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ABSTRACT

Modularity is a ubiquitous topological feature of structural brain networks at various scales.
Although a variety of potential mechanisms have been proposed, the fundamental principles
by which modularity emerges in neural networks remain elusive. We tackle this question
with a plasticity model of neural networks derived from a purely topological perspective.
Our topological reinforcement model acts enhancing the topological overlap between
nodes, that is, iteratively allowing connections between non-neighbor nodes with high
neighborhood similarity. This rule reliably evolves synthetic random networks toward a
modular architecture. Such final modular structure reflects initial “proto-modules,” thus
allowing to predict the modules of the evolved graph. Subsequently, we show that this
topological selection principle might be biologically implemented as a Hebbian rule.
Concretely, we explore a simple model of excitable dynamics, where the plasticity rule
acts based on the functional connectivity (co-activations) between nodes. Results produced
by the activity-based model are consistent with the ones from the purely topological rule

in terms of the final network configuration and modules composition. Our findings

suggest that the selective reinforcement of topological overlap may be a fundamental
mechanism contributing to modularity emergence in brain networks.

AUTHOR SUMMARY

The self-organization of modular structure in brain networks is mechanistically poorly
understood. We propose a simple plasticity model based on a fundamental principle,
topological reinforcement, which promotes connections between nodes with high
neighborhood similarity. Starting from a random network, this mechanism systematically
promotes the emergence of modular architecture by enhancing initial weak proto-modules.
Furthermore, we show that this topological selection principle can also be implemented

in biological neural networks through a Hebbian plasticity rule, where what “fires together,
wires together” and, under proper conditions, the results are consistent between both
scenarios. We propose the topological reinforcement as a principle contributing to the
emergence of modular structure in brain networks. This addresses the gap between
previous pure generative and activity-based models of modularity emergence in brain
networks, offering a common underlying principle at the topological level.
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Brain modularity emergence through topological reinforcement

Modularity:

The existence of groups of

nodes, referred to as communities

or modules, that are more
interconnected than with other nodes
of the network. It can be quantified
with an index called the Q value.

Network Neuroscience

INTRODUCTION

Modularity, the presence of clusters of elements that are more densely connected with each
other than with the rest of the network, is a ubiquitous topological feature of complex networks
and, in particular, structural brain networks at various scales of organization (Sporns & Betzel,
2016).

Modularity was among the first topological features of complex networks to be associ-
ated with a systematic impact on dynamical network processes. Random walks get trapped
in modules (Rosvall & Bergstrom, 2008), the synchronization of coupled oscillators over time
maps out the modular organization of a graph (Arenas, Diaz-Guilera, & Pérez-Vicente, 2006),
and co-activation patterns of excitable dynamics tend to reflect the graph’s modular organiza-
tion (Messé, Hiitt, & Hilgetag, 2018; Miiller-Linow, Hilgetag, & Hitt, 2008; Zhou, Zemanovs4,
Zamora, Hilgetag, & Kurths, 2006). At an abstract level, modularity in the brain is thought to
be important for information processing, the balance segregation and integration, as well as
system evolvability in the long temporal scale, among others (Sporns & Betzel, 2016). More
concretely, the modular organization of brain networks forms the substrate of functional spe-
cialization (e.g., sensory systems; Hilgetag, Burns, O’Neill, Scannell, & Young, 2000), con-
tributes to the generation and maintenance of dynamical regimes (e.g., sustained activity; Kaiser
& Hilgetag, 2010) and criticality (Wang & Zhou, 2012), and supports the development of ex-
ecutive functions (Baum et al., 2017). Thus, modularity is a key component of structural brain
networks with important functional consequences.

Although a number of potential mechanisms have been proposed for the creation of modules
(Ellefsen, Mouret, & Clune, 2015; Gémez-Robles, Hopkins, & Sherwood, 2014; Henderson &
Robinson, 2013), the fundamental generative principles of the emergence of brain modules re-
main elusive, both algorithmically, in terms of the necessary topological changes for generating
them, as well as with respect to a plausible biological implementation, that is, the realization
of such topological changes through physiological mechanisms.

