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ABSTRACT The American Association for Cancer Research (AACR) Project Genomics Evidence 
Neoplasia Information Exchange (GENIE) is an international pan-cancer registry 

with the goal to inform cancer research and clinical care worldwide. Founded in late 2015, the mile-
stone GENIE 9.1-public release contains data from >110,000 tumors from >100,000 people treated at 
19 cancer centers from the United States, Canada, the United Kingdom, France, the Netherlands, and 
Spain. Here, we demonstrate the use of these real-world data, harmonized through a centralized data 
resource, to accurately predict enrollment on genome-guided trials, discover driver alterations in rare 
tumors, and identify cancer types without actionable mutations that could benefit from comprehensive 
genomic analysis. The extensible data infrastructure and governance framework support additional 
deep patient phenotyping through biopharmaceutical collaborations and expansion to include new data 
types such as cell-free DNA sequencing. AACR Project GENIE continues to serve a global precision 
medicine knowledge base of increasing impact to inform clinical decision-making and bring together 
cancer researchers internationally.

SIGNIFICANCE: AACR Project GENIE has now accrued data from >110,000 tumors, placing it among 
the largest repository of publicly available, clinically annotated genomic data in the world. GENIE has 
emerged as a powerful resource to evaluate genome-guided clinical trial design, uncover drivers of 
cancer subtypes, and inform real-world use of genomic data.
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INTRODUCTION
The American Association for Cancer Research (AACR) 

Project Genomics Evidence Neoplasia Information Exchange 
(GENIE) is an international, open-source, pan-cancer regis-
try of real-world clinical and genomic oncology data built 
through sharing of clinical-grade sequencing and medical 
data among participating institutions (1). The initiative was 
launched in late 2015 to develop the evidence base neces-
sary to facilitate clinical decision-making and catalyze trans-
lational research internationally. To date, the project has 
released 12 data sets publicly, with the milestone 9.1-public 
release containing variant calls from more than 110,000 
tumors that are the subject of this report. Of note, the top 
three cancer types within the registry (lung, breast, and 
colorectal cancers) are each represented by more than 10,000 
tumors. A major motivation for developing the GENIE regis-
try was to aggregate the data necessary to show significance 
in rare cancers as well as rare variants in common cancers, 
as exemplified by the recent analyses of AKT p.E17K– and 
ERBB2-mutant breast cancers (2, 3).

Importantly, the broader community is using GENIE regis-
try data. As of April 2022, >10,500 users had registered to use 
the data, and 624 articles have cited the registry. Studies using 
the data fall into three broad categories: updated prevalence, 
external validation studies, and hypothesis generation. Use cases 
include a study of racial differences in the genomic profiling 
of patients with metastatic prostate cancer in GENIE, which 
found that tumors from Black men harbored more clinically sig-
nificant mutations than men from white or Asian backgrounds 
and recommended larger controlled studies (4). Another inves-
tigation compared the molecular landscapes of early-onset and 
late-onset appendiceal cancer and discovered distinct nonsilent 
mutations among younger patients (5), setting the stage for 
the development of potential therapeutic advances for this rare 
disease. The same group also found unique distributions of 
nonsilent mutations and tumor mutation burden by race among 
patients with early-onset colorectal cancer (6). Given the increas-
ing scale and breadth of the data, GENIE data are increasingly a 
resource for somatic variant classification in clinical laboratories 
to guide the interpretation of cancer genomes (7).

https://www.zotero.org/google-docs/?k18c6G
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The ultimate vision for Project GENIE is to further out-
comes for patients with cancer through improved clinical 
decision-making. To demonstrate aspects of the clinically 
oriented genome analysis possible with the current scale of 
GENIE data, we present here a landmark analysis of >110,000 
tumors from >100,000 individuals with cancer with a focus 
on clinical trial matching, variant actionability, rare tumor 
drivers, and opportunities for expanded genomic testing. 
We also place these data in perspective of the initial release 
of GENIE data 5 years ago and highlight the changing land-
scape of the practice of precision medicine during that time. 
We expect that these examples will open the door to more 
in-depth discovery research and further encourage the use 
and growth of GENIE data across all areas of cancer research.

