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Abstract

Background: MicroRNAs are known to be generated from primary transcripts mainly through the sequential cleavages by
two enzymes, Drosha and Dicer. The sequence of a mature microRNA, especially the ‘seeding sequence’, largely determines
its binding ability and specificity to target mRNAs. Therefore, methods that predict mature microRNA sequences with high
accuracy will benefit the identification and characterization of novel microRNAs and their targets, and contribute to inferring
the post-transcriptional regulation network at a genome scale.

Methodology/Principal Findings: We have developed a method, MiRmat, to predict the mature microRNA sequence.
MiRmat is essentially composed of two parts: the prediction of Drosha processing site and the identification of Dicer
processing site. Based on the analysis of microRNAs from 12 species, we found that the patterns of free energy profiles are
conserved among vertebrate microRNA hairpins. Therefore, we introduced in our method the free energy distribution
pattern of the downstream part of pri-microRNA secondary structure and Random Forest algorithm to predict the mature
microRNA sequence. Based on the evaluation on an independent test dataset from 10 vertebrates, MiRmat was shown to
identify 77.8% of the Drosha processing sites and 92.8% of the Dicer sites within a deviation of 2 nt. In a more stringent
evaluation by excluding the microRNAs sharing the same family between the training set and test set, MiRmat kept a rather
well performance of 71.9% and 87.2% of the identification rate on the Drosha and Dicer site respectively, which represents
the ability to deal with the novel microRNA family. MiRmat outperforms other state-of-the-art methods and has a high
degree of efficacy for the prediction of mature microRNA sequences of vertebrates.

Conclusion: MiRmat was developed for identifying microRNA mature sequence(s) by introducing the free energy
distribution of RNA stem-loop structure and the Random Forest algorithm. We prove that MiRmat has better performance
than the existing tools and is applicable among vertebrates. MiRmat is freely available at http://mcube.nju.edu.cn/jwang/
lab/soft/MiRmat/.
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Introduction

MicroRNA (miRNA) is a class of small, non-coding RNAs that

are crucial for the development of many species and are frequently

involved in a variety of genetic diseases, including cancer [1,2,3,4].

Generally, microRNAs function through the down-regulation of

gene expression via a targeting mechanism on mRNA [5].

Mammals are believed to share a common mechanism of

microRNA biogenesis [6]. First, the primary microRNAs (named

pri-microRNAs) are transcribed from genome and processed into

precursor microRNAs (pre-microRNAs) in the nucleus by

a Microprocessor complex which is composed of Drosha (an

RNase III enzyme) [7] and its cofactor DGCR8 (also known as

Pasha) [8]. Pre-microRNAs have a typical hairpin structure of

,60–70 nt, which is characterized by an overhang of ,2 nt at the

39 end [9]. The pre-microRNA is then transported to the

cytoplasm by a pre-microRNA-specific export carrier, Exportin

5, which is accompanied by a Ran-GTP cofactor [10,11,12]. The

pre-microRNA is subsequently cleaved by Dicer (another RNase

III enzyme) to yield a microRNA duplex with 39-overhang of

,2 nt [13,14,15]. Usually, one strand of the duplex remains as the

mature microRNA and is incorporated into a RNA-induced

silencing complex (RISC). The RISC will then target mRNAs

based on partial sequence complementarity [16]. Obviously, the

sequence of mature microRNA plays the key role in the

recognition of targets [17,18,19]. The processing steps mentioned

above are taken by most microRNAs, although some studies

showed that a small subgroup of microRNAs that are located in

short introns can bypass the Drosha step via another pathway

named miRtron [20].

Experimental approaches such as sequencing and cloning are

widely used for identifying numerous microRNAs in their mature
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state [21,22,23]. However, these types of methods are inevitably

biased towards those microRNAs that are abundantly expressed.

The recent deep sequencing technique has been proven to be

efficient in discovering novel microRNAs, yet, to find out the real

microRNAs from the huge number of ‘reads’ that are produced

from Solexa or other deep sequencing machines becomes another

challenge [24,25].

Most of the computational methods developed so far aim to

identify potential microRNA genes from the genomes of different

species [9,26,27,28,29] by identifying the stem-loop structures that

contain pre-microRNAs, instead of predicting the precise mature

sequence of microRNAs, although some of them do include the

study of mature sequence as an inline procedure [9,26,30]. For

example, sequence alignments were involved in miRseeker [26] to

determine the regions that encompass the mature microRNA. In

proMIR [9], a hidden Markov model (HMM) was introduced to

find mature microRNA region. Then, Microprocessor SVM was

carefully designed to predict the Drosha processing site that

determines one end of the mature microRNA in human genome

by using over 600 features for the SVM classifier [13]. Recently,

MatureBayes was reported which specifically identifies the mature

microRNA [31]. This tool uses a Naı̈ve Bayes Classifier to predict

the start position of mature microRNA on the precursor and then

determines the mature sequence according to the length of 22 nt.

