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ABSTRACT

Quantitative comparison of epigenomic data across
multiple cell types or experimental conditions is a
promising way to understand the biological functions
of epigenetic modifications. However, differences in
sequencing depth and signal-to-noise ratios in the
data from different experiments can hinder our abil-
ity to identify real biological variation from raw epige-
nomic data. Proper normalization is required prior
to data analysis to gain meaningful insights. Most
existing methods for data normalization standard-
ize signals by rescaling either background regions
or peak regions, assuming that the same scale fac-
tor is applicable to both background and peak re-
gions. While such methods adjust for differences
in sequencing depths, they do not address differ-
ences in the signal-to-noise ratios across different
experiments. We developed a new data normalization
method, called S3norm, that normalizes the sequenc-
ing depths and signal-to-noise ratios across different
data sets simultaneously by a monotonic nonlinear
transformation. We show empirically that the epige-
nomic data normalized by our method, compared to
existing methods, can better capture real biological
variation, such as impact on gene expression regu-
lation.

INTRODUCTION

Epigenetic features of chromatin, such as histone modifi-
cations, transcription factor binding and nuclease accessi-
bility, play important roles in the regulation of gene ex-
pression. Advances in biochemical enrichment strategies
and high-throughput sequencing technologies have made it

possible to determine the landscape of epigenetic features
at a genome-wide scale. In recent years, a large collection
of genome-wide epigenetic profiles have been acquired in
many cell types under different biological contexts (1–4).
Quantitative comparison of these epigenetic profiles across
different cell types is a powerful approach to study the bio-
logical functions of epigenetic modifications and infer func-
tional elements in genomes. Technical heterogeneity across
the data sets, such as differences in sequencing depth (SD)
and signal-to-noise ratio (SNR), however, can create sys-
tematic biases that mask real biological variation (5). Proper
data normalization is needed to correct these biases before
meaningful insights can be gleaned from the data analyses
(6,7).

A commonly used strategy for data normalization is to
calculate a scale factor between two data sets (8,9), for ex-
ample between a reference data set and a target data set,
and then rescale the target data set according to the scale
factor. The simplest scale factor is the ratio of the total sig-
nals between the two data sets, which we will refer to as
TSnorm hereafter (Figure 1A). This approach is based on
the assumption that the signals of a data set is dominated
by the background regions and works well when real sig-
nals are scarce and take up only a small proportion of reads
among the total. For epigenetic profiles, however, signal re-
gions are often abundant, with drastically different num-
ber of peaks and reads across different data sets (9–12),
whereas the background regions are more uniform across
data sets. Recognizing this issue, some recent data normal-
ization methods, such as SES and NCIS (13,14), took a two-
step approach. They first identify the background regions,
and then they calculate the scale factor only from the back-
ground regions. While these methods can adjust for the scale
differences in background regions between data sets, they
implicitly assume that the same scale factor can be applied
to peak regions as well. In reality, however, the signal-to-
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Figure 1. Impacts of different methods of data normalization. Panel (A–C), respectively, shows schematic plots for the signals in two epigenomic data sets
normalized by TSnorm, MAnorm, and S3norm. (D–I) The ATAC-seq or DNase-seq read counts at histone gene loci in three cell types (LSK, MEP and
ERY). Panel (D) shows the raw read counts in those three cell types. Panel (E), (F) and (H), respectively, shows the read counts normalized by TSnorm,
MAnorm and S3norm. The scale of tracks is from 0 to 1000. Panels (G) and (I), respectively, shows the zoomed-in version of the same regions in Panel
(F) and (H). The scale of tracks is from 0 to 100.

noise ratios between data sets are often different, thus the
scale factor for the peak regions should be different from
that for the background regions.

Some normalization methods focus on adjusting SNRs
across data sets (15). MAnorm (6), one of the earliest meth-
ods to consider SNRs in ChIP-seq normalization, uses the
MA plot (16) to fit a curve between signal intensity ratio
(M) and average intensity (A) between data sets. The fitting
is done using signals in the common peak regions between
data sets, under the assumption that the normalized data
sets in common peak regions should have the same SNRs.
The fitted curve is then applied to adjust signals in peak re-
gions (Figure 1B). MAnorm can adjust signals in peak re-
gions, but not for background regions. It thus is not appli-
cable for applications that utilize signals across the genome,
such as genome segmentation (17–20). In segmentations,
some epigenetic states are defined by low signals of fea-
tures, in which case an increase of background noise could
result in incorrect assignments to those states. The alter-
native methods LOWESS normalization and quantile nor-
malization (QTnorm) have been used to adjust both SDs
and SNRs by equalizing local signals between two data sets
(21–23). When applying these two methods to data sets with
substantially different numbers of peaks, they may increase
background noise (or decrease peak signals) for data sets
with fewer (or more) peaks (21). Finally, rank-based meth-
ods have been proposed to normalize data sets with dif-
ferent signal distributions by converting signals into ranks
(24). Because they ignore the quantitative spread among

signals, they may lose power, and therefore they are not con-
sidered in this study.