RESULTS
The GENIE Consortium after 5 Years

The registry is backed by an international consortium of 
academic researchers dedicated to precision medicine and 
open science. During the public launch of the project, a com-
mitment was made to expand the consortium. In May 2018, 
11 new participating institutions were added to the project 
following an open call (https://www.aacr.org/wp-content/
uploads/2019/11/GENIE_New_Participant_Criteria.pdf). 
Expansion brought not only new data and testing platforms 
but also the need for revised project governance. Each par-
ticipating institution has a seat on the project steering com-
mittee and an opportunity to serve on the smaller, rotating 
executive committee, which is responsible for timely decision-
making. A solid governance framework permits operational 
flexibility and ensures that the project remains nimble and 
compliant. Good stewardship of the patient data entrusted 
to the project is paramount and assured through the pro-
ject’s terms of access and data retraction policy. The latter 
has enabled the removal of 162 (0.86%), 406 (0.42%), and 59 
(0.05%) samples from the 1.0-, 8.0-, and 9.0-public releases, 
respectively, at the request of the involved patients.

There has been near linear growth from the first public 
release of 18,804 sequenced samples through the 9.1-public 
release of 110,704 samples from 102,884 patients (Fig.  1A). 
A substantial increase in cases contributed corresponded 
with the addition of 11 institutions beyond the eight found-
ing members, reflected in the 6.0-public release and sub-
sequently updated in the 6.2-public release. Similarly, the 
number of institutions providing copy-number alteration 
data has increased from four in the 5.0-public release to seven 
in the 9.1-public release. Similarly, the number of institutions 
providing structural variant (gene fusion) data has steadily 
increased beginning with the 7.0-public release (Supplemen-
tary Fig.  S1). Although referred to as fusions throughout 
the article, these data largely represent structural variants 
exclusively inferred from gene panels in this release and likely 
require further validation through whole genome–, RNA-, 
or protein-based methodologies; as such, we advise caution 
when interpreting the absence of a given structural variant.

In the 9.1-public release described in this article (Fig. 1B), 
more than half of the specimens profiled were primary 
tumors (57%), nearly a third were metastases (32%), and the 
remainder were hematologic malignancies, local recurrences, 

or otherwise unknown (11%). Reflecting cancer types likely 
to benefit from precision medicine strategies due to exist-
ing genome-guided therapies or the need for investigational 
findings, the cancer types making up the top 50% of cases 
were non–small cell lung cancer (NSCLC; 15%), breast can-
cer (12%), colorectal cancer (10%), glioma (6%), melanoma 
(4%), and pancreatic cancer (4%). Below 4% in the cohort are 
tumors found only in one sex, including ovarian, prostate, 
and endometrial cancers as well as cancers of unknown pri-
mary (3%) and a long tail of rare tumors. The age of genomic 
testing was distributed around a median of 61 years old, with 
a notable inclusion of tumors from pediatric patients <18 
years old (4,044 cases, 3.6% of the cohort). The distribution 
of reported primary race suggests a bias in precision medicine 
program utilization at centralized academic medical centers, 
with patients of white ancestry making up 72% of the cohort, 
unknown or not collected comprising 14%, Black ancestry 
making up 6%, Asian comprising 5%, and Native American, 
Pacific Islander, and other reported races together making 
up  <3%. Generally, GENIE participating institutions aim 
to sequence as many patients as feasible as part of routine 
patient care; therefore, underrepresentation of racial and eth-
nic groups more likely represents a paucity of such patients 
receiving care at tertiary referral centers as opposed to implicit 
bias. Further, although the relative numbers of racial and eth-
nic minorities may appear low, the GENIE registry remains 
among the largest single collections of such data for use by 
the research community. The consortium members, however, 
recognize the opportunity to improve representation in the 
database and are taking a multipronged approach including 
local efforts to enhance sequencing in community practice, 
an open call for new GENIE participating institutions that 
serve underserved communities, and an effort to add genetic 
admixture measures to self-reported race (8).

Since the project inception, an iterative quality assurance 
program has been developed, implemented, and continuously 
refined with each release, leading to the development of stand-
ardized test assay definitions and quality dashboards to pro-
vide feedback to the contributing centers (Fig. 2). As a result, a 
number of mutations were removed from the 6.2-public release 
as new filters were implemented centrally to identify and 
remove center-specific artifacts (Fig.  1A). Similarly, filters to 
identify and manually check for low-frequency artifacts or bio-
logical confounders such as clonal hematopoiesis are continu-
ally refined. As of the 9.1-public release, this iterative process 
improvement has led to the development of 91 standardized 
test assay definitions and associated quality dashboards to pro-
vide feedback to the contributing centers and users of the data 
(Fig. 3). These metadata are documented in a data guide for each 
release (e.g., https://www.synapse.org/#!Synapse:syn24179663  
for the 9.1-public release).