Here, we present a new tool, MiRmat, for identifying the

sequence of mature microRNA from the stem-loop structure that

exists in the pri-microRNA. The method is based on the principle

of free energy in molecule interaction and the process of mature

microRNA biogenesis. Firstly, the free energy distribution pattern

of the stem-loop structure derived from the pri-microRNA is

introduced for the prediction of Drosha processing sites, i.e., the

prediction of precise pre-microRNA. Then, the structural features

of pre-microRNA are applied for the prediction of Dicer

processing site, so that the mature microRNA sequence is

produced.

A pri-microRNA may fold to the secondary structure that

contains one stem-loop (or more stem-loops) which is typically

a stem of ,33 bp with a loop at one end and flanking single

strands at the other end. Normally, it is hard to know the precise

length of a pri-microRNA [32,33,34]. For convenience, such kind

of stem-loop structures that contains the corresponding pre-

microRNA is commonly called the microRNA hairpin or

microRNA stem-loop. In this paper, we regard the side with the

terminal loop as upstream while the opposite direction is termed as

downstream. According to the previous studies, Drosha binds to

pri-microRNAs through dsRBD (Double-stranded RNA-binding

domain) accompanied by a partner molecule DGCR8, which

helps to anchor the Drosha Microprocessor complex to the correct

position on the pri-microRNA structure [35]. Han, J. et al. (2006)

calculated the thermodynamic stability profiles of pri-microRNA

secondary structures and suggested that a distance of about 11 bp

downstream from the stem-ssRNA junction is likely to be Drosha

processing site, while the upstream region of the structure near the

loop is of little significance [36]. Obviously, a precise determina-

tion of Drosha processing sites could not simply rely on this value,

as the actual profiles calculated from the sequences and structures

vary significantly among microRNA hairpins. In MiRmat, we

build a new model to analyze the patterns of free energy profile of

microRNA hairpins and apply the Random Forest (RF) algorithm

to identify the Drosha processing site. Based on an analysis on

microRNAs of 12 species we found that the free energy pattern

derived from our model may be conserved among vertebrates.

While the Drosha processing site determines one end of the

mature microRNA sequence, the other end of the mature

microRNA sequence is determined by the Dicer processing site.

Dicer is an enzyme of multiple domains including an N-terminal

DexH-box RNA helicase-like domain, a PAZ domain, two RNase

III domains (RNase IIIa and RNase IIIb), a dsRBD and a domain

of unknown function (DUF283) [37]. According to a previous

model, Dicer serves as a molecular ruler that measures and cleaves

several nucleotides from the end of a dsRNA [38]. The length of

the products is determined by the distance between the RNase III

domains and the PAZ domain, which is about 65 Å in Giardia

intestinalis and matches the length spanned by 25 bp of RNA [38].

Yet, this length is easily influenced as the enzyme frequently

induces a conformational change of the double-stranded RNA for

an efficient and precise cleavage. Through the statistics pertaining

to pre-microRNA secondary structure and the length of mature

microRNA sequence, we found the possible relations between the

two parameters. Therefore, a set of structural features were

selected for applying Random Forest to identify the Dicer

processing sites on pre-microRNAs.

By sequentially applying the free energy distribution patterns of

the secondary structures of microRNA hairpins and the structural

features representing the length of mature microRNA sequence,

MiRmat has been able to identify 31.9% of the Drosha sites for

vertebrate microRNAs at exactly the annotated positions provided

by miRBase and the Dicer processing site with a rate of 45%. If

a deviation of 2 nt from the true site is allowed, the rate of

identified sites for Drosha approaches 80% while the prediction

rate for Dicer site exceeds 90%. Based on the tests of the same

datasets, MiRmat shows better performance than the other

existing methods.

Results

We proposed a new method for microRNA mature sequence

prediction and developed the new tool, MiRmat. Generally,

MiRmat is combined by two sequential steps. The first is for

Drosha processing site prediction, which uses the energy

distribution pattern as the feature and Random Forest (RF)

algorithm as classifier. The feature of energy distribution pattern

was derived from the conservation analysis of the free energy

distribution along the stem-loop structure of pri-microRNAs. The

second step is for Dicer processing site prediction, which uses RF

algorithm to recognize the structural features. By predicting

Drosha and Dicer processing sites, MiRmat can finally obtain the

microRNA mature sequences. The details in the two steps are

described in the section ‘Materials and Methods’.

