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Abstract: Polymers have interesting physicochemical characteristics such as charge density, func-
tionalities, and molecular weight. Such attributes are of great importance for use in industrial
purposes. Understanding how these characteristics are affected is still complex, but with the help of
molecular dynamics (MD) and quantum calculations (QM), it is possible to understand the behavior
of polymers at the molecular level with great consistency. This study was applied to polymers
derived from polyacrylamide (PAM) due to its great use in various industries. The polymers stud-
ied include hydrolyzed polyacrylamide (HPAM), poly (2-acrylamido-2-methylpropanesulfonate)
(PAMPS), polyacrylic acid (PAA), polyethylene oxide polymer (PEO), and guar gum polysaccharide
(GUAR). Each one has different attributes, which help in understanding the effects on the polymer
and the medium in which it is applied along a broad spectrum. The results include the conformation,
diffusion, ion condensation, the structure of the water around the polymer, and interatomic polymer
interactions. Such characteristics are important to selecting a polymer depending on the environment
in which it is found and its purpose. The effect caused by salinity is particular to each polymer, where
polymers with an explicit charge or polyelectrolytes are more susceptible to changes due to salinity,
increasing their coiling and reducing their mobility in solution. This naturally reduces its ability to
form polymeric bridges due to having a polymer with a smaller gyration radius. In contrast, neutral
polymers are less affected in their structure, making them favorable in media with high ionic charges.

Keywords: soluble polymers; flocculation; salinity; molecular dynamic; ion adsorption

1. Introduction

Soluble polymers can significantly improve solid–liquid separation processes and are
increasingly used in various industries, including mineral recovery, papermaking, wastew-
ater treatment, and dewatering of mining tailings [1–3]. Fundamentally, it is required that
molecules can maintain an adequate extension in the medium to interact with several
suspended particles forming large aggregates, which settle due to gravitational effects.

Of particular interest in this study is analyzing macromolecules that may potentially
improve tailings management practices, where different variables influence this process,
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with the properties of the polymer being probably the most attractive. This is because
the mineralogy and the liquid medium strongly influence the efficiency of the thickening
processes, but the chances to control them are practically nil. Another relevant issue is
technological aspects, but the thickening technologies are established when designing the
plant. It is rare to make significant design changes as this involves high costs; laboratory-
scale tests that can usefully anticipate the impact of design changes are not trivial and
require specialized knowledge. In contrast, handling reagents is a fundamental activity in
operations that offers excellent scope for manipulation since it is simple to switch conditions
such as the type of flocculant, dosages, or injection points.

The wide variety of commercial polymers that are available on the market can al-
ready generate distinct behavior. For example, Grabsch et al. [4] studied the flocculation
kinetics of two commercial polyacrylamide (PAM)-based flocculants, Rheomax® DR 1050
and BASF Magnafloc® 336, when applied to a suspension of fine calcite, confirming very
different responses to variations in the concentration of solids. The conventional Magnafloc
336 acrylamide/acrylate copolymer was superior at lower solid levels. Both products gave
a comparable performance for low dosages at higher solid levels, conditions in which
the effective aggregate volume fraction does not significantly impact the aggregate sizes
achieved. However, Rheomax DR 1050 consistently produced larger aggregate sizes and
better sedimentation rates for higher dosages at solid concentrations of ≥ 80 kg/m3, con-
sistent with a denser aggregate structure. Tanguay et al. [5] subsequently used these kinetic
results to model in 3D the potential consequences on feedwell performance, predicting the
scope for doubling solids throughput under some conditions by merely changing the type
of reagent.