Generative models constitute a common approach to the study of the formation of global
patterns of brain connectivity (Betzel & Bassett, 2017), where, broadly speaking, networks are
allowed to grow in size and/or density according to specific rules. These models might be either
based on fundamental concepts, such as developmental time windows (Kaiser & Hilgetag,
2007) and nonlinear growth (Bauer & Kaiser, 2017), constrained by experimental criteria, for
instance, including geometric and topological features found in empirical connectivity data
(Betzel et al., 2016), or based on dynamical factors, such as synchronization between nodes
(Cong & van Leeuwen, 2003). Given the well accepted role of synaptic plasticity in brain
development and activity-dependent adaptation (Abbott & Nelson, 2000), other perspectives
focus on changes driven by such local plasticity mechanisms in physiologically more realis-
tic models. A considerable proportion of this work aims at explaining empirically observed
distributions of physiological parameters at the cellular scale, such as synaptic weights (Effen-
berger, Jost, & Levina, 2015), and only a few studies have paid attention to topological aspects,
such as the proportion of local motifs (Stone & Tesche, 2013). Some of the mentioned model-
ing studies showed an emergence of modular network structure and attempted to provide an
underlying mechanism based on the reinforcement of paths between highly correlated nodes
(Jarman, Steur, Trengove, Tyukin, & van Leeuwen, 2017). Yet, the problem of a topological de-
velopmental gradient, along which network changes should occur during the rewiring process
in order to promote the emergence of modules, was not explicitly investigated.

Addressing this challenge, we propose a model bridging the gap between purely genera-
tive models (e.g., “homophily-driven models”) and activity-based models (e.g., Hebbian-like
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Topological overlap (TO):

A metric quantifying the number of
direct common neighbors between
pairs of nodes.

Network Neuroscience

plasticity models), with a binding element at the topological level. That means, we formulate a
model that focuses on the contributions of pure topological changes, being different from pre-
vious models because it is agnostic with regard to the dynamical regime representing neuronal
activity. At the same time, the presented model attempts to go a step further beyond the above
mentioned generative modeling work, because it can be instantiated in a biologically more
realistic fashion than such models, since they rather describe the end result of the network
configuration and do not focus on the actual mechanistic explanation.

Concretely, the present study proposes a generative principle of structural modular networks
through topological reinforcement (TR). This rewiring rule, derived from a purely topological
perspective, constitutes a plausible underlying mechanism leading to the formation of mod-
ules. Fundamentally, this rewiring mechanism is based on topological overlap (TO) (Ravasz,
Somera, Mongru, Oltvai, & Barabasi, 2002). The origin of the TO concept stems from applica-
tions of set theory to nodes graph in network analysis, which became established as a relevant
approach for quantifying the similarity of nodes in terms of their common network neighbor-
hoods; for a review focusing on bipartite graphs see Bass et al. (2013). TO is closely related to
the matching index (Hilgetag, 1999; Hilgetag et al., 2000; see also Hilgetag, Kotter, Stephan,
& Sporns, 2002; Sporns, 2003), an adaptation of the Jaccard index to neighborhoods of nodes
in a graph. Higher-order variants of this quantity have also been discussed in the literature (Li
& Horvath, 2006).

Prompted by the exploration of network motifs (that is, few-node subgraphs which are often
statistically enriched in real networks (see Milo et al., 2004, 2002), the interplay of different
topological scales in a graph has become an object of intense research. In particular, several
studies have shown that global network properties, such as hierarchical organization (Vazquez
etal., 2004) or modularity (Fretter, Miller-Hannemann, & Hitt, 2012), can systematically affect
the composition of networks in terms of local topology or network motifs (see also Reichardt,
Alamino, & Saad, 2011). Intriguingly, that line of research inspires the complementary pos-
sibility: a systematic iterative selection on local network structures may conversely install, or
at least enhance, certain global network properties. This is the conceptual approach we set
out to explore here, where our topological reinforcement rule iteratively enhances the local
topological overlap.

As a further step, we explore a plausible dynamical implementation of the topological
reinforcement. We use an excitable network model, the SER model, in which the discrete
activity of network nodes is described by susceptible, excited, and refractory states, repre-
senting a stylized neuron or neural population. In this case, the plasticity acts in a Hebbian-
like fashion based on the functional connectivity (FC) derived from co-activation patterns of
network nodes. The results confirm a correspondence between the two plasticity modalities,
which speaks in favor of the dynamical implementation representing a biologically plausible
mechanism through which topological reinforcement may take place in real systems, thus
supporting the role of topological reinforcement as a contributor to the emergence of modular
brain networks.

RESULTS

Starting from initial random configurations, we evolved networks according to the topologi-
cal reinforcement rule. Topological reinforcement was based on the TO between nodes of a
network. At each rewiring step, a randomly selected node was connected to a non-neighbor
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with the highest TO, while pruning another link with random uniform probability, in order to
preserve network density.