The Energy Distribution Pattern of microRNA Hairpins
Fig. 1 plots the free energy distributions along the stem of the

microRNA hairpin structure of 3 organisms (based on miRBase

9.2). The horizontal axis represents the distance of a stack face (the

plane formed by base pair stacking) away from the Drosha cutting

site. Zero indicates the stack face at the Drosha cutting site. Minus

refers to upstream (i.e., the direction to the loop of hairpin). The

red line and blue line show the free energy distribution along the

microRNA stem-loop structure for H. sapiens (hsa) and M. musculus

(mmu) respectively, while the black line represents the energy

distribution pattern for the invertebrates, C. elegans (cel). An

analysis of the energy distribution pattern of a total of 10

vertebrates and 2 invertebrate is shown in (Figure S1). It is clear

that all vertebrates have, to some extent, similar free energy

distribution pattern (e.g., a low free energy distribution in the

region 10 to 13 nt and an energy peak in the region 15–20 nt) with

fluctuations though, whereas the invertebrates do not have this

characteristic pattern. The average correlation coefficient between

A Tool Based on Energy and Structure
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the patterns of H. sapiens and the other 9 vertebrates is 0.9395 in

the region 0 to 19 nt, while the correlation coefficient for that of H.

sapiens and C. elegans is 0.2435. The method proposed here involves

Random Forest algorithm to identify the pattern that determines

the mature microRNAs from the fluctuating energy distribution

data.

Performance of MiRmat on the Prediction of Drosha
Processing Site

Performance evaluation. The prediction power of MiRmat

in identifying Drosha processing sites was evaluated on the test set

retrieved from miRBase as described in Materials and Methods.

To obtain reliable testing result, non-redundant samples were

prepared by excluding all the hairpin sequences with a similarity of

over 90%.

Fig. 2A shows the performance of MiRmat on Drosha

processing site prediction. The Drosha sites of 31.9% of

microRNAs in the test set were exactly predicted according to

the annotations in miRBase. If a deviation of 2 nt from the true

site is allowed, the rate of successful prediction reaches 77.8%

(Fig. 2A). It should be noted that, like the previous study [13],

MiRmat is also limited to deal with microRNA samples with the

regular structure that the lengths of the pre-microRNAs are within

50–80 nt and the mature sequences locate in the stems.

To test the performance of MiRmat on novel microRNA

families, a more stringent evaluation was made by excluding all the

samples in the test set that belong to the same family as that in the

training set. The microRNA family data was downloaded from

miRBase at ftp://mirbase.org/pub/mirbase/CURRENT/

miFam.dat.gz. According to the definition of microRNA family,

these are the homologs from the same ancestor in principle. In this

case, the prediction rate still keeps at 71.9% (Figure S2A),

indicating that the model involved in MiRmat generalizes well

over both different vertebrate species and different microRNA

families.

Performance of MiRmat on an independent validation

set. The microRNAs of platypus, O. anatinus (oan), were

collected after miRBase version 9.2 was released. Therefore, we

used these data as an additional independent validation set to

evaluate the performance of MiRmat. As shown in Fig. 2B,

MiRmat predicted the Drosha processing sites of O. anatinus

microRNAs with a fairly high accuracy; 87.5% of the processing

sites were predicted within 2 nt of the true sites. This means that

the free energy pattern derived from other vertebrate species is

also applicable to O. anatinus microRNAs. Because platypus

represents a fascinating combination of reptilian and mammalian

traits [39], this result further supports that the energy distribution

pattern downstream the Drosha processing site may be conserved

among vertebrates. When all the samples homologous to that in

the training set were removed from the test set, MiRmat identified

82.4% of the Drosha sites that are from the novel families. This

result was presented in Figure S2B.

Tests on random sequences. We tested the specificity of

MiRmat by applying the tool to randomly collected hairpins and

comparing the average scores resulted from the Random Forest

algorithm with the scores for true microRNAs.

We generated the random hairpins from the 39UTR sequences

as the negative control as it was reported that microRNAs are

extremely rare in 39UTRs [29]. The 39UTR sequences were

downloaded from UTRdb [40]. The secondary structures were

predicted by RNAfold [41]. The criteria for selecting the test

hairpins include: 1) no more than 18 base pairings on the stem; 2)

a maximum free energy of 215 kcal/mol of the secondary

structure [42]. These criteria ensure that these hairpins are similar

to the true microRNA hairpins in terms of general structural

characteristics. Two sets of hairpins were constructed by randomly

picking one qualified hairpin from each 39UTR sequence. The

first set, RHD-1, contains 1815 hairpins from mammalian 39UTR

sequences (except for H. sapiens 39UTRs), and the second dataset

(RHD-2) contains 470 qualified hairpins from human chromo-

some 1.

