus Map3k7flox/flox mice were used as

controls.

To determine if TAK1 deficiency affected the production of

immature and mature myeloid cell subsets, we performed flow

cytometric immunophenotypical analysis of bone marrow (BM)

[21,22], peripheral blood, spleen and peritoneal cavity cell

preparations obtained from Map3k7Dmyel and Map3k7flox/flox mice.

We observed no differences in the immature myeloid cell subsets

in the BM of Map3k7Dmyel and Map3k7flox/flox mice as there were

similar frequencies of common myeloid progenitors, granulocyte/

macrophage progenitors and the myelomonocytic cell fraction

(fraction of Gr-1+/Mac-1+ cells) (Table 1). In peripheral blood

there were similar numbers of monocytes and neutrophils between

Map3k7Dmyel and Map3k7flox/flox cell preparations (Table 1). Also,

no statistically significant differences were observed in the number

of peripheral splenic macrophages and neutrophils, nor in the

number of resident peritoneal macrophages (Table 1).

We next investigated the ability of myeloid precursor cells to

differentiate into macrophages and granulocytes in colony-forming

assays upon stimulation with G-CSF, M-CSF, and GM-CSF. As

shown in Fig. 1D, the numbers of colonies grown from

Map3k7Dmyel and Map3k7flox/flox BM cells were comparable,

suggesting that myeloid TAK1 deficiency did not affect the

developmental potential of early myeloid precursor cells. It

has been reported that TAK1 promotes survival signals in

hematopoietic cells [12]. Nevertheless, we and others [15] did

not observe any reduction in the numbers of macrophages and

granulocytes in the periphery when TAK1 is inactivated in

myeloid cells.

TAK1 deficiency promotes a hyperinflammatory
phenotype in LPS-stimulated macrophages and
neutrophils

We focused our subsequent analyses on identifying the role of

TAK1 in LPS-induced inflammatory responses. For these studies

we prepared BMDMs from Map3k7Dmyel and Map3k7flox/flox

littermate mice and treated them with 100 ng/ml LPS.

Map3k7Dmyel BMDMs exhibited reduced NF-kB (Fig. 2A) and

JNK activation (Fig. 2B), consistent with similar studies in mouse

monocytic cell lines for JNK activation [15], but also in other cell

types such as B cells [8] and MEFs [11]. Next, we performed a

detailed kinetic analysis of cytokine production upon LPS

stimulation. TAK1 deficiency resulted in increased IL-1b, TNF,

and IL-6, and decreased IL-10 production following LPS

stimulation at different time points (Fig. 3A, B, C, D). A

substantial increase in IL-1b production was evident at all time

points up to 12 h post stimulation in Map3k7Dmyel BMDMs

compared to control cells, whereas at 24 h, IL-1b declined to

almost undetectable levels in both Map3k7Dmyel and Map3k7flox/flox

cells (Fig. 3A). Increased production of TNF and IL-6 was also

observed at early time points after LPS stimulation in Map3k7Dmyel

BMDMs (Fig. 3B, C). In contrast, IL-10 production was almost 4-

fold lower 3 h post LPS stimulation in Map3k7Dmyel BMDMs

compared to control cells, and a significant reduction was still

evident until 24 h (Fig. 3D). Thus upon LPS stimulation,

Map3k7Dmyel BMDMs exhibit a hyperinflammatory phenotype.

It was previously shown that upon LPS stimulation, reduced

NF-kB activation in IKKb-deficient macrophages leads to

increased IL-1b production due to enhanced IL-1b processing

[23]. Therefore, reduced NF-kB activation in TAK1-deficient

macrophages could at least partly account for the increased IL-1b
production observed. Interestingly, a recent study revealed a

regulatory loop for the induction of IL-10 during the LPS response

which involves TAK1 and AUF1 [24]. Following LPS stimulation,

the RNA-binding protein AUF1 maintains proper levels of TAK1

by post-transcriptional control on Tak1 mRNA and in this way

accomplishes proper NF-kB activation required for the induction

of IL-10. Thus, in the absence of TAK1 several layers of

transcriptional and/or post-transcriptional controls may contrib-

ute to the observed deregulated cytokine profile.