The distinctions in the performance described above originated from the different
physicochemical characteristics of the polymers, such as charge density, branching, chemi-
cal functional group, and molecular weight. Achieving a comprehensive understanding
of the impact of these properties is complex, but the efforts of numerous groups have
provided valuable insights on the interaction of polyacrylamide-based polymers with solid
particles. For example, Costine et al. [6] studied the flocculation performance of kaolin
suspensions, analyzing the influence of mixing intensity, solids concentration, and liquid
conditions (e.g., pH, salinity) on the response of seven anionic PAMs at a fixed anionic
charge but varying molecular weight (MW). Under gentle mixing, lower MWs gave a more
effective dosage response, producing denser aggregates and settling faster than equivalent
sizes produced with higher MWs. In contrast, the larger sizes created by the long chains
gave access to faster sedimentation rates under intense mixing. Yousefi et al. studied the
influence of the type and structure of polyelectrolytes on the rheological [7], electrokinetic,
and dewatering characteristics [8] of industrial sludges from a highly stable membrane
bioreactor (MBR). Several similar studies have analyzed the effect of PAM-based poly-
mer properties on particle flocculation under conditions of relevance to the oil industry,
wastewater treatment, and papermaking [9–14]. Unfortunately, the knowledge achieved to
date is not enough to allow operators to develop flocculant management criteria based on
understanding the reagent’s chemistry.

The industry presents increasing challenges such as the processing of low-grade min-
erals, water scarcity, regulations that require substantial improvements in the extraction of
water from tailings, the presence of complex gangue (e.g., clays), or the use of low-quality
water (e.g., seawater). Unfortunately, the traditional polyacrylamide monomer base does
not always provide the desired outcomes due to functional groups’ varying physicochemi-
cal properties or limitations. For example, PAM is highly hydrophilic and forms loosely
packed aggregates that retain a significant water content, making it challenging to remove
thickened tailings, especially when they are deposited [15]. The standard free-radical
polymerization method is commonly used to produce these reagents, but the properties of
the generic products can display broad distributions, especially in molecular weight [16].
Traditional flocculants limit their extension in saline medium, especially when divalent ions
such as calcium and/or magnesium are present [6,17]. The strong electrostatic compression
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caused by these cations reduces the repulsion between the anionic functional groups, re-
ducing the volume of the polymer in solution, limiting its ability to form polymeric bridges.
In this context, molecular dynamics (MD) studies have made it possible to improve the
understanding of interactions at the molecular scale between polyelectrolytes and minerals’
surfaces. For example, Quezada et al. [18] directly observed how a saline medium altered
the conformation of an hydrolyzed polyacrylamide (HPAM) in solution and its adsorption
on the quartz surface. Even the authors later studied the types of bonds generated by
the interaction of HPAM on quartz, kaolin, and brucite surfaces [19]. The latter is one of
the main seawater precipitates that are generated by bringing the pH to highly alkaline
conditions than impair flocculation. The MD results explained that the adsorption is mainly
carried out by the interaction between the deprotonated oxygen from the acrylic group
of the polymer and the oxygen from the hydroxide of the brucite surface. There is also a
significant contribution of hydrogen bonding between nitrogen from the acrylamide group
and oxygen from the hydroxide.

In general, traditional anionic polyacrylamides reduce their efficiency in highly saline
environments. Therefore, it is attractive to look for new soluble polymers that preserve
their extension in solution, even in low-quality water, which could have significant ben-
efits on mineral flocculation, such as quartz and clays. In this context, PAM derivatives
such as poly (2-acrylamido-2-methylpropanesulfonate) polyelectrolyte (PAMPS), have
been used in extreme saline brines as a stabilizer in silica nanoparticle coating due to the
synergistic action between strong sulfonate groups and hydrophilic amide groups [20,21]
and anticoagulant applications [22].

Polyacrylic acid (PAA) can adsorb large amounts of liquid, which is why it is used as
an adsorbent compound [23] and as a nanocomposite [24]. Studies about the conformation
of PAA show that the presence of saline electrolytes tightly coils the polymer [25,26],
but the critical concentration at which coiling begins is unknown. Recently developed
studies showed a good ability to adhere to clay surfaces, even in saline media such as
seawater [27]. Quezada et al. [28] identified that the main interaction by which the polymer
is adsorbed is through the hydroxyl of the mineral surface and the COO−Na+ complexes.
Mpofu et al. [29] analyzed the effect of the polymer structure on the flocculation of kaolinite
suspensions. Nonionic polyethylene oxide (PEO) had a higher affinity to the surface when
compared with anionic polyacrylamide. Its neutral behavior and its oxygen backbone can
have an interesting behavior in the presence of saline ions, and in addition, its adopted
conformation is mostly extended, as was later stated by McFarlane et al. [30].