As shown in Table 1, MiRmat has a significantly higher

Random Forest score (p,,0.001) on the microRNA hairpins

than on the non-microRNA samples, which means the energy

distribution pattern of microRNA hairpins is significantly different

from those of non-microRNA hairpins.

Figure 1. Energy distribution patterns of the microRNA stem-loop structure of 3 species. (A). Diagram of microRNA hairpin structure; (B).
Energy distribution pattern of 3 species: H. sapiens (red), M. musculus (blue) and C. elegans (black).
doi:10.1371/journal.pone.0051673.g001
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Performance of MiRmat on the Prediction of Dicer
Processing Site

The performance of MiRmat on predicting Dicer processing

site was tested on the pre-microRNAs that are annotated in the

miRBase. Limited by our prediction model, the samples with

irregular structures, i.e., the annotated Dicer site is on the terminal

loop of pre-microRNA structure or the internal loops is too long

(.6 nts), were removed from the training and test sets. The test

was also limited to the microRNAs with the mature sequence of

16–25 nt.

Fig. 3 plots the performance of MiRmat on Dicer processing site

prediction. The black columns show the accuracy of MiRmat by

using all the 42 features: of the 1269 microRNAs in the test set,

MiRmat could correctly predict 576 (45.4%) processing sites; 1178

(92.8%) true processing sites were within 2 nt of the predicted

processing sites. The gray columns show the performance of

MiRmat by only recruiting the length of mature sequence (last

feature in Table 2) as the feature. As shown in Fig. 3, the length of

mature microRNA sequence determines the approximate position

of Dicer processing site, while the secondary structure of pre-

microRNA influences the precise position of the cutting site.

Among the test dataset, ,60 more Dicer sites were precisely

predicted by taking into account the structural features.

Performance of MiRmat on the Prediction of Mature
microRNA

We compared the accuracy of MiRmat for mature microRNA

prediction with three existing methods, proMIR, MatureBayes

and MaturePred [43]. Performance of these tools is shown in

Table 3, 4 and 5.

Figure 2. Rate of correct predictions of Drosha processing site. ‘Deviation (nt)’ means the distance between the predicted Drosha processing
site and the true site. (A) Performance on microRNAs of 10 vertebrates in the test dataset (M. domestica, H. sapiens, M. mulata, M. musculus, P.
troglodytes, R. norvegicus, G. gallus, X. tropicalis, O. anatinus, C. familiaris); (B) Performance on O. anatinus microRNA data set.
doi:10.1371/journal.pone.0051673.g002

Table 1. Average RF scores resulted from different test sets.

Datasets Test seta RHD-1b RHD-2c

Average RF score 0.3110 0.2416 0.2403

avertebrate microRNA hairpins;
bmammalian hairpins;
chuman hairpins.
doi:10.1371/journal.pone.0051673.t001

Figure 3. Rate of correct prediction of Dicer processing site. The
black column represents the accuracy of MiRmat by using all the 42
features; the gray column shows the performance of MiRmat by using
the length feature.
doi:10.1371/journal.pone.0051673.g003
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Comparison with proMIR. To compare the performance of

MiRmat with proMIR [9], we applied the two tools to 136 human

microRNAs (miRBase version 4.0) through a 5-fold cross-

validation as did in the previous study [9]. Two parameters were

introduced to measure the performance: the mean of the absolute

distance between the predicted and true sites and the standard

deviation. Results are shown in Table 3. Here the standard

deviation based on the entire population (SDP) was used for the

convenience of comparison with the previous data provided by

proMIR. The bold numbers highlight the improved performances

in terms of each parameter.

In general, MiRmat showed higher accuracy than proMIR for

both Drosha and Dicer processing site predictions. The perfor-

mance on Dicer sites is not as favorable as that compared to the

Drosha sites. This may be due to the accumulation of errors at the

two ordinal prediction stages.

Comparison with MatureBayes. To compare MiRmat

with MatureBayes, another mature microRNA identification tool

developed recently, we included human and mouse microRNAs in

miRBase 10.1 as the training dataset and those in miRBase 11–14

as the test set, which is the same as that for MatureBayes [31].