As TAK1 is deleted in both macrophages and neutrophils in

Map3k7Dmyel mice, we next sought to determine whether TAK1

deficiency caused a similar cytokine profile change in neutrophils

as in macrophages. For this we used thioglycollate-elicited

peritoneal neutrophils from Map3k7Dmyel and Map3k7flox/flox mice

and measured cytokine production 6 h and 12 h upon LPS

stimulation. Paralleling the results of macrophages, LPS induced

enhanced production of the proinflammatory cytokines IL-1b,

TNF and IL-6 in Map3k7Dmyel peritoneal neutrophils (Fig. 3E, F,

G). Notably however no reduction in the levels of IL-10 was

observed in peritoneal neutrophils. In contrast, IL-10 production
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was significantly increased by 6 h in Map3k7Dmyel compared to

Map3k7flox/flox neutrophils (Fig. 3H), suggesting that different

mechanisms govern cytokine production in LPS-stimulated

macrophages and neutrophils as it has been already reported for

IL-1b production [23]. Interestingly, Map3k7Dmyel peritoneal

neutrophils exhibited higher basal levels of TNF and IL-6

compared to almost undetectable levels in Map3k7flox/flox neutro-

phils. Bearing in mind that thioglycollate-elicited neutrophils are

not in a steady state, this could imply a general mechanism of

deregulated cytokine production upon activation of myeloid cells,

in the absence of TAK1.

These results demonstrate that upon LPS stimulation, TAK1

deficiency alters the cytokine profile in macrophages and

neutrophils in favor of a proinflammatory profile. This is a quite

unexpected finding, as TAK1 is traditionally considered a

proinflammatory molecule [8,11]. In B cells, TAK1 deficiency

was reported to result in diminished IL-6 production upon

LPS stimulation [8]. Additional studies are required to delineate

the molecular pathways underlying the deregulated cytokine

production upon LPS stimulation in the absence of myeloid

TAK1.

Increased mortality to endotoxemia and deregulated
cytokine production in mice defective in myeloid TAK1

We next sought to investigate the pathophysiological signifi-

cance of the inflammatory phenotype exhibited by LPS-induced

macrophages and neutrophils. For this, mice were intraperitone-

ally (i.p.) challenged with 100 ı̀g of LPS and serum samples were

obtained at various intervals (0, 1.5, 3, and 6 h) after injection, for

the assessment of the concentrations of circulating cytokines

(Fig. 4A, B, C, D). The induction of proinflammatory cytokines

was greatly enhanced in Map3k7Dmyel mice compared to the

Map3k7flox/flox control mice, consistent with the in vitro data. A

marked increase in IL-1b was observed already within the first

1.5 h, and continued to increase in the serum of Map3k7Dmyel

mice, until it reached a peak concentration at 3 h that was 2-fold

higher than the amount detected in Map3k7flox/flox mice (Fig. 4A).

The levels of serum TNF were also significantly higher in

Map3k7Dmyel mice compared to Map3k7flox/flox mice. TNF peaked

at 1.5 h both in Map3k7Dmyel and Map3k7flox/flox mice, but a 1.5-

fold increase was observed in the Map3k7Dmyel mice after which,

TNF levels declined and by 6 h became identical in Map3k7Dmyel

and Map3k7flox/flox mice (Fig. 4B). Additionally, a trend towards an

Figure 1. Generation of conditional TAK1-deficient mice. (A) Schematic representation of the wild type, targeted, floxed and deleted Map3k7
genomic locus, indicating BamHI, SacI and XbaI restriction sites used for Southern blot. The Map3k7 locus comprises 17 exons; in the scheme the first
6 exons are represented. The probes used to verify homologous recombination at the 59 and 39 end are shown. Black arrows indicate loxP sites; red
arrows indicate FRT sites. B, BamHI; S, SacI; X, XbaI. (B) Southern blot of genomic DNA isolated from BMDMs after digestion with XbaI and using the 39

probe. (C) PCR analysis of genomic DNA isolated from FACS-sorted CD11b+F4/80+ resident peritoneal macrophages and CD11b+Gr1+ splenic
neutrophils. (D) Colony formation by BM cells from Map3k7Dmyel and Map3k7flox/flox mice in response to M-CSF, G-CSF and GM-CSF. Data are shown as
mean 6 SEM of 4 mice per group and are representative of two independent experiments.
doi:10.1371/journal.pone.0031550.g001
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increase in serum IL-6 was observed, although this result did not

reach statistical significance (Fig. 4C). In contrast to the

augmented production of proinflammatory cytokines, circulating

levels of the antiinflammatory IL-10 were significantly reduced in

the serum of Map3k7Dmyel mice compared to the Map3k7flox/flox

controls. At 1.5 h post LPS challenge, IL-10 levels were identical

but a more acute decline was observed in the serum of the

Map3k7Dmyel mice at 3–6 h (Fig. 4D).