Another interesting polymer is the guar gum (GUAR), which has a wide range of
applications from the textile to the food industries [31]. Some researchers have explored
its potential use in the mining industry. For example, Castellón et al. [32] showed that
this polysaccharide could function as a pyrite depressant in seawater, or research has
even been carried out to analyze its adsorption on quartz surfaces in highly saline media.
Ma and Pawlik [33] studied the effect of different monovalent cations, proposing that this
polymer competes with water to access the silanol sites on the quartz surface.

This represents a new research opportunity, which is addressed in the present research,
aiming to improve the understanding of conformation, counterion condensation, and water
structure of polymers in saline solutions. In this work, computational simulation is used to
study the effect of aqueous solutions of NaCl dissolved with six different polymers: HPAM,
PAA, PAM, PAMPS, PEO, and GUAR. The study focuses on measuring the interaction of
the polymer with salt ions, the conformation of polymers, and the affinity of water. The
objective is to characterize polymers and to show their potential use in highly saline systems
based on the principles of MD and QM that allow the polymers to be rigorously modeled.
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2. Methodology
2.1. Polymers

The structures of these polymers are outlined in Figure 1. The first base polymer is
neutral polyacrylamide (PAM); if a hydroxide replaces the amine group, it is possible to
obtain polyacrylic acid (PAA), which at pH over 4.5 is found mostly dissociated. Likewise, it
is possible to obtain copolymers of PAM together with PAA, which is known as hydrolyzed
polyacrylamide (HPAM). The most used has 30% of its monomers as the PAA-type; it was
set at 25% for simplicity in this work. It is also possible to generate a PAA copolymer with
a 2-acrylamide-2-methyl-1-propane sulfonic acid (AMPS) monomer. In this case, it was
also set at a percentage of 25% for comparison with HPAM. At pH conditions above 7,
the sulfonate group is also dissociated. Then, two polymers that are not derived from
PAM were studied, polyethylene oxide (PEO), a linear chain without hanging groups,
and guar gum polysaccharide (GUAR), which consists of a β-D-mannopyranose and an
α-D-galactopyranose attached to a manopyranose. Hydrogen was chosen as the end group
for the polymers derived from PAM. In the case of PEO and GUAR polymers, the H or OH
groups were used to terminate the polymers. The chosen configuration of the monomers
in this work was syndiotactic because it is a homogeneous structure.
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Figure 1. Monomer structure of the molecules studied in this work.

2.2. Forcefield

In this work, we chose to use the Generalized Amber Force Field (GAFF) because
it successfully simulates polymers in solution [28,34,35]. To do this, the Antechamber
program [36,37] was used first to generate the topology of the polymers to be studied; this
includes the van der Waals potentials, bonding, angles, and dihedrals. The polymers were
constructed with at least three repeating monomers to consider all of the interactions in
both the terminal and central monomers. Then, we proceeded to determine the partial
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charges of the polymers using the methodology of the restricted electrostatic potential
(RESP) [38]. This calculation was made using the R.E.D. III.52 [39] in conjunction with the
Gaussian program [40]. The PAM, PEO, and GUAR polymers are neutral at pH 7, while
the HPAM, PAA, and PAMPS polymers have a negative charge depending on the number
of monomers. To parameterize the polymers, the sizes of 12 monomers were used and their
charges were adjusted with the equation:

qi = qi0 −
∑ qi0 − Qtg

N
(1)

where qi0 is the charge obtained by the RESP methodology, Qtg is the target charge of the
monomer, and N is the number of atoms of the monomer. For the PAM, PEO, and GUAR
polymers, Qtg was set equal to zero. In HPM, PAMPS, and PAA polymers, the value of Qtg
was equal to −1 for charged monomers and 0 for neutral monomers. All partial charges
and forcefield parameters for the polymers are provided in the Supplementary Materials.
In the case of the dissolved Na+ and Cl− ions, the non-bonding parameters used were
correctly adjusted for the ion-oxygen distance from the work of Li et al. [41] for monovalent
ions. For water, the SPC/E water model [42] was used in conjunction with the SETTLE
constraints for the molecule’s geometry [43].