Random Networks Evolve Towards Modular, Small-World Organization

The topological reinforcement rule reliably evolved synthetic random networks toward high
modularity (Figure 1). Moreover, due to increased clustering, the final networks had a small-
world organization (Supporting Information Figure ST, Damicelli, Hilgetag, Hitt, & Messé,
2019). The results were robust across multiple runs and multiple initial network realizations
(Supporting Information Figure S2, Damicelli et al., 2019). We also explored the effect of
network size and density on the outcome of the TR rule (Figure 1). The results were consistent,
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Figure 1. Emergence of modular network organization from topological reinforcement. (Top)
Example of network evolution resulting from topological reinforcement, starting from a random
network. Layouts are generated according to the Fruchterman-Reingold force-directed algorithm.
Nodes are consistently colored according to the final modular structure. At each rewiring step (t), a
total of N links where reallocated. (Middle) Evolution of the modularity (Q) and number of modules
as a function of the number of rewiring steps (mean and standard deviation across 500 simulation
runs). (Bottom) Final modularity (left) and number of modules detected (right) for different network
sizes (N) and densities (A, average number of links per node) (mean and standard deviation across
50 independent graph realizations).
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Module detection:

Algorithm that results in the
assignment of nodes to mutually
exclusive groups, that is, modules.
The outcome may be deterministic or
stochastic, depending on the specific
algorithm.

Module partition:

Representation of the modules and
their nodes as a so called affiliation
vector.

Module agreement matrix:

Also referred to as consensus, where
each entry represents the frequency
with which every two nodes were
assigned to the same module. High
values indicate that nodes where
often classified in the same module.

showing similar scaling curves across conditions, which speaks for the robustness of TR in
generating modular networks.

The scaling pattern of the final number of modules could be roughly approximated based
on the average network degree. The rationale is that the number of modules is proportional
to the number of nodes while inversely proportional to the average size of neighborhoods
containing nearest and next to nearest neighbors. As we did not have an analytical expression
for the sizes of such neighborhoods, we assumed that it is proportional to A1*%, where a is
some exponent with 2 < 1. The exponent 1 accounts for nearest neighbors and a for the double
counting of nodes when going to next-to-nearest neighbors. We observe a good (though not
perfect) agreement with the numerical results for a ~ 1 (see Supporting Information Figure S3,
Damicelli et al., 2019).

Final Network Structure Reflects Initial Network Organization

The topological reinforcement rule amplified weak “proto-modules” already present in the ini-
tial random graph. The similarities between the initial and final network structures were inves-
tigated in terms of Pearson correlation and partitions overlap between networks; see Methods
section and Figure 2 for details. Module detection is an algorithm that results in the assign-
ment of nodes to mutually exclusive groups, modules. The outcome may be deterministic or
stochastic, depending on the specific algorithm. Module partition is a representation of the
modules and their nodes as a so called affiliation vector. Module agreement matrix is also
referred to as consensus, where each cell represents the frequency with which every two nodes
were assigned to the same module. High values indicate that nodes where often classified in
the same module.
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Figure 2. Module agreement and “proto-modules.” Schematic example for a graph with N = 8 nodes and 30 rewiring steps of the
procedure for probing the existence of “proto-modules” in the initial graph and the relationship between initial and final network structure.
Each simulation run starting from the same initial graph is represented by a grey color. A schematic representation of the affiliation vectors
can be viewed under module partitions. Each element of the vector represents a node and its color indicates the module that it was assigned
to. The probability that two nodes end up in the same module across partitions is represented by the agreement matrix, in other words, a
consensus across module partitions. The agreement matrices where compared both in terms of their values (Pearson’s correlation) and their
modular composition (partition overlap). See Methods for details.
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Statistical analysis across multiple runs showed a significant similarity and partition overlap
between the final graphs and the initial one (Figure 3A). Moreover, the results also showed a
consistent pattern of final modular organization (Figure 3B). The module agreement of final
networks across multiple runs (P) displayed pairs of nodes with high probability (beyond
chance) to end up in the same module. Figure 3B shows the mean intramodule density of the
initial random graph according to different partitions. The distribution of the mean intramodule
density according to the modules detected in the agreement P coincided fairly well with the
mean intramodule density of the partitions detected on the graph itself. In contrast, intramodule
density from partitions coming from a null model was centered around 0.1, that is, the graph
density (i.e., probing density of randomly chosen groups of nodes). In the random graphs used
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Figure 3. Relationship between initial and final network structures. (A) Initial adjacency matrix (left) reordered according to the modular
partition of the agreement P. Similarity (middle) and partition overlap (right) between all pairs of initial and final networks, and the corre-
sponding null distributions. (B) Agreement matrix across multiple runs (P, left) reordered according to its modular partition. Histogram of
the P values and of the corresponding null model (middle). Distributions of the intramodular density of the initial network (right). Average
intramodule density of the initial network according to different types of module partitions. The procedure was repeated 500 times for each
type of partition. As a reference, the mean intramodule density of the final network modules is also plotted (average and standard deviation).
(C) Initial agreement matrix (P;,;;, left) reordered according to the modular partition of P. Similarity (middle) and partition overlap (right)
between Pj,;; and P and the corresponding null distribution.
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as initial condition, no variations in link density are expected (since, by definition, connec-
tion probability is uniform for all pairs of nodes). Importantly, that is the case on average across
graph realizations, but, because of stochastic variations and finite-size effect, individual graphs
might contain groups of nodes with slightly higher density of edges than expected. We refer
to these groups as “proto-modules.” In order to highlight these modules, a module detection
algorithm was applied multiple times on the initial graph, and a module agreement matrix was
built (P;,;;). The correspondence between the initial and final network structures was also evi-
dent comparing the final agreement P with its analogous on the initial graph P;,;; (Figure 3C).
The similarity (as measured by correlation) between both agreements was high. Additionally,
we generated a set of partitions from P and another set of partitions from P;,;;, and quantified
the overlap between all possible pairs of partitions P;,;;-P. We observed a significant overlap
between the partitions from P;,;; and those from P. Furthermore, the results were robust across
multiple initial network realizations (Supporting Information Figure S4, Damicelli et al., 2019).