High circulating cytokine levels are associated with endotox-

emia and contribute to the increased mortality associated with this

condition. Map3k7Dmyel mice and Map3k7flox/flox littermates, as

well as LysM-Cre control mice, were i.p. challenged with a high

dose of LPS (20 mg/kg of body weight) and survival was

monitored for 72 h. In this acute inflammation model, death

occurs within a few days depending on the dose response to LPS.

Map3k7Dmyel mice were indeed highly sensitive to LPS challenge,

as only 19% (3 out of 16) survived within 24 h, compared to a

survival rate of 93% (14 out of 15) for the Map3k7flox/flox mice and

100% (5 out of 5) for the LysM-Cre control mice (Fig. 4E). Over a

period of 72 h, the survival of Map3k7Dmyel mice was 12%,

significantly lower than the 50% survival of Map3k7flox/flox mice

and 60% for LysM-Cre mice (Fig. 4E).

In conclusion, these data demonstrate that myeloid TAK1 is an

essential regulator of LPS-induced inflammatory responses.

Notably, an increased sensitivity to LPS-induced endotoxemia is

also observed in myeloid-specific IKKb-deficient mice [23].

Similarly, reduced NF-kB activation in the absence of TAK1

could account for the deregulated IL-1b production and the

resulting increase in sensitivity to LPS challenge. Yet, myeloid-

specific TAK1-deficiency also affects the production of other

cytokines (TNF, IL-6) reflecting additional regulatory pathways

that are simultaneously affected by TAK1.

Recently, Courties et al. reported that RNA interference-

mediated knockdown of myeloid cell derived-TAK1 ameliorates

inflammation and bone damage in collagen-induced arthritis [15],

a finding that could raise interest in targeting TAK1 in chronic

inflammatory diseases, such as rheumatoid arthritis. Further

analysis revealed that knockdown of myeloid TAK1 directly

attenuated Th1 responses, which play a significant role in

mediating inflammation and development of collagen-induced

arthritis, highlighting a modulatory role for myeloid-specific

TAK1 in the adaptive immune response. Similar to our present

results, in the study by Courties et al. [15] , LPS-induced JNK

activation was also found to be reduced in a mouse monocytic cell

line that was transiently transfected with siRNAs against TAK1.

However, in the same study, despite a downregulated systemic

proinflammatory response, the myeloid-specific contribution in

proinflammatory cytokines was not addressed. It would be

interesting to compare myeloid-specific cytokine responses in a

chronic setting, such as in the collagen-induced arthritis model,

with the enhanced acute myeloid response that we have observed

with LPS. Our study combined with previous findings highlights a

context and tissue dependence of the proinflammatory and

antiinflammatory functions of TAK1 that could have implications

for the future development of therapeutic concepts targeting

TAK1 function in human inflammatory disease.

Table 1. Immunophenotypical flow cytometric analysis of
BM, peripheral blood, spleen and peritoneal cavity myeloid
cells in Map3k7Dmyel and Map3k7flox/flox mice.

Map3k7flox/flox

(n = 7–8)
Map3k7Dmyel

(n = 7)

BM (6109)

CMPs (Lin2c-Kit+Sca-1 CD16/32loCD34+) 1.460.4 1.360.3

GMPs (Lin2c-Kit+Sca-12CD16/32hiCD34+) 2.460.5 2.260.3

Gran/Mac fraction (Gr1+/CD11b+) 1.560.3 1.560.1

Peripheral Blood (%)

Monocytes (CD11b+Ly6Chi) 0.960.3 1.460.6

Neutrophils (CD11b+Ly6CloGr1hi) 3.360.7 2.761.5

Spleen (6106)

Macrophages (F4/80+) 134649 137678

Neutrophils (CD11b+Gr1+) 100645 1866144

Peritoneal cavity (6106)