2.3. Initial Configuration

An original code generated the initial configuration. First, the polymer of the desired
size is generated; in HPAM, PAM, PAMPS, and PAA, 48 monomers were used, 32 were used
for PEO, and 12 were used for GUAR. The configuration was carried out syndiotactically
between the pendant monomers. The number of monomers chosen was related to the
length of the main chain, which was similar for each polymer; for polymers derived from
PAM, its initial length was 11.8 nm; for PEO, it was 11.5 nm; and for GUAR was 12.5 nm.
The HPAM and PAMPS copolymers with 25% substitutions have 36 AM monomers and
12 AA or AMPS charged groups. A 25% substitution in copolymers means that one of the
AAs or AMPSs is replaced for every three acrylamide monomers. These polymers (except
for GUAR) are added to a cubic box of an initial size of 10 nm with periodic edges in all
three dimensions. This size is sufficient to avoid interaction with the periodic image of the
polymer [34]. From inspection, in the case of GUAR, it was preferred to increase the initial
size to 12 nm to avoid contact with its periodic image because it is a more voluminous
polymer. Then, the dissolved ions were added: first, the counter ions of the polymer (in this
case Na+) to neutralize its net charge, followed by dissolved salt such as NaCl, which is
the most abundant in saline waters. The ions were added with the restriction of being
separated from the 0.8 nm polymer. The concentrations studied were 0.006, 0.06, and 0.6 M.
Then, pre-balanced water at 300 K was inserted into the box with the ions and the polymer.
The water molecules were eliminated when they overlapped with the ions and the polymer.
For this, a distance between atoms less than 0.2 nm was defined. The conditions of the
systems studied have been summarized in Table 1.

2.4. Molecular Simulation

The behavior of a single polymer molecule under saline conditions was studied
through molecular dynamics using the Gromacs simulation package version 2020.5 [44]. To
use the force field derived through the antechamber, the ACPYPE program [45] transforms
the obtained topology into the language of the Gromacs simulation program. The initial
setup was relaxed in a force minimization step to decrease the probability of simulation
crash. Then, the system was simulated in an NVT simulation for 0.1 ns at a temperature of
300 K, keeping the polymer and the fixed ions to form the hydration layers around them.
Then, it was simulated in a collective NPT for 2 ns at a temperature of 300 K and a pressure
of 1 bar for reference to relax the simulation box. Then, in an annealing NVT simulation
for 10 ns where the temperature was raised from 300 to 450 K for 0.001 ns and kept at
450 K until 5 ns, it was slowly decreased from 450 to 300 for 5 ns. This simulation was
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performed to relax the polymer from unfavorable or metaestable configurations. Finally, a
simulation is run for the production of data of 400 ns in the NVT collective at 300 K. We
performed three simulations for each case to eliminate bias in the results. The integration
step was 2 × 10−6 ns, which, together with the restrictions of the hydrogen bonds using
LINCS [46], is suitable so that the simulation does not present artifacts or energy losses.
Temperature and pressure controls were carried out by the Nose–Hoover thermostat [47,48]
with a relaxation time of 0.0025 ns and by the isotropic Parrinello–Rahman barostat [49]
with a relaxation time of 0.001 ns. The cutoff radii for the van der Waals and coulombic
energies were equal to 1.2 nm. Long-range corrections were used by the Ewald particle
mesh method [50]. The cross interactions in the LJ energy were defined with the Lorentz–
Berthelot mixing rules.

Table 1. Summary of the systems studied.