Results are shown in Table 4. As did in MatureBayes, we

measured the performance of both tools under different deviations

which is named ‘distance from truth’ in Table 4. In MatureBayes,

it means the prediction error at 59 end of mature microRNAs. In

MiRmat, ‘distance from truth’ represents the error of Drosha

processing site for microRNAs on 59 arm. While for the

microRNAs on 39 arm, it means the error of Dicer processing

site. The mean distance and standard deviation from MiRmat are

3.607 nt and 5.007 nt respectively, which are lower than 5.298 nt

and 7.817 nt resulted from MatureBayes. A p-value of

1.28361024 was obtained by paired t-test which indicates that

the observed difference between the two methods is significant.

The distance distribution within 3 nt was presented in Table 4

in which MiRmat shows higher detection rate than MatureBayes

in the prediction of the start point of mature microRNA sequence

within this error range. As there are 49 microRNAs removed from

miRBase according to miRBase 17 released this year, the test set

we actually used is 272 precursors (285 mature microRNAs). Out

of them, 58 mature microRNA sequences were predicted precisely

at the start position.

Comparison with MaturePred. We further compare MiR-

mat with a more recent mature microRNA identification tool,

MaturePred. The newly found human and mouse microRNAs in

miRBase 18 were retrieved as the test set. Results are shown in

Table 5. In order to make a consistent evaluation, the output

results from MaturePred with the highest probability at each arm

were taken into assessment. This is different from the way that the

author of MaturePred took to evaluate the performance of their

own tool [43], in which the top 10 mature microRNA candidates

with highest probabilities for each precursor microRNA were

taken. The minimum distance between each candidate and the

actual mature microRNA was measured as the prediction

deviation.

Like the other assessment, the performance of both tools were

measured by the parameter ‘distance from truth’ in Table 5. This

parameter represents the error of Drosha processing site for

microRNAs on 59 arm, for the microRNAs on 39 arm, it means

the error of Dicer processing site. The mean distance and standard

deviation from MiRmat are 2.901 nt and 3.980 nt respectively,

which are better than 4.963 nt and 6.328 nt resulted from

MaturePred. The significance of the comparison is measured by

p = 7.75761026. As presented in Table 5, the rate of identifying

mature microRNA position approaches 70% by MiRmat which is

over ten percent higher than the performance of MaturePred

when an error of 3 nt is allowed.

Table 2. Categories of features for Dicer site prediction.

Features Number of Feature

Size of internal loops in candidate mature sequence regiona 36 (6 x 6)

Size and number of bulges in candidate mature sequence regionb 4

Position of first paired nucleotides of pre-microRNA structurec 1

Length of candidate mature sequenced 1

aSub-vector of 36 variables standing for the size of internal loops in the candidate mature sequence region in cases that unpaired nucleotides on the 59 arm varies
within 1–6 nt and unpaired nucleotides on the 39 arm varies within 1–6 nt;
bSub-vector of 4 variables, including the number of bulges and the number of unpaired nucleotides involved in the bulges on both the 59 and 39 arms;
cThe position of the first paired nucleotides from the non-loop side of the secondary structure of pre-microRNA;
dThe number of nucleotides between the 59 end and the candidate Dicer processing site.
doi:10.1371/journal.pone.0051673.t002

Table 3. Performance of tools on the prediction of mature microRNA sequence.

59-stranda 39-strandb

Drosha site Dicer site Drosha site Dicer site

mean SDc mean SDc mean SDc mean SDc

MiRmat_v4 1.64 1.82 2.25 2.24 1.47 1.98 2.00 1.80

proMIR_v4 1.96 2.56 2.47 3.26 2.13 2.70 1.60 2.14

a59-strand indicates that the mature sequence locates on the 59 arm of the stem-loop structure of microRNA;
b39-strand indicates that the mature microRNA sequence locates on the 39 arm.
cStandard deviation based on the entire population (SDP) was used for the 5-fold cross-validations.
doi:10.1371/journal.pone.0051673.t003
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Discussion

In this study, we developed the tool, MiRmat, for the

identification of mature microRNA sequence from microRNA

hairpins via sequentially predicting the Drosha and Dicer

processing sites. Based on the evaluation of MiRmat, we have

demonstrated that MiRmat has improved the performance in both

the accuracy and correctness rate of mature microRNA pre-

diction. In addition, MiRmat is applicable to more organisms

other than human and mouse, for them most of the recent

methods were designed. The results from evaluations indicate that

the free energy profile involved in this method is an efficient

feature for the recognition of mature microRNA and is general to

a wide range of organisms among vertebrates.

