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Abstract
People suffering from congenital anosmia show normal brain architecture although they do not have functional sense of 
smell. Some studies in this regard point to the changes in secondary olfactory cortex, orbitofrontal cortex (OFC), in terms 
of gray matter volume increase. However, diffusion tensor imaging has not been explored so far. We included 13 congenital 
anosmia subjects together with 15 controls and looked into various diffusion parameters like FA. Increased FA in bilateral 
OFC confirms the earlier studies reporting increased gray matter thickness. However, it is quite difficult to interpret FA in 
terms of gray matter volume. Increased FA has been seen with recovery after traumatic brain injury. Such changes in OFC 
point to the plastic nature of the brain.
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Introduction

Inability to smell from birth, also known as congenital ano-
mia (CA), is typically associated with absence of olfactory 
bulb. In a recent study, the authors were astonished by the 
fact that two congenital anosmic females performed at par 
with healthy controls in terms of standard olfactory tests 
despite having no clear olfactory bulbs (Weiss et al. 2020). 
However, when it comes to odor processing, people with 
normal or higher sense of smell show a relationship between 
olfactory performance, measured by odor threshold, identi-
fication and discrimination and orbitofrontal cortex (OFC) 
which is highly significant in the formation of olfactory 
precepts (Seubert et al. 2013). Using regression models, 
the authors concluded that gray matter differences in OFC 
were responsible for variances in odor discrimination but 

little variances in threshold scores. In CA an increase in 
gray matter thickness was found to be present bilaterally in 
OFC and the authors concluded that it may be due to lack 
of synaptic pruning due to absence of peripheral sensory 
input (Frasnelli et al. 2013). A recent review related to brain 
structural changes in congenital or acquired anosmia also 
indicated an increased gray matter thickness within the OFC 
in CA while it was reduced in acquired anosmia (Manan 
et al. 2022). As indicate above, this increase of the gray mat-
ter in CA may be explained by the lack of input to OFC from 
primary olfactory areas in CA, changing the input-dependent 
development of the brain architecture.

To date, no study has focused on individuals with CA in 
terms of diffusion tensor imaging (DTI). DTI is a robust tool 
to investigate structural integrity where one of the measures 
is fractional anisotropy (FA). Higher FA values indicate 
more axon myelination (Osuka et al. 2012). FA has been 
found to be a marker of improved function in various neu-
rodegenerative diseases and recovery from traumatic brain 
injury (Alba-Ferrara and de Erausquin 2013; Wallace et al. 
2018). Increased cerebral myelination has been associated 
with increased gray matter thickness and FA, both sharing 
a linear correlation (Kochunov et al. 2011). However, the 
effect has yet not been clearly understood. The main purpose 
of the study was to investigate whether FA can explain the 
differences noted previously in OFC in CA and compare 
them with healthy controls.

Handling Editor: Micah M. Murray.

 * Divesh Thaploo 
 taploodivesh4@gmail.com

1 Smell & Taste Clinic, Department of Otorhinolaryngology, 
TU Dresden, Haus 5, Fetscherstraße 74, 01307 Dresden, 
Germany

2 Department of Radiology in Linköping, and Department 
of Health, Medicine and Caring Sciences, Linköping 
University, Linköping, Sweden

http://orcid.org/0000-0001-6434-3342
http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-022-00895-z&domain=pdf


338 Brain Topography (2022) 35:337–340

1 3

Methods

We present an investigation in 13 CA participants and 15 
healthy controls using a ROI-based approach. Diffusion 
tensor imaging was performed using 3 T MRI scanner 
(Verio; Siemens Healthineers, Erlangen, Germany). An 
eight-channel receiver head coil was used for image data 
acquisition. DTI was acquired as 2D fast spin echo pla-
nar imaging with following specifications; TR = 71 ms, 
TE = 6  ms, Slice thickness = 2  mm, FoV = 110 × 110, 
repetitions = 1, flip angle = 180°. Diffusion scans were 
acquired at b = 0 and b = 800 with number of diffusion 
directions = 20. Following written informed consent, 
participants underwent olfactory testing with the Sniffin’ 
Sticks battery (odor threshold, discrimination, and iden-
tification: TDI score) (Oleszkiewicz et al. 2019). Masks 
for piriform cortex and orbitofrontal cortex (OFC) were 
adapted and thresholded from two published studies 
(Fjaeldstad et al. 2017; Seubert et al. 2013) using FSL edit 
mode (FMRIB software library v6.0.2) (Jenkinson et al. 
2012) to include white matter areas and manual removal 
of any underline gray matter, if required. These ROIs were 
visually inspected by expert neuroradiologists, who also 
helped in normalisation and outline of the ROIs. We also 
analysed the FA values in piriform cortex (PFC) using 
the same approach. Voxelwise statistical analysis of the 
FA data was carried out using TBSS (Tract-Based Spatial 
Statistics (Smith et al. 2006)), part of FSL. TBSS pro-
jects all subjects' FA data onto a mean FA tract skeleton, 
before applying voxelwise cross-subject statistics. Statisti-
cal analysis was carried out using SPSSv27 (Armonk, NY, 
USA: IBM Corp). We used Mann–Whitney U test, a non-
parametric test given the sample of the study, where r < 0.3 
represents a small effect, r between 0.3 and 0.5 medium 
effect and r > 0.5 a large effect (r = z/√n; z: standardised 
test statistic, n: number of samples).