Comparison with The Cancer Genome Atlas
The Cancer Genome Atlas (TCGA) was a seminal project 

characterizing over 10,000 primary tumors across 33 cancer 
types. Accordingly, we aimed to compare gene-level TCGA 
mutation frequencies to matched cancer types in the GENIE 
real-world registry. In this analysis, we used somatic mutation 
calls from the Multi-Center Mutation Calling in Multiple 
Cancers (MC3) project (9). The MC3 mutation calls are derived 

https://www.aacr.org/wp-content/uploads/2019/11/GENIE_New_Participant_Criteria.pdf
https://www.aacr.org/wp-content/uploads/2019/11/GENIE_New_Participant_Criteria.pdf
https://www.synapse.org/#!Synapse:syn24179663
https://www.synapse.org/#!Synapse:syn24179663
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Figure 1.  AACR Project GENIE 9.1-public release summary. A, Linear growth in the number of samples in each public release of registry data 
(green bars); releases 1.0.1 through 4.1-public contained data from the eight founding institutions. The 5.0-public release was the first to contain data 
from new participating institutions, while the 6.0-public release was the first to contain data from all new participating institutions. Some site data were 
subsequently removed for quality reasons, resulting in the 6.2-public release (yellow star); the 9.1-public release (black arrow) is the version on which 
this article is based. The total number of mutations per release (blue bars), copy-number alterations (gray bars), and fusions (purple bars, structural 
variants) are also shown. A spike in the number of mutations in the 5.0-public release was subsequently corrected in the 6.2-public release after adjust-
ment of centralized data filtering. The number of institutions providing fusion data (purple bars) has increased from three beginning with the 5.0-public 
release to six in the 9.1-public release (Supplementary Fig. S1); the large spike observed in the 7.0-public release and moving forward reflects the clear-
ing of a backlog at a major contributing institution. B, The overview of the 9.1-public release in cBioPortal shows the top 11 cancer types and detailed 
cancer types (panels 1 and 2, respectively); the source of the sequenced sample (3); the age distribution of the patients whose samples were sequenced 
(4); the sex and race distribution (5 and 6, respectively); as well as the most frequent copy-number alterations, fusions, and mutated genes (7, 8, and 9, 
respectively). Panel 8 lists the genes most frequently subject to a gene fusion, with the specific partner genes for individual fusions explorable through 
the Patient or Query views in cBioPortal. The full cohort can be explored at https://genie.cbioportal.org.
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from tumor–normal pairs processed at only three TCGA-
funded Genome Sequencing Centers (GSC) and analyzed by a 
uniform pipeline. Conversely, the GENIE 9.1- public release is 
composed of 91 total assays from 19 cancer centers and a com-
bination of primary, recurrent, and metastatic samples that 

predominantly represent tumor-only sequencing workflows, 
with matched normal samples in only 53,516 cases (48%).

Despite these fundamental differences, the gene-level muta-
tion frequencies we assessed by root-mean-square deviation 
(RMSD) and weighted RMSD (wRMSD; Supplementary Fig. S2)  

https://genie.cbioportal.org.
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Figure 2.  Workflow for variant 
filtration from site upload to 
analysis ready calls. The flowchart 
depicts the processing workflow 
of the GENIE data from the sites 
to the final data release. Sites 
prepare, filter, and upload data 
according to a prespecified format 
to the Synapse platform. Auto-
mated processes perform quality 
assurance checks and harmonize 
data across sites by mapping 
clinical data and genomic variants 
to standardized terminologies. Har-
monized files representing patient, 
sample, mutation, and other 
information are then processed 
through sample and variant filters 
to remove out-of-scope data or 
potential artifacts. After filtering, 
final quality control (QC) checks 
are performed, and the public data 
releases are made available to 
users on Synapse and cBioPortal. 
BED, browser extensible data; MAF, 
mutation annotation format; PHI, 
protected health information; VCF, 
variant call format.
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were generally concordant across the 33 TCGA cancer types. 
The median wRMSD was 0.32 (interquartile range, 0.13–0.55) 
with a few notable outliers at both the cancer and gene lev-
els. For example, mutation frequencies in uterine carcinosar-
coma were significantly higher in TCGA for TP53 and FBXW7, 
whereas modestly higher in GENIE for PIK3CA, contributing to 
the highest wRMSD of 1.38. These discrepancies may reflect the 
unbiased tumor–normal exome sequencing of TCGA versus the 
clinical context of GENIE, which has changed over time based 
on the landscape of actionable and reportable genes. Although 
differences in panel coverage were controlled for in this analysis, 
we expect some of this variability is due to the heterogeneity of 
complex “real-world” patient populations in GENIE treated at 
the 18 participating institutions at different stages of treatment 
compared with primary tumors that were the focus of TCGA. 
We also cannot entirely rule out the potential for technical arti-
facts in comparing such complex projects across so many heter-
ogeneous cancer types. For example, mutation frequencies were 
significantly higher in TCGA for CSMD3 (RMSD 14.4), SYNE1 