MiRmat employed the ‘free energy profile’ as the feature to

predict Drosha processing site and gained high accuracy, which

indicates that the energy distribution pattern downstream Drosha

processing site may serve as the key determinant for Drosha to

recognize its cutting point. This is consistent with the previous

conclusion [36]. This type of energy pattern is actually a combi-

nation of RNA structure and sequence features because the energy

of a ‘stack face’ is determined by the structure of this face and the

nucleotides that are involved. Moreover, our analysis on the whole

set of microRNAs from 12 species showed that this energy

distribution pattern could be conserved among vertebrates, while

the invertebrates presented a significantly different pattern. This

discovery simply extended the application of MiRmat to a variety

of vertebrate species.

MiRmat uses ‘structural features’ for predicting Dicer proces-

sing site. Based on our finding, although the length of microRNA

mature sequence serves as the key determinant for the Dicer

processing site, the structural features alter the precise position of

the Dicer site. In general, the recognition and interaction between

the enzyme and substrate are determined by the three dimensional

structures of both molecules. However, the mechanism that

determines the Dicer processing site on pre-microRNA hairpin is

very complicated [44]. Limited by the existing technologies, we

only used secondary structure to develop the prediction method in

this study.

MiRmat employs the principle of molecular interaction to

predict mature microRNA sequences. The method is based on the

similarity of free energy and structural features among vertebrate

microRNA hairpins rather than on microRNA sequence conser-

vation. This ensures the applicability of MiRmat to the

characterization of microRNAs in a variety of vertebrate genomes

including the newly sequenced species. MiRmat was designed

according to the biogenesis of mature microRNA and each of the

features used in this method represents a definite biological

meaning. So the significance of features and parameters from each

step of the prediction can provide new clues for deducing the

mechanism of mature microRNA biogenesis. For example, base-

pairing in pre-microRNAs may differ from that in pri-microRNAs

after Drosha processing and being transported from the nucleus to

the cytoplasm in the form of a single chain. However, this kind of

structural change can hardly be directly reflected by the pri-

microRNA sequence. Actually, ignoring this change may limit the

accuracy of mature microRNA sequence identification. Mean-

while, MiRmat has been constructed to include three functional

parts, the Drosha processing site prediction, the prediction of

Dicer site on pre-microRNA sequences, and microRNA mature

sequence prediction. These functional modules provide a useful

selection for the task of microRNA annotation and satisfy the

design requirements from a wide variation of experimental studies.

Compared with Microprocessor SVM which involves more

than 600 features for Drosha site prediction, MiRmat only uses 21

features of thermodynamics and length of sequence while

achieving the same performance. The successful prediction of

Drosha site by using a limited number of features from free energy

profile not only demonstrates the free energy profile derived in this

study as an effective determinant of Drosha interaction to pri-

microRNA, but also implies a general enzyme-RNA interaction

mechanism among microRNAs of human as well as other

vertebrate species.

In the prediction of mature microRNA sequence, MiRmat

outperforms the other current methods, proMIR and Mature-

Bayes, in that it showed much better prediction accuracy and

correctness rate. Note that the sequence region spanning 10–20 nt

downstream pre-microRNA plays an important role in determin-

ing Drosha processing site, we suspect that MatureBayes may

missed some information by only including the flanking region of 9

nucleotides of mature microRNA.

In summary, MiRmat reported in this paper presents several

advantages in predicting mature microRNA sequence. First, it is

based on the common pattern of free energy profile and thus is

adaptable to a wide range of vertebrate microRNA analysis;

second, it achieved a better accuracy and rate of correctness in

mature microRNA prediction; finally, it is designed according to

the biogenesis of mature microRNA and provides a choice of

access at each of the maturation steps including the prediction of

Drosha processing site, the prediction of Dicer site and the

prediction of the whole mature microRNA sequence, which will

benefit data analysis for various experiments. For example,

MiRmat may help to filter the sequencing data produced from

Solexa/Illumina and find out the most probable microRNAs from

the reads by making mature microRNA sequence prediction based

on the sequencing data and the genome regions they are

embedded.

Further studies could be focused on the identification of mature

microRNA sequences located in irregular structures, for example,

which are located at the terminal loop of microRNA hairpins. In

addition, limited by present techniques, only secondary structure

was considered in the development of MiRmat. We believe that

although the secondary structure reflects the three-dimensional

structure of RNA to a large extent, direct involvement of the

Table 4. Performance comparison between MatureBayes and
MiRmat.