To illustrate the aforementioned issues encountered by
the existing methods (Figure 1), we applied TSnorm and
MAnorm to the nuclease accessibility data (ATAC-seq) at a
histone gene locus in three hematopoietic cell types, namely,
a stem and progenitor cell population (the lineage negative,
Sca1 positive, c-kit negative cells or LSK), the megakary-
ocyte erythroid progenitor cells (MEP), and erythroblasts
(ERY) (25). We chose this locus because active produc-
tion of histones is required for cell replication, and histone
genes usually have similar activities across all proliferating
cell types. Thus, the profiles of nuclease accessibility in the
neighborhood are expected to be similar across cell types,
but the raw ATAC-seq signals in this locus were clearly
weaker in LSK and MEP than in ERY (Figure 1D). Af-
ter applying TSnorm, which used a single scale factor, the
signals in LSK and MEP were increased but the signals of
the peak regions in LSK and MEP were still weaker than
in ERY (Figure 1E). This result is expected for a method
that cannot match signals in both peak regions and back-
ground regions simultaneously. After applying MAnorm,
which only used information in common peak regions to
estimate a normalization model, the signals of the peak re-
gions in both LSK and MEP were increased to match the
level in ERY (Figure 1F), but the background was inflated
in LSK and ERY (Figure 1G). These results illustrate the
need for simultaneous adjustment of both peaks and back-
ground.
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We developed a new two-factor normalization method,
called S3norm, to Simultaneously normalize the Signal in
peak regions and the Signal in background regions of epige-
nomic data sets. Unlike TSnorm or MAnorm, in which
either background regions or common peak regions con-
tribute to normalization, our method matches both the
mean signals in the common peak regions and the non-zero
mean signals in the common background regions between
two data (Figure 1C), balancing the contribution of com-
mon peak regions and common background regions to data
normalization. It matched the peak signals in our example
data sets (ERY, LSK and MEP) without increasing noise
the background signals (Figure 1H and I). In this paper,
we demonstrate the superior performance of S3norm over
existing methods using several epigenomic data sets with a
wide range of data quality.

MATERIALS AND METHODS

Data preprocessing and evaluation

We used the data sets compiled by the ValIdated and
Systematic integratION of epigenomic data project (VI-
SION: usevision.org), which includes eight epigenetic
marks (H3K4me3, H3K4me1, H3K27ac, H3K36me3,
H3K27me3, H3K9me3, CTCF occupancy and nuclease
sensitivity) in twenty hematopoietic cell types of mice
(20,26–28). Using the bam files processed by the pipeline
of VISION project as the input data (20,28,29), we divided
the mm10 mouse genome assembly into ∼13 million 200-
bp bins and counted the number of reads mapped to each
bin (30). The reads counts per bin comprised the raw sig-
nals for each data set. The bin size of 200-bp was selected
based on previous studies that considered this bin size as
approximately the size of a nucleosome plus spacer (19,31).
For each data set, the SD was estimated by the number of
mapped reads, and the SNR was estimated as the Fraction
of Reads in Peaks (FRiP score) (32). The VISION data sets
were generated in different laboratories at different times
using different technologies, leading to substantial varia-
tion in signal quality across data sets (Supplementary Fig-
ure S1). Considering H3K4me3 experiments as an example,
the total number of mapped reads ranged from <1 million
to >10 millions, and the FRiP score ranged from <0.1 to
>0.9. This large variability in both SDs and SNRs requires
both aspects to be properly normalized to enable meaning-
ful downstream analysis. Indeed, this large variation in both
SD and SNR served as a motivating problem to develop our
normalization method.