Polymer Molecular Weight Polymer Lenght NaCl Na+

Counterion
Na+

Salt Cation
Cl−

Salt Anion
Water

Molecules

[g/mol] [nm] [mol/L]

PAM 3413.81 11.8
0.006 0 4 4 32,408
0.06 0 36 36 32,326
0.6 0 361 361 31,618

HPAM 3413.53 11.8
0.006 12 4 4 32,401
0.06 12 36 36 32,316
0.6 12 361 361 31,619

PAMPS 5035.69 11.8
0.006 12 4 4 32,339
0.06 12 36 36 32,248
0.6 12 361 361 31,550

PAA 3412.69 11.8
0.006 48 4 4 32,373
0.06 48 36 36 32,319
0.6 48 361 361 31,608

PEO 1427.72 11.5
0.006 0 4 4 32,499
0.06 0 36 36 32,410
0.6 0 361 361 31,715

GUAR 5855.16 12.5
0.006 0 4 4 32,314
0.06 0 36 36 32,228
0.6 0 361 361 31,483

PAM—polyacryl amide; HPAM—hydrolized polyacryl amide; PAMPS—poly(2-acrylamido-2-methyl-1-propanesulfonic acid); PAA—polyacrylic
acid; PEO—polyethylene oxide; GUAR—guar gum polysaccharide.

3. Results
3.1. Radius of Gyration

The radius of gyration (Rg) directly indicates the degree of coiling that a molecule has
by measuring the distance that the atoms of the molecule have with respect to its center of
mass. This calculation was carried out only with the carbon atoms of the main chain, and
the results are plotted in Figure 2.

Among the polymers derived from PAM, it is observed that this same polymer has
a more coiled structure than the rest. When the concentration of salt increases, a slight
increase in Rg is observed, but even so, it stays within a value of the radius of gyration of
1.1 nm. The PAM, being neutral, shows only attraction with itself mainly and therefore
generates this behavior. In HPAM, it is observed that the radius of gyration increases to
2.5 nm. This shows that the charged acrylate groups (COO) greatly influence the stretch of
the polymer; however, that also implies that it is more susceptible to the presence of salts.
The results show that the radius of gyration decreases to a value of 1.5 nm when the salt
concentration is 0.6 M. Such results are comparable with those shown by Chen et al. [51]
for both PAM and HPAM.
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Figure 2. Radius of gyration of the polymers studied at different concentrations of NaCl.

The PAMPS polymer exhibits a slightly smaller radius of gyration than HPAM. The
increase in salinity did not significantly affect their coiling; therefore, it is inferred that the
PAMPS charged groups are less strong than the COO, considering that the HPAM coiling
was more intense. For PAA, it is possible to observe that it has a behavior similar to that of
HPAM; evidently, the greater quantity of charged groups increased the radius to a value of
2.8 nm since the repulsion between charged groups increases. Likewise, the presence of
salt generated a decrease in the radius of gyration to a value of 2.0 nm because the ions
are adsorbed on stronger charged groups. The ion adsorption analysis is discussed in
Section 3.2. For PEO and GUAR polymers, a behavior similar to that of PAM is observed
because they are neutral polymers and the effects of salinity are less intense. GUAR shows
the largest of the radii of gyrations because it is a large polymer in terms that it is thicker
due to the cyclic groups of the saccharides. In the case of PEO, it shows a lower value than
PAM because it is a linear polymer.

To better understand the radii of gyration, the equilibrated configurations of the
polymers studied have been obtained. In Figure 3, the configurations that are generated in
the simulations for the cases of salt concentration 0.06 and 0.6 M have been placed. The
conformation of the polymers can be observed directly from these images.
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In the case of PAM, a highly coiled structure is observed in both salt concentrations, in
accordance with the low radii of gyration regardless of the salt concentration. The HPAM
shows that the presence of acrylate groups generates a stiffness in the chain but that, at
high concentrations of salt, the chain manages to twist for the formation of internal bridges,
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and the latter is validated considering the decrease in 40% compared with the radius of
gyration to 0.06 M NaCl. The PAMPS polymer shows similar behavior to HPAM, where at
high concentration, part of the chain also twists to form bonds, but due to the larger size of
the pendant group, it decreases less.

In the case of PAA, the degree of stretching is maximum (in accordance with the
greater radii of gyration obtained among the studied polymers) due to the high repulsion
of its charged groups, only at high concentrations, and the formation of cationic bridges
allowing bending of the chain-forming cationic bridges. Since the PEO polymer has a low
charge density, it coils with very low interaction with the medium, which is reflected in
the small radii of gyration of the order of 1 nm and practically independent of the salt
concentration. Finally, the GUAR presents the highest stretch of all its hanging groups and
rings, allowing for a low rearrangement of the chain so that, even at high salt concentration,
there are no appreciable changes in the structure. The latter also follows the high radii of
gyration and is independent of the salt concentration.