Biological Implementation of Topological Reinforcement

In the brain, topological reinforcement may be implemented through various plausible activity-
based models. We explored one such model, in which the activity of network nodes was
described by discrete susceptible, excited, and refractory states, the SER model, representing
a stylized neuron or neural population. TR when transposed into biological context simply
corresponds to the so-called Hebbian rule, where we substituted FC for TO, see Methods
section for details. In order to explore the FC-based rule and its relation to TR, we exploited
an interesting feature of the SER model: for a given graph topology, the relationship between
TO and FC varies according to the parameters of the model. More specifically, the SER model
allows both deterministic and stochastic formulations, depending on the definition of the state
transition probabilities. In the deterministic case, only the initial proportions (e, s, r) of nodes
in each state may vary, since the stochastic transition probabilities are fixed (f = 0 and p = 1).
Whereas in the stochastic case, different parameter constellations may be achieved by varying
such state transition probabilities (for more details, refer to Methods and Messé et al., 2018).

Rewiring rules comparison. ~ We applied two different model scenarios (Figure 4). The first one,
based solely on the topology, and we applied the topological reinforcement (TR) rule, which
is based on the topological overlap (TO). While the second considered activity on the nodes
(SER model), and the rewiring occurred in a Hebbian fashion, that is, based on functional con-
nectivity (FC) between nodes and reinforcing connections between highly correlated nodes.
The following schemes show the core loops of both schemes for comparison. Each iteration of
a loop is equivalently denoted as a rewiring step. See Methods for more details.

A B
TO network N /R
activity 5
topological Hebbian
reinforcement reinforcement

™ FC

Figure 4. Rewiring schemes. (A) Topological Reinforcement. (B) Biological implementation -
Hebbian rule.

595



Brain modularity emergence through topological reinforcement

Network Neuroscience

Final modularity

Initial TO-FC

Stochastic
(transition probabilites)

IR S @ ® D a® WO b @O 00 01 02 03 04 05 06 07
S & PP W P @S S & @ W @S .
o 0¥ o¥ o o o M oY oY o o¥ o o o oY oM Y ¥ Initial TO-FC

p p

00 01 01 02 02 03 04
= Qo

00 01 02 03 04 05 06 07
pearson's T

(initial condlitions)

Deterministic

00 01 02 03 04 05 06 07

S PP F P Initial TO-FC

Figure 5. Biological implementation of the topological reinforcement. Parameter space explo-
ration of the stochastic (top) and deterministic (bottom) SER model. Similarity (measured by cor-
relation) between TO and FC in the initial graph (left), final modularity (middle) expressed as the
difference between the mean final modularity value and the modularity of the initial random graph
(across multiple (500) community detection). (Right) Scatter plot of the relationship between both
quantities. Note logarithmic scale for the stochastic case.