Simultaneous normalization of both peak regions and back-
ground regions

S3norm is a normalization method that aims to simultane-
ously match the SD and the SNR between a target data set
and a reference data set. This aim is achieved by applying
a two-factor nonlinear transformation to match both the
mean signal in the common peak regions and the non-zero
mean signal in the common background regions between
the two data sets (Figure 2). Because the numbers and the
signals of the unique peaks can differ between the two data
sets, S3norm learns its normalization parameters only from

the signals in the common peak regions (6) and the sig-
nals in the common background regions. S3norm is built on
two assumptions derived from the biological principles of
epigenetic events. First, we assumed that epigenetic events
shared by multiple cell types tend to regulate processes oc-
curring in all those cell types, such as expression of consti-
tutively active genes, so that the mean signal of common
peaks should be the same after normalization. Second, we
assumed that the signals in common background regions
are technical noise, and thus, they should be equalized after
normalization. Based on these two assumptions, S3norm
matches the mean signals in the common peak regions and
the non-zero mean signals in the common background re-
gions between the two data sets. Here, we used the non-zero
mean instead of the mean signal because some epigenomic
sequencing data sets have a large number of bins with values
of zero (33). Inclusion of the large numbers of zeros gen-
erates low mean signals that are problematic outliers com-
pared to other datasets that have fewer bins with values of
zero. S3norm can also work for more than two data sets,
in which case the common peak regions and the common
background regions are those shared by all data sets.

To match the mean signals, we treat one data set as the
reference and the other data set as the target, transforming
the signals in the target data set by the following monotonic
nonlinear function:

Let Yi and Ynorm, i denote the signal of bin i in the target
data set before and after normalization, then

log(Ynorm, i) = log (α) + βlog(Yi)

where α and β are two positive parameters to be learned
from the data. Specifically, α is a scale factor that shifts
the signals of the target data set in log scale, and β is a
power transformation parameter that rotates the signals of
the target data set in log scale (Figure 2). There is one and
only one set of values for α and β that can simultaneously
match the mean signals in the common peak regions and
the non-zero mean signals in common background regions
between the two data sets. Our approach solves the values
for α and β which satisfy the following two equations, so
that the mean signals in the common peak regions and the
non-zero mean in the common background regions can be
matched between two data sets:

Ynorm, i = αYi
β

mean
(
Yref, pk

) = mean
(
αYtar,pk

β
)

non zero mean
(
Yref, bg

) = non zero mean
(
αYtar,bg

β
)

where the mean(αYtar,pk
β) is the mean of normalized signals

in common peak regions and the non zero mean(αYtar,bg
β)

is the non-zero mean of normalized signals in common
background region, respectively, in the target data set. Like-
wise, the mean(Yref, pk) is the mean of normalized signals in
common peak regions and the non zero mean(αYref,bg

β) is
the non-zero mean of normalized signals in common back-
ground region, respectively, in the reference data set. The
values of α and β were estimated by the Newton–Raphson
method (34).
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Figure 2. Overview of the S3norm method. The graphs present scatterplots of read counts (log scale) in 10,000 randomly selected genome locations (200 bp)
in target cell (x-axis) and reference cell (y-axis). The left figure is the signal before S3norm. The right figure is the signal after S3norm. The S3norm applies
a monotonic nonlinear model (log(Ynorm, i) = log(α) + βlog(Yi)) to rotate the target signal so that (i) the mean signals of common peaks (green point,
highlighted by black dash circle) and (ii) the mean signals of common background (dark blue point, highlighted by black dash circle) can be matched
between the two data sets. The original data were split into three groups: the common peak regions (orange), the common background regions (gray) and
the remaining bins (blue). The overall mean is represented by a black point.

For the reference data set, we choose the data set with the
best SNR as the reference. In the S3norm package, users
also have options to choose another data set or generate a
reference data set by using the median (or mean) signal of
all data sets for each genome position.

The common peak regions and the common background
regions for S3norm to learn the non-linear transformation
model were defined by using FDR = 0.1 as the threshold.
As shown in Supplementary Figure S2A, the peaks shared
by more cell types are more robust to the FDR threshold.

Using these common peak regions, we also tested our
assumption that epigenetic events shared by multiple cell
types tend to regulate processes occurring in all those
cell types, and thus the epigenetic datasets should have
similar mean signals. We found the genes associated (by
proximity) with the ATAC-seq peaks shared by all 18
cell types in this analysis were significantly enriched in
GO terms about nuclear processes common to all cells,
such as chromatin assembly, DNA replication, and RNA
metabolism (35). Thus, using these regions for S3norm to
learn the non-linear transformation model fits well with our
assumption.