3.2. Counterion Condensation

To understand the results of the radius of gyration, it is necessary to know the linear
adsorption of ions on polymers, known as ion condensation [52]. This was found by
calculating the number of ions within a cutoff radius of less than 0.3 nm between the
polymer atoms and the Na+ cations. The results presented in Figure 4 show that the
adsorption of the ion increases with the salt concentration for all of the cases studied. This
implies that, the higher the quantity of ions present, the higher the probability that these
enter within the radius necessary to be adsorbed on the polymer.
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Figure 4. Na+ ion adsorption per unit length of the studied polymer. Error bars for adsorptions less than 10−2 were omitted.

In polymers derived from PAM, it is observed that ion adsorption follows the sequence
PAA > HPAM > PAMPS > PAM. Clearly, the greater amount of PAA charged sites translates
into greater Na+ adsorption with a value above 2 nm−1. In these cases, the oxygens of
the COO groups have a value of −0.80e. Next in the sequence is HPAM, which shows
adsorption between 0.1 to 1 nm−1. There are only 25% of acrylate monomers; therefore,
in theory, it should decrease to 25% of PAA results. Figure 4 shows that, for 0.6 M, the
adsorption for PAA is 52 nm−1, and 25% corresponds to 13 nm−1, but the adsorption for
HPAM at 0.6 M is 8.7 nm−1. This shows a greater decrease than expected, indicating a
group effect that depends on the adsorption of ions. For PAMPS, there is lower adsorption
compared with HPAM, suggesting that the SO3 groups of PAMPS have a lower capacity to
adsorb ions than the COO of the HPAM molecule. This is expected since the partial charge
for SO3 oxygens equals −0.61e, and for COO, it is around −0.74e. The PAM polymer has
the lowest adsorption because it is a neutral polymer that has the lowest affinity for the
cations present. Even so, there is appreciable adsorption at concentrations of 0.6 M, similar
to those of HPAM at the concentration of 0.06 M. This shows that carbonyl oxygens have
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an affinity with cations, where their partial charge is around −0.52e. In the case of PEO, we
see the least adsorption: its neutrality and high coiling mean that a cation is less likely to be
adsorbed on the main chain oxygens. Finally, the GUAR presents adsorption comparable
with the PAM polymer, indicating that the hydroxide groups allow for the adsorption
of cations.

It is important to mention that, under Manning’s criterion, only PAA should exhibit
the ion condensation (Γ > 1). Still, as we can see in the simulation, all of the polymers
studied have a degree of adsorption. Therefore, the Manning criterion helps to define if the
polymer adsorbs appreciable amounts of ions.

3.3. Water Orientation

The polymers studied have different structures and electrical charges, so it is necessary
to quantify the interaction with the aqueous medium. Depending on the interaction of
the polymer with water, it is possible to describe the behaviors about the mobility of the
molecule or the affinity of interacting with another molecule or mineral surface. This
can be determined through the orientation of the water molecules on the polymers. The
orientation of the water layers is determined as a frequency distribution of the angles that
the water molecules adopt on average around all of the atoms of the polymers. In this
case, it is carried out over a cut-off radius of 0.5 nm to include approximately the first layer
and half of the second layer. These results were plotted in Figure 5 for all of the polymers
studied. Negative cos (φ) values represent when the hydrogens are oriented towards
the polymer atoms, while positive values are when the oxygens are oriented towards the
polymer atoms.

The PAM polymer shows a homogeneous distribution where the highest frequency
occurs around a value of +0.25, which means that a single hydrogen in the water molecule
is slightly oriented towards the polymer. For the HPAM and PAMPS molecules, there is an
increase in the frequency values of −0.6 and −1.0. This indicates that the orientation of
the hydrogens is stronger because, at cos(φ) equal to −0.6, the hydrogen atom is in direct
line with polymer atoms [53] while, at −1.0, both hydrogens are oriented to the atoms of
the polymer. The ability to orient the water molecules of HPAM is greater than PAMPS
because the SO3 groups are weaker than the COO. In the case of PAA, it clearly shows that
it is a polymer with an electrically strong character and generates a high capacity to orient
the water molecules in the peaks at −0.6 and −1.0. Due to this strong character, it is also
susceptible to excess ions, decreasing the orientation of the water when salt concentrations
are high.