Distance from Trutha 0 61 62 63

MatureBayes (%) 12.75 34.20 45.51 59.13

MiRmat (%) 20.35 39.29 54.39 60.35

athe distance between predicted start position of mature microRNA and that of
actual mature microRNA.
doi:10.1371/journal.pone.0051673.t004

Table 5. Performance comparison between MaturePred and
MiRmat.

Distance from Trutha 0 61 62 63

MaturePred(%) 21.21 36.36 48.48 57.57

MiRmat (%) 23.03 45.45 59.39 69.70

athe distance between predicted start position of mature microRNA and that of
actual mature microRNA.
doi:10.1371/journal.pone.0051673.t005
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spacial data will hopefully increase the prediction ability for Dicer

site determination.

Materials and Methods

Predicting Drosha Processing Sites
The flow chart of Drosha processing site prediction in MiRmat

is illustrated in Fig. 4. First, the free energy profiles of known

microRNA hairpins were calculated. Second, the features and

labels were extracted from the sequences and the energy profiles.

Then, these features and labels were used for training the Random

Forest classifier. Finally, the Random Forest classifier was applied

for predicting the Drosha processing site of new microRNA

hairpins with extracted features.

Data retrieval. MicroRNA sequences and genomic positions

were downloaded from miRBase. The microRNA hairpin

sequences were retrieved with a window of 130 nt from Ensembl

genome database (Ensembl release 53 of March 2009 [45]),

centering on the stem-loop structure provided by miRBase.

The training set of 1944 vertebrate microRNAs was from

miRBase [46] version 9.2, in which 119 repeated samples have

been excluded. The new vertebrate microRNAs appeared in

version 12.0 were used as the test set, which included 1204

microRNAs. To insure the independency between the training set

and the testset, hairpin sequences with a similarity of over 90% to

those in the train set have been excluded.

RNA secondary structure prediction. RNAfold of Vienna

package 1.8 [41] with default parameters and thermodynamic

data from Turner group [47,48,49] were applied in the prediction

of RNA secondary structures.

Definition of the candidate Drosha processing site. As

previously outlined by Helvik, S.A. et al. (2007) in Microprocessor

SVM, all of the Drosha processing sites were defined on the 59 arm

of microRNA stem-loop structures with the processing site of the

39 arm overhanging by 2 nt. If the mature sequence locates on the

59 arm, then the Drosha processing site was defined by the 59 end

of the mature microRNA sequence. If there are mature sequences

on both arms, then the Drosha site was still defined by the 59 end

Figure 4. Flow chart for the method of Drosha processing site prediction.
doi:10.1371/journal.pone.0051673.g004
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of the mature microRNA sequence located on 59 arm. In cases of

microRNAs with mature sequences only on 39 arms, the Drosha

processing sites were still defined on the 59 arms using the location

that results in a 2 nt-overhang at the 39 end of the mature

microRNA sequence.

According to our statistics on miRBase 9.2, the lengths of about

96% of the pre-microRNAs are within 50–80 nt. Therefore, the

candidate pre-microRNAs were defined to be within this range, as

adapted by the previous study [13].

Calculation of free energy profiles. Fig. 5 illustrates the

method for calculating the free energy profiles of the stem-loop

structure derived from pri-microRNAs. Taking MI0000098 as an

example, the folded microRNA was divided into individual

neighbors [49] according to the stacking status. The bulges and

internal loops were further split into pieces for each of the

nucleotides whether paired or not. We called these pieces the

‘stack faces’. Each single ‘stack face’ corresponds to a free energy

that represents the thermodynamic stability of this face. The

thermodynamic parameters of the stack faces were from Turner

group [49], and those faces split from bulges and loops were

assigned the average values of the total energy of the correspond-

ing stacks.

Feature vector for predicting Drosha processing

sites. According to the result of a 10-fold cross validation on

the free energy profiles (data not shown), we chose the energy

values of 20 stack faces (including the one corresponding to the

candidate Drosha processing site itself) downstream the candidate

Drosha processing site to construct the feature vector. In addition,

the length of the candidate pre-microRNA was also included in

the vector. Therefore, every candidate processing site was

represented by a feature vector of 21 variables.