Generating signal tracks from normalized signal

To facilitate use in downstream analysis, such as peak call-
ing and genome segmentation, we generated signal tracks
(bedgraph format) of the S3norm normalized signals. A
script for generating these signal tracks is provided at
GitHub. We followed a similar method as the one adopted
in MACS (9) except that the Poisson model used to ad-
just for fluctuation in the local background (36–39) was re-
placed by a Negative Binomial (NB) model. In ChIP-seq
data, the variance is often greater than the mean (Supple-
mentary Figure S3), so a NB is preferred as the background
model because it estimates the mean and variance sepa-
rately, whereas the Poisson model has the same mean and
variance.

For ChIP-seq, there are usually two data sets for each ex-
periment, one is referred as an immunoprecipitation (IP)
sample, which is a data set generated by sequencing the
DNA after immunoprecipitation by target-specific anti-
body, and the other one is the corresponding control sam-
ple, which is another data set generated by sequencing either
the input DNA without immunoprecipitation or the DNA
after immunoprecipitation by non-specific antibody.

The NB background model was defined as follows. Let ri
and rctrl

i denote the read counts in bin i in a IP and a con-
trol, respectively. Let M and σ 2 denote the mean and vari-
ance of read counts in the IP in the common background
regions, and Mctrl denote the mean read counts in the con-
trol in the common background regions. The dynamic NB
background model is defined as:

ri ∼ NB (slocal, p)

p = σ 2 − M
σ 2

slocal = M2

σ 2 − M
× rctrl

i

Mctrl

rctrl
i = max

(
ri, wg, (ri, 1kb) , ri, 5kb, ri, 10kb

)
,

where p denotes the probability of success parameter in the
NB model, and slocal denotes a shape parameter of the NB

model. For each bin i, slocal is adjusted by rctrl
i

Mctrl to capture any
local bias as reflected in the control. The increase of con-
trol signal ( rctrl

i
Mctrl ) is equivalent to the decrease of σ 2 which

can generate a more significant P-value. The rctrl
i is the local

mean read count learned from the control computed in the
same way as in MACS (9). The ri, wg is the genome mean
read count in the control, the ri, 1kb, ri, 5kb and ri, 10kb, are
mean read counts of different window sizes centered at the
bin i in the control. The local mean read counts are calcu-
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lated as the maximum of ri, wg, ri, 1kb, ri, 5kb and ri, 10kb.
For data sets without a control (i.e. ATAC-seq), the value
for rctrl

i can be generated with both of two modifications (9).
First, the rctrl

i and Mctrl are estimated from the IP instead of
the control. Second, the ri, 1kb is not used to estimate rctrl

i .
Just like we avoided bins with values of zero in the

S3norm normalization (previous section), we also only used
the non-zero data to estimate the p and the slocal in the dy-
namic NB model.

Let NM1 and NM2 denote the non-zero mean and non-
zero mean of square of the read counts of all bins, respec-
tively. The p and the slocal in the dynamic NB model can be
defined as follows (see Supplementary Methods for details):

p0 = (1 − p)s

p = 1 − NM1
NM2 − NM12 × (1 − p0)

slocal = NM1 × (1 − p0) × 1 − p
p

× rctrl
i

Mctrl

Finally, –log10 P-value of read count per bin, as derived
from the NB background model, is used as the processed
signal in the S3norm signal track.

Predicting gene expression from histone modifications

Previous studies have shown that histone modifications
such as H3K4me3 and H3K27ac are strong predictors of
gene expression (40). We assumed properly normalized his-
tone modifications data can accurately predict gene expres-
sion. Following the study design in Dong et al. (41), we
used ten-fold cross validation to evaluate the predictability
of gene expression. For each cross-validation, we randomly
selected 90% of the genes as training genes and the remain-
ing 10% of the genes as the testing genes. We first trained a
regression model to predict expression of training genes in
one cell type (training cell type). We then applied the trained
model to predict the expression of testing genes in another
cell type (testing cell type). The Reads Per Kilobase of tran-
script per Million mapped reads (RPKM) in log2 scale was
used as the estimate of gene expression. The histone mod-
ification signal was defined as the mean read counts of the
histone modification in a 5 kb window centered at transcrip-
tion start site (TSS). The predictability of gene expression
was measured by mean square error (MSE) between the ob-
served gene expression and the predicted gene expression in
the testing genes in the testing cell type. To prevent a bias
from a specific regression model, we performed this analy-
sis by using four different commonly used regression mod-
els, specifically a local regression (loess) model, the two-step
linear regression model (41), a linear regression model, and
a support vector machine regression (SVR) model.