Finally, the PEO and GUAR polymers show behaviors similar to that observed in
PAM, which is also neutral. That is, they show a peak in distribution at a value of +0.25.
Interestingly, there is also a slight peak at −1 in the three polymers of PAM, PEO, and
GUAR, indicating that water molecules interact with their two hydrogens towards the
surface of the polymers. This may be due to the interaction of water with two oxygen
groups; in the case of PAM, at two carbonyls of acrylamide; while for PEO and GUAR,
with two ethers of the main chain [54].

In general, the effects of salinity are only present in PAA. This is directly related to the
adsorption of ions and the tortuous chain that modify the interaction of the polymers with
the water around them.

3.4. Diffusion Coefficient

The diffusion coefficient allows for estimating the mobility and viscosity of polymers
in water and for seeing the effects of salt. For this, the mean square displacements (msd)
were determined, where 20,000 restarts were made, and the adjustment was carried out
mainly in the interval from 1 ps to 10,000 ps, where the curves present their greatest
linearity. This interval is above the ballistic regime of the molecule. The results are shown
in Figure 6 for the systems studied.
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Figure 5. Orientation of water molecules around the polymers at different NaCl concentrations.
(a) poly-acrylamide, (b) hydrolyzed polyacrylamide, (c) 2-acrylamido-2-methyl-1-propanesulfonic
acid, (d) polyacrylic acid, (e) guar gum, (f) polyethylene oxide.
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It is observed that the diffusion coefficients for polymers derived from PAM present
values lower than 0.2 × 10−5 cm2/s, which is ten times less than the diffusion coefficient
of water [55]. The following sequence is generally observed in the diffusion coefficients
PAM > HPAM > PAMPS > PAA. This scales directly with the electrical nature of the poly-
mer. The PAM is neutral, so it does not have counter ions, and there is also no strong
interaction with the environment, according to the results of Figure 5. Therefore, it presents
less impediment in diffusion. In HPAM, the charged groups attract the counter ions and
the water layers neighboring the molecule; this hinders its free movement in the medium.
The PAMPS has the same charge density as the HPAM but a larger dangling group, which
hinders its movement. PAA has a high linear charge, so a lower diffusion coefficient than
the rest since is expected its hydration layer and ion adsorption hinder its mobility. PEO
polymer has the highest diffusion coefficient. This effect is produced by the low adsorption
of ions and low affinity with the medium, allowing for the highest diffusion. On the other
hand, GUAR has the lowest diffusion coefficient because it is one of the polymers with
the highest molecular weight and with low interaction with the medium. Interestingly,
the effects of salt concentration affect each polymer differently. In the PAM, it is observed
that, when the salinity increases, greater mobility of the polymer is generated; This may be
because the interaction of PAM with the environment decreases with the presence of salt
and allows for its free mobility. For HPAM, the effect of salt is minimal. PAMPS presents
appreciable effects, and as salinity increases, the diffusion coefficient of the polymer de-
creases. This shows that dangling groups are more susceptible to the presence of salts. For
PAA, the excess salt also causes a decrease in the diffusion coefficient, caused by the greater
adsorption of ions. Similar to PAM, GUAR presents an increase in the diffusion coefficient
due to the lower interaction with the medium. Finally, the PEO presents the highest values
in the diffusion coefficient. A maximum value is observed at 0.06 M, and such a behavior
may be because, at high concentrations, there is adsorption of ions (Figure 4), which could
influence the mobility of the polymer.