Classifier. Random Forest (RF) [50] was used as the

predictive model to pick out the true Drosha/Dicer processing

site from the candidate processing sites. RF is a well-known

ensemble method [51] in the machine learning community which

combines a series of decision trees and shows good generalization

performance. RF runs under three main steps. First, new training

sets are drawn from the original training set by sampling with

replacement. Then, for each new training set, a non-pruned

decision tree is growing using a random feature selection method

to inject randomness to classic decision tree models [50]. Finally,

all the decision tree models are applied to the test sample and

outputs are produced. The final prediction results can be then

computed from these results by some ensemble schemes, e.g., the

most popular majority voting method. With respect to our task,

each sample is the feature vector charactering a candidate

processing site produced either by Drosha or Dicer. In RF, each

decision tree outputs a decision on whether the test sample is the

true processing site. Thus, the number of the trees that vote for the

sample to be the true processing site is adopted as the prediction

score in this paper. For a microRNA sequence, the position with

the highest prediction score is taken as the predicted processing

site.

In this work, the RF algorithm is implemented by weka [52]

(version 3.6.1).

Predicting Dicer Processing Sites
The Drosha processing site only defines one end of the mature

microRNA sequence. In order to find the other end of the mature

microRNA, we searched upstream of the Drosha site to identify

the Dicer processing site. The procedures of applying Random

Forest classifier for predicting the Dicer site were similar to those

procedures for predicting Drosha processing site (Figure S3).

Definition of the candidate Dicer processing site. Similar

to our assumptions for the Drosha candidate processing sites (refer

to Section 2.1.3), all of the Dicer processing sites were also defined

on the 59 arm of the pre-microRNAs with a 2 nt-overhang to the

processing site on the 39 arm. If a microRNA hairpin carries the

mature sequence on the 59 arm or on both arms, the Dicer

processing site was defined as the 39 end of the mature sequence of

the microRNA. If the microRNA only had its mature sequence on

the 39 arm, the Dicer processing site on the 59 arm was located at

a position with a 2 nt overhanging relative to the 59 end of the

mature sequence.

According to previous statistics, nearly all mature microRNAs

(99.9%) in the training set are within 16–25 nt. Therefore, the

candidate Dicer processing sites were defined to be within this

range.

Feature vector for predicting Dicer processing site. A

total of 42 features were derived from a statistical analysis on the

relation of pre-microRNA hairpin structures to the Dicer

processing site in the training set. The duplex between the end

of the stem of the pre-microRNA hairpin and the candidate Dicer

processing site was termed a ‘candidate mature sequence region’.

The features belong to 4 categories as been listed in Table 3. The

size of internal loops were restricted to 6 nt based on the statistical

results from the training set.

Figure 5. Illustration of the method for calculating the free energy profile of the microRNA stem-loop structures. Part of the secondary
structure of microRNA MI0000098 hairpin is shown. Each green ellipse represents one single ‘stack face’. The value in each of the green ellipses
indicates the free energy of this face. The nucleotides in red belong to the mature sequence of this microRNA.
doi:10.1371/journal.pone.0051673.g005
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Supporting Information

Figure S1 Energy distribution patterns of the micro-
RNA stem-loops of 12 species. The free energy distributions

along the stem of the microRNA hairpin structure of 12 organisms

were plotted, including 10 vertebrates and 2 invertebrates. The

horizontal axis represents the distance of a stack face away from

the Drosha cutting site. Zero indicates the stack face at the Drosha

cutting site. Minus refers to upstream (i.e., the direction to the loop

of hairpin). It is clear that all vertebrates have, to some extent,

similar free energy distribution pattern (e.g., an low free energy

distribution in the region of 10–15 nt and an energy peak in the

region of 15–20 nt), with fluctuations though. From the positions

0 to 19, the correlation coefficients of the energy distribution

between H. sapiens(hsa) and the other vertebrates, B. taurus(bta), D.

rerio(dre), M. domestica(mdo), M. mulata(mml), M. musculus(mmu), P.

troglodytes(ptr), R. norvegicus(rno), G. gallus(gga), X. tropicalis(xtr) are

0.8977, 0.9227, 0.9528, 0.9086, 0.9905, 0.9367, 0.9741, 0.9207,

0.9516 respectively. While the invertebrates, C. elegans(cel) and D.

melanogaster(dme), do not have this characteristic pattern and the

distributions of these two invertebrates are quite different from

those of vertebrates.

(DOC)

Figure S2 Rate of correct predictions of Drosha proces-
sing site in a more stringent evaluation. ‘Deviation (nt)’

means the distance between the predicted Drosha processing site

and the true site. (A) Performance on microRNAs of 10 vertebrates

in the test dataset (M. domestica, H. sapiens, M. mulata, M. musculus, P.

troglodytes, R. norvegicus, G. gallus, X. tropicalis, O. anatinus, C. familiaris);

(B) Performance on O. anatinus microRNA data set.

(DOC)

Figure S3 Flow chart for developing the method of Dicer
processing site prediction.
(DOC)
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