Calling peaks from epigenomic data by MACS2

To compare of the influence of data normalization on peak
calling, we applied MACS2 to call peaks from CTCF ChIP-
seq data normalized by different normalization methods.
We first generated the signal tracks in each cell type. For

all methods, the signal track was generated by the –log10 P-
value (input signal for bdgpeakcall in MACS2 package) of
normalized reads count based on the previously described
NB background model. We then used the bdgpeakcall in the
MACS2 package in the default setting to call peaks from
the signal tracks. The threshold was FDR = 1e–2. For each
normalization method, the CTCF peaks were first called in
11 cell types that have CTCF occupancy data in VISION
project. We used the UpSet method (42) to visualize the
number of commonly called peaks from different normal-
ization methods.

To evaluate the type I error (false positive peaks) in these
CTCF peak calling results, we compared both the propor-
tion of peaks with a CTCF binding site motif (Jaspar id:
MA0139.1) (43) and the signal consistency between the bio-
logical replicates in these peaks. For the proportion of peaks
with CTCF binding site motif, we used FIMO in its default
setting to scan for the CTCF binding site motif (Jaspar id:
MA0139.1) (43) in those peaks.

The signal consistency between the biological replicates
was measured by the mean square error (MSE) between the
two biological replicates.

MSE = mean
((

signalrep1 − signalrep2
)2

)
,

where signalrep1 and signalrep2 are the signals in two bio-
logical replicates. The false positive peaks tend to be the
peaks with lower signal. To measure the signal consistency
of peak with different signal levels, we calculated the cumu-
lative MSEs.

Generating ATAC-seq signal strength state by IDEAS

To compare the impact of normalization by QTnorm and
S3norm (19) in a context in which the background signal
had an influence, we measured the impact of each normal-
ization on genome segmentation. Specifically, we used a
simple application of the IDEAS genome segmentation al-
gorithm to generate states defined by the ATAC-seq signal
strength across the whole genome (19). We first normal-
ized the raw read counts by the QTnorm and S3norm. We
then computed the –log10 P-value based on the dynamic NB
background model for each 200 bp bin and used them as
the input signal for IDEAS. The IDEAS algorithm learned
the most commonly occurring states of ATAC-seq signal
strength and assigned each 200 bp bin along the genome
into one of those signal strength states. For this analysis,
we kept the biological replicates separate so that the con-
sistency of the state assignments between the two biological
replicates could be used to evaluate the performance of the
results. We used the Adjusted Rand Index (ARIs) to mea-
sure the consistency of the state assignment between each
pair of two biological replicates.

RESULTS

S3norm overview

We introduce a new data normalization method called
S3norm that uses a nonlinear transformation to normalize
signals in both peak regions and background regions simul-
taneously. The goal of the S3norm method is to match both
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the mean signal in the common peak regions and the non-
zero mean signal in the common background regions be-
tween a target data set and a reference data set, which is the
data set with the best SNR (Figure 2). The method employs
a nonlinear transformation model with parameters learned
from the signal in both common peaks and common back-
ground regions. This nonlinear transformation can rotate
the target signal in log scale to achieve simultaneously the
desired matches with the mean signals in both the common
peak regions and common background regions of a refer-
ence data set. As a result, the method can boost signals in
peak regions in the target data set without increasing the
background noise, thereby increasing the SNR in the target
data sets (see Materials and Methods for details). Because
it does not inflate the background signal, S3norm is well
suited as a normalization tool for genomic analyses that in-
volve both peaks and background, such as segmentation of
epigenetic states.

Evaluation by ATAC-seq

We first compared the performance of S3norm and other
normalization methods for their abilities to match the sig-
nal in both peak regions and background regions. We used
the ATAC-seq data sets in immature megakaryocytic (iMK)
cells (∼92 million reads for replicate 1 and ∼74 million reads
for replicate 2) and LSK cells (∼53 million reads for repli-
cate 1 and ∼59 million reads for replicate 2) because they
have quite different SNRs (Figure 3A; the mean signal for
common peaks in iMK was ∼3.7-fold greater than that in
LSK). We used the iMK dataset as the reference because it
had a higher SNR. For all normalization methods, the sig-
nal of the target data set was matched to the signal of the
reference data set.

Because the two data sets had similar signal in back-
ground regions, the TSnorm method had little impact on
the results (Figure 3B), i.e. the peak signals in iMK re-
mained consistently higher than those in LSK after TSnorm
normalization. The MAnorm method did normalize the
signals in peak regions to match peak signals in the LSK
and iMK data sets (Figure 3C). However, MAnorm in-
creased the signal in background regions in the LSK data
set. The poor performance of TSnorm and MAnorm was
expected, as they used either background regions or peak re-
gions to calculate scale factors, but neither considered both
types of regions simultaneously. In contrast, normalization
by QTnorm and S3norm included signals in both peak re-
gions and background regions and generated similar mean
signals of the common peak regions (green point) and the
common background regions (dark blue point) between the
two data sets (Figure 3D and E).