3.5. Polymer Self-Interactions

To understand the results presented above, this section on polymer interactions has
been included. Such interactions refer to hydrogen bonds and cationic bridges commonly
found in polymers [19,28]. The cationic bridges are the product of the union between
the cations with the negative atoms of the polymers; in this work, the following are
considered: the oxygen of the carbonyl group in the acrylamide monomers (R-CONH2),
the charged oxygen of the monomers of acrylate (R-CO2

−), oxygen in the charged groups
of the sulfonate group (R-SO3

−), and ether oxygen (ROR) and the hydroxyl oxygen (R-OH)
of the PEO and GUAR polymers.

The formation of cationic bridges occurs when the sodium cation binds simultaneously
with two of the negative atoms mentioned above. This is true when the distance is less
than 0.3 nm between a cation and oxygen [28]. On the other hand, hydrogen bonds are
also determined between electronegative groups but linked by a hydrogen atom that is
covalently linked to one of the electronegative groups. Electronegative atoms include those
already mentioned above, and amino groups are also included in acrylamide. The criterion,
in this case, is a distance less than 0.30 nm between electronegative atoms [28].

The results of this analysis are presented in Figure 7, where they were divided by the
total length of the polymer, giving a linear density.
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Figure 7. Polymer self-cation bridge and hydrogen bond interactions for all systems studies.

First, the effect of salt is only observable for cationic bridges clearly because its
presence is necessary for them to occur. The density of hydrogen bonds is practically not
influenced by the concentrations of salts. We observe that the PAA polymer exhibits the
highest cationic bridge formation. The conformation of PAA is only a function of cationic
bridges since hydrogen bonds do not exist. Therefore, the HPAM polymer has fewer
cationic bridges than PAA due to its fewer number of acrylate monomers. The hydrogen
bond is greater than the cationic bridges, but the cationic bridges give the effects on the
conformation of the polymer, which means they are stronger interactions.

Similar results to those of HPAM are found for the PAMPS polymer, in which the
number of cationic bridges is similar even when the functional group is different. A
remarkable fact about the hydrogen bonding behaviors between PAM, HPAM, and PAMPS
is that HPAM has the least amount of hydrogen bonds. This is because HPAM has fewer
sites to form hydrogen bonds than PAM and PAMPS, mainly due to the presence of amines
(Figure 1). The PAM polymer has the fewest cationic bridges due to less sodium adsorption,
and the amount of hydrogen bonds is similar to that of the PAMPS molecule because both
have a similar number of groups capable of forming hydrogen bonds.

The PEO polymer has a similar tendency toward PAM except at high salt concentra-
tions, where there are more cationic bridges with PEO. In the case of hydrogen bonds, they
are low because few hydroxyl groups allow this bond. Finally, the GUAR polymer has a
similar number of cationic bridges to PEO and PAM, and therefore, this type of interaction
is rare. This polymer has many hydroxyl groups that can form hydrogen bonds; however,
the amount obtained is similar to that of the PAM or PAMPS polymers, so the structure of
GUAR does not allow for a high number of hydrogen bonds.
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4. Conclusions

A molecular dynamics study was carried out to understand the interactions between
various polymers and their aqueous environment, particularly analyzing the effect of
salinity. These polymers, including PAM, HPAM, PAA, PAMPS, PEO, and GUAR, could
have potential use in industrial processes when the process water has a high salt content.
The results in the family of polymers derived from PAM show that adding charged groups
substantially modifies the structure and mobility of the molecules. A considerable increase
in the stretching of polymers is observed due to the repulsion between their charges,
which favors their ability to form hydrogen bonds with solid particles suspended in the
medium. This also alters the hydration layer of the polymer and its diffusion in the medium.
In polymers of a different nature, such as PEO, the behavior is similar to PAM, with coiled
conformation and greater mobility. In the case of GUAR, its monomers are larger, which
inherently generates a more stretched polymer with a slower diffusion. However, the
effect caused by salinity is particular to each polymer, observing that polymers with
an explicit charge or polyelectrolytes are more susceptible to changes due to salinity,
increasing their coiling and reducing their mobility in solution. This naturally reduces its
ability to form polymeric bridges due to having a polymer with a smaller gyration radius.
In contrast, neutral polymers are less affected in their structure, favorable in media with
high ionic charges. This work has demonstrated the utility of MD and QM techniques
in characterizing polymers of different nature and structures and obtaining valuable and
consistent results.
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