After exhaustive evaluation of the possible constellations for each case, we found the fol-
lowing: first, that the FC-based rule was also able to generate a modular network structure.
Importantly, a sufficiently high similarity (as measured by correlation) between TO and FC
within the initial configuration was a necessary condition for modularity emergence, as illus-
trated by the sharp transition from the nonmodular to the modular regime (Figure 5); second,
the results produced by the FC-based plasticity were consistent with the ones from TR, both
in terms of final network configurations and their module partitions (Figure 6). Fundamentally,
this indicates that, provided the correlation between TO and FC is high enough, the Hebbian
rule acts indirectly as topological reinforcement.

DISCUSSION

The importance of segregation in the brain is supported by numerous studies (Sporns & Betzel,
2016; Wig, 2017). However, there is a lack of general mechanisms explaining the emergence
of brain modularity. In the present study, we propose an explicit mechanism of reshaping local
neighborhoods through topological reinforcement that might act as a fundamental principle
contributing to the emergence of modules in brain networks. In addition, our work shows
that a Hebbian rule acting on an activity-based model may actually be instantiating the same
underlying rewiring pattern responsible for the modules creation, that is, the topological rein-
forcement.

Given accumulated evidence that global network properties can systematically affect the
composition of local network structures, such as motifs (Fretter et al., 2012; Reichardt et al.,
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Figure 6. Correspondence between the topological reinforcement and the Hebbian rule. Simi-
larity between P from the topological reinforcement and from the Hebbian rule using the stochastic
(top) and deterministic (bottom) SER models. Pearson’s correlation coefficient was computed to
summarize the similarity between both rules across the parameter spaces. Scatter plots represent
the relationship for a selected setting (white dots in the heat-maps).

2011; Vazquez et al., 2004), we propose a complementary bottom-up approach that is acting
locally in order to shape global features. Our proposed mechanism is in line with empirical
data where “homophily” appears as an essential feature of brain connectivity. At the micro
scale, it has been shown that the probability of finding a connection between a pair of neurons
is proportional to their number of shared neighbors (Perin, Berger, & Markram, 2011) whereas
at the macro scale, the strength of connections between brain regions tends to be the higher
the more similar their connectivity profiles are (Coulas, Schaefer, & Margulies, 2015).

Our results show that topological reinforcement reliably and robustly produces modular
network architectures over time, accompanied by the small-world property. Additionally, the
final modular organization of the networks seems to correspond to groups of nodes in the initial
networks that have higher than average connection density. As such, our rewiring mechanism
acts as an amplification of these “proto-modules,” similarly to a previously reported effect
in weak modular weighted networks evolving under a Hebbian rule based on chaotic maps
synchronization (Yuan & Zhou, 2011).

We extended the framework of topological reinforcement by introducing a plausible bio-
logical implementation. Our dynamical model choice, the SER model, offers the advantage of
capturing essential characteristics of stylized neuronal activity while being more tractable than
detailed typical models. This minimalistic excitable network model has a rich history across
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disciplines and in particular in neuroscience (Anderson & May, 1992; Bak, Chen, & Tang,
1990; Drossel & Schwabl, 1992; Furtado & Copelli, 2006; Kinouchi & Copelli, 2006), where
it can capture nontrivial statistical features of brain activity patterns (Haimovici, Tagliazucchi,
Balenzuela, & Chialvo, 2013; Messé, Hitt, Konig, & Hilgetag, 2015). This model has also been
used to study the impact of network topology, such as modules, hubs, and cycles, on network
activity patterns (Garcia, Lesne, Hilgetag, & Hiitt, 2014; Messé etal., 2015; Miiller-Linow et al.,
2008). A relative-threshold variant (requiring a certain percentage of a node’s neighbors to be
active, in order to activate the node) was explored in Hiitt, Jain, Hilgetag, and Lesne (2012)
and Fretter, Lesne, Hilgetag, and Hitt (2017). The deterministic limit of the model (p — 1,
f — 0) has been analyzed in Garcia, Lesne, Hiitt, and Hilgetag (2012) and in much detail in
(Messé et al., 2018).

In the biological implementation, the topological reinforcement rule was reformulated by
using functional connectivity (FC) as a surrogate of TO. These results were consistent with
TR, indicating that the biological implementation acted indirectly at the topological level. In
other words, the FC served as a proxy of TO, and therefore Hebbian reinforcement led in-
directly and ultimately to the topological reinforcement of a modular network organization.
The explanation for this finding is based on the fact that, for suitable dynamical regimes and
structural architectures, FC is positively correlated with TO in excitable networks (Messé et al.,
2018), which is intuitive if one considers that common inputs may promote correlations. Thus,
we propose the topological reinforcement principle as an underlying common ground, bridg-
ing an activity-based Hebbian model and a purely topological generative model.