We next compared the four normalization methods for
their impact on the similarity of replicates, expecting that a
more suitable normalization would generate closer matches
between replicates. The four methods were used to normal-
ize all ATAC-seq data sets in the VISION project that have
biological replicates, employing the data set with the high-
est SNR (iMK) as the reference. The signals in the common
peak regions showed substantial differences both between
replicates and across all data sets after TSnorm (Figure 3F),

illustrating the limitation of single factor normalization.
MAnorm adjusted the signal in common peak regions ap-
propriately, producing close similarities in distributions be-
tween replicates, but the signals in the background regions
became more heterogeneous than they were before normal-
ization. In contrast, S3norm and QTnorm effectively ad-
justed the signals in both types of regions so that the nor-
malized signals became much more comparable both be-
tween replicates and across data sets.

Evaluation by gene expression

When properly normalized, histone modification data
should enable a more accurate prediction of gene expression
than achieved with inadequately normalized data. Thus, we
evaluated the effectiveness of different normalizations by
analyzing the ability of histone modification data normal-
ized by each method to accurately predict gene expression.
Modeling approaches have been used to predict gene ex-
pression from histone modifications, and the quantitative
relationships learned from one cell type can be applied to
predict gene expression in other cell types (41,44). The pre-
dictability, however, will be reduced if the epigenomic data
across cell types are not properly normalized. We thus use
the predictability of gene expression from different normal-
ized epigenetic data to evaluate their ability to reflect real
biological variation.

Specifically, we randomly selected 90% of genes (Train-
ing Genes) to train four commonly used regression models
(loess regression, 2-step linear regression (41), linear regres-
sion, and SVR) to predict gene expression from H3K4me3
and H3K27ac normalized signals around a gene TSS. We
then evaluated the performance of these regression mod-
els on the remaining 10% of genes (Testing Genes). We first
trained the regression models using the Training Genes in
one cell type (Training Cell type) and then evaluated the
models using the Testing Genes in both Training Cell type
and a different cell type (Testing Cell type).

The evaluation in the Training Cell type ascertained
whether regression models can successfully learn robust
quantitative relationships between gene expression and nor-
malized signals for histone modifications. All normaliza-
tion methods generated data that gave good performance
for lowess regression (Figure 4A), shown by the very low
mean squared errors (MSEs) in the Training Cell types. A
similarly uniform good performance for all normalization
methods was observed for three other regression models
(Supplementary Figure S4A–C).

Then we evaluated whether the learned quantitative re-
lationships can be applied to different cell types by com-
paring the performances of the trained models on the Test-
ing Genes in the Testing Cell Type. As shown in Figure 4B
and Supplementary Figure S4D–F, the models trained on
S3norm signals and QTnorm signals always performed bet-
ter (Wilcoxon test P-value < 1e–4) than the models trained
on the TSnorm signals and MAnorm signals. This result
shows that the quantitative relationships learned from the
histone modification signals normalized by QTnorm and
S3norm transferred well to other cell types, thus indicating
a more biologically meaningful normalization result.
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Figure 3. Comparison of normalization methods on peaks and background in ATAC-seq experiments. The scatterplots of ATAC-seq signal in iMK
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Evaluation by peak calling and signal consistency

The previous evaluations showed the superior performance
of S3norm and QTnorm than some other normalization
methods. Both methods match the signal in peak regions
and background regions simultaneously. However, QT-
norm differs from S3norm in its assumption that normal-
ized signals have the same distribution across data sets.
This assumption is particularly questionable for epigenomic
data, because the number of epigenetic peaks usually differs
substantially across cell types. If two data sets have different
numbers of peaks, QTnorm would force some background
signals in the data set with fewer peaks to match the peak
signals with the same rank in the data set with more peaks,
potentially creating false positive peaks. Therefore, we eval-
uated the impact of each normalization method on identi-
fying more meaningful peaks in ChIP-seq and ATAC-seq
datasets.

In this evaluation, we first called peaks on CTCF ChIP-
seq data from the VISION project using the signal normal-
ized by different methods. We first compared the number of
peaks overlapping between sets by using the UpSet method
(Figure 5A, first panel) (42). As expected, a large number
(78 789) of peaks were called consistently on the data nor-
malized by all methods, but almost as many (67 444) peaks
were called only from the QTnorm signal. These peak calls
that were unique to normalization by QTnorm could be
false positive peaks created by forcing identical distribu-
tions across data sets and thereby inflating the background
such peaks are called erroneously.