Resident macrophages (CD11b+F4/80+) 56617 60619

Mean values 6 SD obtained from the indicated number of mice (n) are given.
Measurements are a pool of two independent experiments. CMPs, common
myeloid progenitors; GMPs, granulocyte/macrophage progenitors.
doi:10.1371/journal.pone.0031550.t001

Figure 2. Impaired activation of NF-kB and JNK in response to
LPS stimulation in TAK1-deficient macrophages. BMDMs were
stimulated with LPS (100 ng/ml) and nuclear/cytoplasmic extracts were
collected at the indicated times. (A) NF-kB DNA-binding activity in
nuclear extracts was determined by EMSA. The lysates used for EMSA
were subjected to immunoblot analysis using a TFIIB-specific antibody
as a loading control. (B) Phosphorylation of JNK (p-JNK) in cytoplasmic
extracts was assessed by immunoblot with antibody specific for its
phosphorylated form. The membrane was reprobed for total JNK.
Results are representative of three independent experiments.
doi:10.1371/journal.pone.0031550.g002
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Figure 3. Enhanced inflammatory cytokine profile in TAK1-deficient macrophages and neutrophils in response to LPS. (A–D) BMDMs
and (E–H) thioglycollate-elicited peritoneal neutrophils from Map3k7Dmyel and Map3k7flox/flox mice were stimulated with 100 ng/ml LPS. (A, E) IL-1b,
(B, F) TNF, (C, G) IL-6, and (D, H) IL-10 production were measured in cell culture supernatants by ELISA. (A–H) Data are representative of three
independent experiments with 4 mice per group and are shown as mean 6 SEM. *, p#0.05; **, p#0.01; ***, p#0.005.
doi:10.1371/journal.pone.0031550.g003

Figure 4. Increased LPS-induced mortality and altered circulating cytokine levels in mice deficient in myeloid TAK1. (A) IL-1b, (B) TNF,
(C) IL-6, and (D) IL-10 serum levels after LPS administration (100 ı̀g/mouse) in Map3k7Dmyel and Map3k7flox/flox mice. Data are represented as mean 6

SEM of 8–15 mice, pooled from three independent experiments. *, p#0.05; **, p#0.01; ***, p#0.005. (E) Survival of Map3k7Dmyel (n = 16), Map3k7flox/flox

(n = 15) and LysM-Cre (n = 5) mice after LPS injection (20 mg/kg).
doi:10.1371/journal.pone.0031550.g004
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Materials and Methods

Ethics Statement
All animal experiments conformed to all current national and

European legislation and were approved by the Prefecture of

Attica (approval ID 1463A) and by the Institutional Animal Care

and Use Committee of the Biomedical Sciences Research Center

‘‘Alexander Fleming’’ (approval ID 2350B).

Generation of conditional TAK1-deficient mice
For the generation of conditional TAK1-deficient mice, a

targeting vector was constructed in which a 0.6 kb fragment of

Map3k7 containing exon 2 was flanked by loxP sites. The targeting

vector also contained an FRT-neo-FRT selection cassette next to

the first loxP site and before exon 2 (Fig. 1A). An upstream 3.3 kb

and a downstream 4.0 kb fragment were used as ‘arms’ for

homology. Bruce-4 ES cells derived from C57BL/6 mice [25]

were cultured, transfected and selected using standard protocols.

Targeted ES cell clones were selected by Southern blotting with 59

and 39 probes, after digestion with SacI and BamHI respectively.

The FRT-neo-FRT selection cassette was excised using flipper

mice [26]. Generation of heterozygous floxed Map3k7 mice

(Map3k7flox/+) was carried out by following standard procedures.

The mice used in this study were 6–12 wks old and were

maintained on a C57BL/6 genetic background. All mice were

housed under specific pathogen-free conditions.

Progenitor cell assays
Colony-forming assays were performed by plating single cell

suspensions of BM (3–56104 cells/ml) in triplicate in 1 ml

methylcellulose medium in 35 mm Petri dishes. Cells were

incubated for 8 days in methylcellulose medium containing GM-

CSF (MethoCult M3001) or incomplete methylcellulose medium

(MethoCult M3231, Stem Cell Technology) supplemented with

10 ng/ml G-CSF or M-CSF (PeproTech). Colonies were scored

on day 8.