Results

Thirteen CA subjects (mean age 30.6 ± 12.4 years) and 15 
healthy controls (38.6 ± 11.3 years) were included in the 
study. The distribution of age was similar across the groups 
which was revealed by independent samples Mann–Whit-
ney U test (r = 0.36, p = 0.052). On testing, CA subjects 
had a significantly lower TDI score (r = 0.85, p = 0.001) 
(12.69 ± 2.9) as compared to healthy controls (34.1 ± 3.0). 
Mann–Whitney U test revealed significant changes in FA 
values within the OFC in each hemisphere between the two 
groups. FA values within left and right OFC were higher 
(r = 0.58, p = 0.002 and r = 0.44, p = 0.019, respectively) 

in CA group (FA in left OFC, 0.49 ± 0.02, right OFC, 
0.44 ± 0.01) as compared to healthy controls (FA in left 
OFC, 0.44 ± 0.01, right OFC, 0.39 ± 0.01) A graphical 
representation can be seen in Fig. 1. As pertaining to the 
analysis for PFC, we did not find significant differences 
between the groups (r = 0.20, p = 0.37 for left PFC and 
r = 0.17, p = 0.38 for right PFC).

Discussion

FA values in bilateral OFC were significantly higher in CA 
as compared to healthy controls. The results of the present 
study partly confirms an earlier study, where the authors 
reported higher cortical thickness bilaterally within OFC in 
CA subjects in terms of an increase in gray matter thickness 
(Frasnelli et al. 2013). Higher FA values and the increase 
in cortical thickness within the OFC, which is a secondary 
olfactory area, suggests the plastic nature of the brain (Sakai 
2020). However, the exact implication of FA for gray matter 
thickness is still unknown. Nonetheless, some studies have 
observed that increased grey matter volume and higher FA 
may be related to neuroplasticity (Hsin et al. 2017). How-
ever, when we look into the FA values between groups, 
the differences may be subtle but, nonetheless, they are 
statistically significant. Some studies have shown absence 
of differences between both groups with no morphological 
alterations in primary olfactory cortex (Peter et al. 2020). 
The authors concluded that the lack of lifelong olfactory 
experience had no major effect on the primary olfactory 
cortex. However, there were some changes in OFC which 
may be the result of developmental processes and also due 
to the multimodal nature of the OFC. Also, no gray matter 
alterations in primary olfactory cortex, which includes the 

Fig. 1  The box plots for FA values in LOFC and ROFC. * denotes 
significant difference between two groups (p < 0.05). LOFC left orbit-
ofrontal cortex, ROFC right orbitofrontal cortex, CA congenital anos-
mia subjects. Green and red colour provide the location of left and 
right orbitofrontal cortex, respectively in standard space
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piriform cortex, have been seen in rodents. There, postnatal 
removal of olfactory bulb, severing inputs to primary olfac-
tory cortex, produced little or no alterations in the thickness 
of the piriform cortex (Friedman and Price 1986; Westrum 
and Bakay 1986). A study by (Karstensen et al. 2018) on CA 
patients points to the loss of grey matter volume in medial 
OFC. However, inclusion of hyposmic patients in the CA 
group by the authors, could be responsible for such reduced 
volume in medial OFC as was observed by Yao and col-
leagues, where patients with hyposmia show atrophy in right 
orbitofrontal cortex (Yao et al. 2018). Based on the existing 
literature, and the present findings, we conclude that people 
with CA have higher FA values in OFC pointing towards the 
neuroplastic nature of the brain.

Conclusion

In congenital anosmia the increased FA in OFC and no 
changes in piriform cortex points to the plastic nature of 
the brain.
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