We then used the presence of matches to the CTCF bind-
ing site motif to evaluate whether the CTCF peaks found
only after normalization by QTnorm were false positives or
a reflection of greater sensitivity enabled by that normaliza-
tion. Given that about 80% of previously determined CTCF
binding sites contain the CTCF motif (45,46), we expected
that false positive peaks are less likely to contain a match
to the CTCF motif. Indeed, among the QTnorm-specific
peaks, only 9.2% had the CTCF binding site motif, whereas
80.5% of the peaks called after normalization by all meth-
ods had the CTCF motif. These results suggest that many
of the QTnorm-specific CTCF peaks are likely to be false
positive peaks.

In a similar evaluation of ATAC-seq datasets, a total of
207 534 peaks were called consistently on the data nor-
malized by all methods (Figure 5A, second panel). An-
other 136 709 peaks were called only after normalization
by QTnorm signal (Figure 5A, second panel). We assumed
that false positives for ATAC-seq peaks would be less likely
to match candidate cis-Regulatory Elements (cCREs) pre-
dicted in an independent ENCODE SCREEN project (47).
Among the peaks shared by all normalization methods,
63.1% intersected with at least one cCREs in the ENCODE
Registry, whereas only 15.5% of the peaks uniquely called
after QTnorm normalization overlapped with an ENCODE
cCRE. These comparisons suggest that many of the ATAC-
seq peaks called on data normalized by QTnorm are likely
to be false positive peaks.

We next compared the consistency of signal strengths be-
tween biological replicates in peaks called after QTnorm
and S3norm normalization, under the assumption that

more appropriate normalization will generate greater simi-
larity between replicates. For each replicated CTCF ChIP-
seq data set, we pooled and merged the peaks called after
QTnorm and S3norm normalization into one union peak
list and then aggregated the normalized ChIP-seq signal in
each peak in each replicate. Overall, the signals normalized
by S3norm showed significantly greater similarity, as shown
by the lower values in the distribution of MSE (Figure 5B,
first panel). This greater similarity of replicates is accentu-
ated in scatterplots showing much more variance between
replicates normalized by QTnorm, especially for the peaks
with weaker signals (Figure 5B, second and third panel).

For QTnorm signals, we expect to see lower MSEs in the
top peaks because QTnorm assigns the same value to the
peaks with the same ranks. This assignment of the same
value insures very low MSEs as long as the peaks between
replicates have the same rank. Indeed, the QTnorm sig-
nals become much less consistent as more peaks were in-
cluded (Supplementary Figure S5). While normalization by
QTnorm gave lower MSEs for the top 30% of peaks, nor-
malization by S3 norm produced significantly lower MSEs,
and thus greater replicate consistency, for lists containing
the top 50–100% of the peaks. Therefore, unless the down-
stream analysis only focuses on the very top peaks, the
S3norm still outperforms QTnorm in terms of signal con-
sistency between biological replicates.

One example of downstream analysis that can be influ-
enced by whole genome data normalization is genome seg-
mentation. This analysis assigns each genomic location to
one of a set of discrete states that represent commonly oc-
curring signal strengths and combinations of features, of-
ten epigenetic marks. If a normalization procedure intro-
duced a systematic bias between data sets used as input, e.g.
by inflating the background, then the segmentation could
assign incorrect states in epigenomes. Thus, we compared
the impact of normalization by QTnorm and S3norm on
epigenetic state assignments. We chose the IDEAS genome
segmentation system (19) because it considers a range of
signal strengths, not a binary presence or absence call, in
state assignments. For this evaluation, we used IDEAS in a
simple task of identifying and assigning states determined
by the strength of ATAC-seq signals rather than finding
states that are combinations of epigenetic features. We as-
sumed that the assignment of consistent ATAC-seq signal
strength states between replicates would indicate a more
accurate normalization. The ATAC-seq data normalized
by S3norm gave significantly more consistent state assign-
ments, as measured by the Adjusted Rand Index (ARI)
(Figure 5C, panel (1)). This greater replicate similarity is il-
lustrated in the Rhbdf1-Mpg-Nprl3 gene locus (Figure 5C,
panel (2)). While the high signal states are consistent be-
tween replicates for both methods, as expected, many in-
consistencies between the two biological replicates were ob-
served for the genomic locations assign to the low signal
state after normalization by QTnorm. In contrast, the same
genomic locations were often assigned to the background
state (colored white) after S3norm normalization. These
comparisons confirmed that normalization by QTnorm can
inflate low signals that are actually background, thereby
leading to erroneous state assignment.
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These several evaluations of peaks and signal strengths
after different methods of normalization show that the
S3norm method is advantageous over QTnorm when a
broad range of data values are considered, reducing the
numbers of false positive peaks and limiting incorrect signal
strength state assignments in lower signal regions.