Our results are in line with recent theoretical work on the contribution of specific network
motifs to higher-order network organization, in which the reinforcement of connections be-
tween neurons receiving common inputs led to the formation of self-connected assemblies
(Ravid Tannenbaum & Burak, 2016). Hence, our Hebbian plasticity scenario exploited the
correspondence between TO and FC as it could be observed with the exploration of different
SER parameter constellations. These parameters promote different relations between TO and
FC, and we found that such a dependence systematically predicted the emergence (or not) of
modular networks.

Previous computational studies have shown that evolutionary algorithms of network con-
nectivity optimizing, for example, functional complexity (defined as balance between segre-
gation and integration) can lead to modular network formation (Sporns, Tononi, & Edelman,
2000). Such findings point to the relevance of modularity as a crucial organization principle
underlying complex functional brain processes. Nevertheless, these models do not provide a
biologically interpretable and implementable mechanism, since the explicit global optimiza-
tion function (functional complexity) cannot be directly interpreted as a biological mechanism
shaping brain connectivity.

In the sense of biological plausibility, activity-based plasticity models (e.g., based on
Hebbian plasticity) constitute a more directly interpretable approach. Previous studies have
used a variety of neural activity models ranging from abstract representations, such as chaotic
maps (van den Berg & van Leeuwen, 2004) and phase oscillators (Gleiser & Zanette, 2006),
to more physiologically realistic models, such as neural masses (Stam, Hillebrand, Wang,
& Van Mieghem, 2010) and spiking neuron (Kwok, Jurica, Raffone, & van Leeuwen, 2006)
models. In general, Hebbian reinforcement led to the formation of modular architectures,
consistent with our results for the excitable model. Interestingly, as a practical biological
example beyond the pure theoretical realm, this type of plasticity-guided modular emergence
has recently been studied also in real neural activity in zebrafish larvae (Triplett, Avitan, &
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Goodhill, 2018), pointing to the relevance of the current results. The open question for this
type of models concerns the specific underlying topological changes that they promote, since
these studies focus on the implementation of the phenomenon (based on the activity) and
not on the algorithmic level (the topological dimension) and both levels interact in nontrivial
ways. Indeed, some of these models even showed that final topological features (e.g., number
of modules) might purely depend on properties of the dynamical model (Yuan & Zhou, 2011).
In other words, they did not provide insights about a general mechanism specifying which
topological changes might be necessary for the emergence of modular structure. Compared
with this group of models, our model is different in that the topological reinforcement princi-
ple is agnostic with respect to the specific dynamical regime, and it explicitly addresses the
topological changes that take place in the network.

An alternative modeling approach is provided by generative models, where typically a given
probability function governs the insertion of links and/or nodes during simulations (Betzel &
Bassett, 2017). Recent work has shown that including homophily as a factor to determine
connection probability (and after proper data-driven parameter tuning) makes it possible to
account for a great deal of functional (Vértes et al., 2012) as well as structural (Betzel et al.,
2016) topological features of real large-scale brain networks. Although these studies provide
a valuable basis for confirming the importance of TO as an essential feature and reducing the
dimensionality of brain connectivity to a few model parameters (Betzel & Bassett, 2017), dis-
entangling the mechanistic nature of the phenomena (e.g., modularity emergence) turns out
to be nontrivial, since information about the final state might be explicitly built-in in the
generative model. But even more crucially, how the generative function is actually imple-
mented in real systems is out of the scope of this kind of modeling approach. As a comple-
ment to this group of models, our contribution offers a concrete scenario in which a generative
mechanism can actually be implemented in a biologically more realistic fashion.

In summary, as expected for any modeling approach, a trade-off exists between genera-
tive and activity-based models. Phenomenological descriptions and mechanistic explanations
complement each other and a gap remains for explaining how they link to each other. Our con-
tribution represents an attempt to address this gap: first, by providing an explicit topological
mechanism of module formation (generative mechanism); second, by trying to reconcile such
an abstract level of analysis with the biological implementation, by means of an activity-based
formulation of the model.