Flow cytometric analysis
Single cell suspensions were prepared from BM, blood, spleen

and peritoneal cavity. Where required, red blood cells were

excluded by Gey’s lysis solution and debris was removed by cell

strainer (70 mm, BD Falcon). After blockade of Fc-receptors with

CD16/32 blocking antibody, cells were stained with antibodies

conjugated with fluorochromes for 30 min on ice and washed

twice before FACS analysis. For antibodies not directly conjugated

to fluorochromes, staining with a secondary antibody was required

for 20–30 min on ice, followed by a wash step. Data were collected

by FACS Canto II and analyzed by using FACS Diva software

(Becton Dickinson). For cell sorting a FACS Vantage SE II was

used (Becton Dickinson). Cells were labelled using monoclonal

antibodies against: CD11b (M1/70, BD Biosciences), Gr1 (RB6-

8C5, e-Bioscience), F4/80 (BM8, e-Bioscience), Ly-6C (AL-21, BD

Biosciences), c-Kit (2B8, e-Bioscience), Sca-1 (D7, e-Bioscience),

TER-119 (TER119, e-Bioscience), B220 (RA3-6B2, e-Bioscience),

CD3e (145-2C11, e-Bioscience), CD34 (RAM34, e-Bioscience),

CD16/32 (93, e-Bioscience); these antibodies are conjugated with

different markers, such as fluorescein isothiocyanate (FITC),

phycoerythrin (PE), allophycocyanin (APC), APC-Alexa750,

Alexa700, PE-Cy5.5 or biotin. Streptavidin coupled to FITC or

APC (BD Biosciences) was used as a secondary antibody.

Cell cultures
For BMDMs preparation, BM cells were cultured in complete

RPMI in the presence of 20% medium conditioned by L929

mouse fibroblasts (as a source of M-CSF). On day 8, BMDMs

were collected and used as indicated. To isolate neutrophils,

mice were i.p. injected with 1 ml of 4% thioglycollate

(DIFCO) and peritoneal neutrophils were flushed out 3–5 h

later. The percentages of neutrophils in the peritoneal cell

populations were similar between Map3k7Dmyel (83,464,2, n = 3)

and Map3k7flox/flox (82,065,7, n = 3) littermates as analyzed by

flow cytometry.

Immunoblot analysis
Proteins were resolved by SDS PAGE and were transferred to

nitrocellulose membranes by electroblot. Non-specific binding sites

were blocked by incubation in 10 mM Tris-HCl pH 7.5, 150 mM

NaCl, containing 0.5% Tween-20 and 5% dry milk. Membranes

were blotted with antibodies against p-JNK (#46685, Cell

Signaling), JNK (sc-7345, Santa Cruz) and TFIIB (sc-225, Santa

Cruz) according to the manufacturer’s instructions for each

antibody.

EMSA
Nuclear extracts were prepared and EMSA was performed as

previously described [27]. The sequences of the oligonucleotides

used for NF-kB with two tandemly positioned NF-kB binding sites

(underlined) were as follows: NF-kBF (59-ATCAGGGACTT-

TCCGCTGGGGACTTT-39) and NF-kBR (59-CGGAAAGTC-

CCCAGCGGAAAGTCCCT-39).

Endotoxemia
Mice (8–12 wks) were i.p. injected with a sublethal dose

(20 mg/kg) of LPS (Escherichia coli 0111:B4, Sigma) and were

monitored for survival. For serum cytokine measurements, mice

were i.p. injected with 100 mg of LPS and at indicated time points

were euthanized and blood serum was collected.

Cytokine ELISA measurements
Serum cytokine levels and cytokines secreted from primary cells

were determined by ELISA. Macrophages were plated in

duplicate per mouse at 56105 cells/well in 24-well plates and

were allowed to adhere for 3 h before stimulation. Neutrophils

isolated from 4 mice were pooled and plated in quadruplicate at

16106 cells/well in 24-well plates. Cells were stimulated with

100 ng/ml LPS for the times indicated, followed by incubation

with 1 mM ATP for 30 min for IL-1b measurements, and

supernatants were taken for cytokine measurements. ELISA kits

for TNF, IL-6, IL-10 (e-Bioscience) and IL-1b (BD Biosciences)

were used according to manufacturer’s instructions.

Statistical analysis
Statistical comparisons were performed using unpaired Stu-

dent’s two tailed t test, with p values #0.05 considered statistically

significant.
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