The influence of hyperparameters on S3norm

We evaluated whether S3norm was robust to the choice of
values for its two major hyperparameters. One hyperparam-
eter is the FDR threshold that determines the common peak
regions and the common background regions from which
S3norm to learns the scale factors in the nonlinear trans-
form, � and �. While the FDR threshold affected the num-
ber of the common peak regions and common background
regions, it had no significant impact on the values of � and
� (Supplementary Figure S6). Another major hyperparam-
eter in S3norm is the bin size of the input data. The epige-
nomic sequencing data typically have many regions with no
signals, and thus, differences in bin size can influence the sig-
nal distribution of the input data. To evaluate how robust
S3norm is to differences in bin sizes, we determined the val-
ues for the scale factors using input data divided into bins of
different sizes. We found that the values for � in the S3norm
transformation model changed very little with bin size (Sup-
plementary Figure S7A). The scale factor � also showed lit-
tle differences among bin sizes of 50, 100 and 200 bp, but it
did shift to somewhat higher values for particular datasets
in 500 bp bins. Further analysis revealed that the distribu-
tion of signals in 500 bp bins was substantially different
from the distributions of signals bins of 200 or fewer bp
(Supplementary Figure S7B). In summary, these compar-
isons indicate that S3norm is robust to most changes in ei-
ther of the two major hyperparameters.

DISCUSSION

We introduce a simple and robust method to normalize the
signals across multiple epigenomic data sets. The essence
of this method is to use a nonlinear transformation to ro-
tate the signal of the target data set to that of the reference
data set, so that the mean signals of both common peak re-
gions and common background regions are matched simul-
taneously between the two data sets. The S3norm method
achieves several notable improvements over existing nor-
malization methods. First, the inclusion of background re-
gions is a particular advantage when data across the en-
tire genome needs to be normalized. As an example, this
method was developed to facilitate our work on genomic
segmentations that assign every genomic interval to an epi-
genetic state, which is a common combination of epigenetic
features (20). An inflation of background noise could re-
sult in assigning regions with increased noise to low signal-
containing states. Second, in contrast to the TSnorm and
QTnorm methods, S3norm is robust to biases resulting
from the substantial proportion of background regions in
the genome. Third, S3norm can be trained on data sets with
small numbers of peaks, such as data sets that include spike-
in controls (48). Finally, S3norm has only two parameters
to be trained from the data, which makes the method robust
across a wide variety of data sets.

A key assumption of the S3norm method is that true bio-
logical signals should have the same means in common peak
regions and in common background regions between data
sets. For some data sets in which different signal strengths
in common peak regions are expected, a variation on the
S3norm method may be more appropriate. For example,
for ChIP-seq data sets of transcription factors whose abun-
dance is changing over the course of a targeted degradation
protocol, we expect the mean signals in peak regions (which
are common peak regions across the time course) to deteri-
orate over time. In such cases, one should not use any of the
data sets in the time course as a reference for S3norm nor-
malization. Instead, a spike-in control or a small number
of unchanged peak regions identified by other techniques
should be paired with the background regions at each time
point in order for S3norm to work properly.

In summary, S3norm is a simple and robust method
to normalize multiple data sets. The results of applying
S3norm to epigenomic data sets show that it is more ef-
fective in bringing out real biological differences than exist-
ing methods. As more epigenomic data continue to be gen-
erated, S3norm will be useful to normalize signals across
these diverse and heterogeneous epigenomic data sets to al-
low downstream analyses to capture true epigenetic changes
rather than technical bias. Improved normalization will aide
studies that analyze data sets across multiple experiments,
such as differential gene regulation, genome segmentation
(17,19), joint peak calling (49), predicting gene expression
(50), and detecting transcription factor binding events (51).

DATA AVAILABILITY

Files for raw signals, P-value converted signals, and sig-
nals from S3norm are available both for download and
for viewing from the VISION website (http://usevision.org).
The S3norm normalization package is available at GitHub
(https://github.com/guanjue/S3norm).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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