The present results are subject to several methodological considerations. For example, our
study did not take into account a geometrical embedding and rather focused on the pure topo-
logical contribution of the topological reinforcement. Although we recognize that the brain is
a spatially embedded system and that physical constraints, such as wiring-cost, play a funda-
mental role shaping brain connectivity (Henderson & Robinson, 2013), previous studies have
shown that, in addition to them, topological aspects are essential to describe real connectomes
(Betzel et al., 2016; Kaiser & Hilgetag, 2006). Thus, we aimed at isolating the topological ef-
fect and avoiding the situation in which geometric constraints, such as the distance-dependent
probability of connection used in previous studies (Jarman, Trengove, Steur, Tyukin, & van
Leeuwen, 2014), introduce already by themselves a clustered connectivity, thus potentially
overriding the changes based on the topology itself. Specifically for the case of our model,
an initial spatially constrained, distance-dependent connectivity could also create “proto-
modules” on which the connectivity would develop.

For sufficiently long simulations, a stationary behavior is observed. However, because of
their relative simplicity, the rules tend to disconnect the evolving networks (see Supporting
Information Figure S5, Damicelli etal., 2019). This consequence can also be found in previous
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studies with this type of models, where other modeling choices were made, such as discarding
runs with disconnections or explicitly using network size and density that avoid such a scenario
(Rubinov, Sporns, van Leeuwen, & Breakspear, 2009; van den Berg & van Leeuwen, 2004).
From a practical point of view, we chose a number of rewiring steps that avoids such scenario.
We recognize an interesting line for future work taking into account possible counteracting
mechanisms that might balance out disconnections and add realism to the model.

Other interesting potential variations of the presented model for future work could include
networks with weighted edges where the plasticity rule acts regulating the weights, as well as
model settings simulating developmental pruning processes, where the total network density
decays over time.

Regarding the plausible biological implementation, we chose a simple abstract model for
computational tractability. It would be interesting to compare our framework with more bio-
logically realistic dynamical models, such as networks of spiking neurons.

CONCLUSIONS

Our findings suggest a selective reinforcement of the topological overlap as a plausible mech-
anism contributing to the modular organization of brain networks. Moreover, under appropri-
ate conditions, functional connectivity might act as a proxy, or a dynamical representation, of
topological overlap. Thus, biological-inspired plasticity rules, such as the Hebbian rule, can
indirectly promote modularity. To our knowledge, these findings constitute a first topologi-
cally mechanistic explanation of module formation in complex brain networks and its link to
a physiologically plausible realization. Despite the simplicity of our framework, we trust it to
carry a conceptual value that contributes to the long challenging path of understanding the
fundamental principles of brain organization.

METHODS
Networks

We considered synthetic undirected networks without self-connections of size N = 100 nodes
and average connectivity A = 10 (equivalently, a density of 0.1). The networks were repre-
sented by a symmetric adjacency matrix A, where a;; = 1, if nodes i and j are connected, 0
otherwise. Initial networks were generated according to the classical Erd6s-Rényi model (Erdds
& Rényi, 1959).

We explored the robustness of the plasticity rule across various network realizations and
multiple runs (using the same initial network). We generated 100 synthetic random initial
graphs and performed 500 runs for each of them. In order to study the scaling properties of
our model, we also evaluated graphs with different densities (A, average number of links per
node, ranging between 6 and 20 by step of 2) and size (N, varying between 60 and 500 by
step of 40).

Topological Reinforcement

Topological reinforcement was based on the topological overlap metric. TO represents the
neighborhoods similarity of a pair of nodes by counting their number of common neighbors
(Ravasz et al., 2002):

Yk AikAkj + aij
min (Y aig, Yp axj) + 1 — ajj

At each rewiring step, the rule connected a randomly selected node that is neither discon-
nected nor fully connected with a nonneighbor with the highest TO, while pruning another link

(M

l’O,‘j =
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with uniform probability, hence preserving graph density. For computational efficiency, the
rewiring was applied by inserting simultaneously one link on § random different nodes at
each step, and pruning the same number of links at random, so that 2 = N links were real-
located at each rewiring step, with statistically equivalent results as when only two links (one
insertion, one pruning) per step were modified. In order to compare the results across different
graph sizes and densities, we computed the length of each run, r, by fixing the average num-
ber of rewiring per link, K, so that r = %/Kz = AK. Throughout the manuscript K = 3, which
ensures that the networks remain connected (see Supporting Information Figure S5, Damicelli

etal., 2019 for details).

Excitable Model

We used a three-state cellular automaton model of excitable dynamics, the SER model. The
activity evolves according to the following synchronous transition rules:

= S — E, if at least one neighbor is excited; or with probability f (spontaneous activation);
" E—=R;
= R — S, with probability p (recovery).

In the deterministic SER scenario, that is, f = 0 and p = 1, for each network and initial
condition setting, the activity time windows consisted of 5,000 runs of 30 time steps each and
FC was averaged over runs. The initial conditions were randomly generated, covering the full
space of possible proportions of states. In the stochastic SER scenario, thatis, f > 0and p < 1,
for each parameter setting (f, p), the activity time window consisted of one run of 50,000 time
steps. The initial conditions were randomly generated with a proportion of 0.1 nodes excited,
while the remaining nodes were equipartitioned into susceptible and refractory states.

Functional Connectivity

To analyze the pattern of excitations in the SER model, we computed the number of joint
excitations for all possible pairs of nodes. The outcome matrix is the so-called co-activation
matrix, a representation of the functional connectivity of the nodes is as follows:

Cij = ;ﬂg(xf)ﬂg(x;), (2)

where xf € S, E, R being the state of node i at time ¢, and 1 the indicator function of state E.
FC was then normalized to scale values between 0 and 1:

Cl‘]‘

feij= (3)

min(c,-i, C]]) ’

Biological Implementation: Hebbian Rule

When transposing the topological reinforcement into a biological context, by using a plausible
model of brain dynamics, it turns out that the rule corresponded to the well-known Hebbian
rule, in which we substituted FC for TO. In other words, the rewiring events occurred with
the exact same algorithm, but based on the FC derived from the activity during the given time
window. Thus, we used the SER model for activity simulation during a time window after
which FC was derived and the rewiring was applied: a random node was selected and con-
nected to a nonneighbor node with maximum FC, while a link was selected randomly with
uniform probability and pruned. Once rewired, we iterated through the same steps until the end
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of the simulation. As for the topological reinforcement and for computational efficiency, the
rewiring was applied simultaneously on & different nodes at each step. In order to keep the
final networks comparable, the total number of rewiring steps was the same for both plasticity
modalities, as defined above. According to the SER scenario, stochastic or deterministic, we
evaluated the model for different parameter constellations or initial conditions, respectively.
For one initial graph, we studied each possible combination of parameter constellation/initial
condition by performing 150 simulation runs, and the final graph measures were averaged
across runs.

Network Analysis

Synthetic graph realizations, basic graph properties (clustering, path length, small-world), com-
munity detection, matrix reordering, and graph layouts were performed using the Brain Con-
nectivity Toolbox (Rubinov & Sporns, 2010) (Python version 0.5.0; github.com/aestrivex/bctpy)
and NetworkX (Hagberg, Schult, & Swart, 2008). For a given graph, communities were ex-
tracted by means of the Louvain algorithm that attempts to maximize the modularity of the
network by using the so-called Q value (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008).
Similarity between networks and agreements was assessed by means of the Pearson correla-
tion between their connectivity matrices. Overlap between partitions was probed based on the
normalized mutual information between the communities (Meil, 2007).

Module Agreement and “Proto-Modules”

From a given initial network, multiple simulation runs (500) were performed, and the commu-
nity detection algorithm was applied on each final graph to find a partition of the nodes into
communities. Then, an agreement matrix P was computed across all final partitions, where
pij quantifies the relative frequency with which nodes i and j belonged to the same commu-
nity across partitions. Finally, the community detection algorithm was applied 100 times on
P, yielding a representative set of final partitions of the nodes into non-overlapping commu-
nities given an initial graph (Figure 2). In order to probe the structure of each initial graph
and find potential “proto-modules,” we applied the community detection on the initial graph.
Because of the weak signal of random graphs, the stochasticity and associated degeneracy of
classical community detection algorithms, a consensus clustering was employed to generate
stable solutions. For each random initial graph, the community detection algorithm was applied
500 times, then an agreement matrix was computed, named P;,;;, and finally the community
detection algorithm was applied 100 times on this agreement matrix, yielding a representative
set of (stable) partitions of the initial graph (Figure 2).

Statistical Assessments

In order to assess the significance of the results, null network models were generated. When
comparing networks in terms of similarity (by Pearson correlation), a null model was generated
by randomly rewiring a given graph (once per link), while preserving the degree distribution
(Maslov & Sneppen, 2002). Two null models where used when comparing networks in terms
of partition overlap. For comparison of individual runs (initial vs. final structures or initial vs.
final agreements), we simply used a rewired initial graph as explained above instead of the
actual one that was used as initial condition for the run. As null model for the comparison of
agreement matrices, a null agreement P,,,;; was constructed by first shuffling the individual
partitions (i.e., conserving the number of modules and their sizes, but randomly altering the
nodes affiliation) and then computing the agreement across them. Thus, such a null model
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generated the expected distribution of agreement values that would occur purely by chance
for a given number of nodes and modules of given sizes.
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