(RMSD 12.58), and LRP1B (RMSD 12.22) across cancer types 
(these and other RMSD-ordered genes are included in Supple-
mentary Fig. S3). These and numerous other outlier genes have 
been previously characterized as false-positive findings (10), 
demonstrating the importance of comparing such independ-
ent data sets. Although our analysis has focused on quality 
control characterization of high-frequency outlier genes, there 
are a large number of genes that are mutated at low frequency, 
which would be candidates for significance testing (10, 11) and 
algorithm development in future studies.

Virtual Clinical Trial Matching Using  
GENIE-scale Data

As a real-world clinical sequencing data set, the GENIE 
cohort can be used to model real-world clinical scenarios, 
including clinical trial enrollment. Here, we extend an analysis 
from the initial GENIE article to demonstrate the utility of 
GENIE in the clinical trial space through comparison with 
the NCI-MATCH trial. We attempted to match all GENIE 

Figure 3.  General GENIE pipeline (Journey Map). GENIE data go through four distinct processes to ensure that high-quality data reach the end users; 
responsibilities are shared by consortium member functional teams. During preprocessing (blue lane), data are formatted, filtered, and checked at the 
center prior to upload; Sage validates data received and issues are communicated to the providers; and if necessary, AACR communicates critical messages 
to centers contributing data. Sage processes (green lane) the collected data monthly, including reannotating variants using Genome Nexus and consistent 
formatting for release. Processed data are released (yellow lane) to the consortium for review. Upon release (red lane), all stakeholders participate in 
cross-functional team communication about potential quality issues and fixes prior to lock and public release (not shown). QC, quality control.
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patients to 34 of 37 substudies of the NCI-MATCH trial on the 
basis of clinical and genomic data using MatchMiner (12). Specif-
ically, patients were mapped to each substudy of NCI-MATCH 
based on inclusion and exclusion criteria for mutations, copy-
number alterations, structural variants, age, and cancer type. 
Although this approach does not include all eligibility criteria 
required for enrollment on the trial, it provides an estimate 
based on genomic criteria. Overall, 26,248 patients within 
GENIE (26%) matched to at least one substudy within NCI-
MATCH. The distribution of cancer types of the patients 
matching to each substudy is shown in Fig.  4A. Focusing 
on substudies that were open at the time of the first GENIE 
analysis, differences in cancer type distributions per sub-
study could generally be explained by changes in eligibility 
over time. For example, the NCI-MATCH substudy H of dab-
rafenib and trametinib in BRAF p.V600E/K–mutant tumors 
added an exclusion for NSCLC following the FDA approval 
of those drugs in NSCLC (13), resulting in a relative decrease 
in lung cancer matches since our initial report.

Comparison of the overall eligibility rate per substudy 
remained similar between GENIE and NCI-MATCH reported 
results (Fig.  4B; r-squared  =  0.62), supporting the utility of 
GENIE to estimate real-world trial enrollments. The size of this 
GENIE cohort enables the examination of rare populations. 
For example, substudies T and A, which had just two and seven 
patient matches, respectively, in the original GENIE article, 
now have 26 and 89 patient matches (Fig.  4A). Interestingly, 
despite the size of GENIE, zero patients match to substudy X 
of NCI-MATCH, consistent with the true enrollment, as sub-
study X closed without any enrollments due to a highly specific 
selection of variants within DDR2 (1,227 of 72,906 patients 
tested for this gene had DDR2 mutations, but none matched 
the specific variants used for enrollment). These examples 
illustrate the ability of GENIE to provide a data-driven projec-
tion for trial enrollment and can be used to determine when 
populations are so rare that a trial may not be feasible.

The overall NCI-MATCH cohort, regardless of eligibility 
or enrollment, can be considered a real-world data set similar 
to GENIE. Interestingly, despite the similarity in eligibil-
ity rates per substudy, there are differences in the relative 
representation of the most common cancer types between 
the GENIE and NCI-MATCH cohorts (Fig. 4C; ref. 14). For 
example, although NSCLC is the most common cancer type 
represented in GENIE at just under 15% of cases, it is only 
the fourth most common in NCI-MATCH (7%). These dif-
ferences in overall cancer type frequency may reflect distinct 
biases of these data sets. Given the variety of FDA-approved 
genomically targeted therapies for NSCLC, patients with 
NSCLC may be more likely to be sequenced as part of their 
clinical care and thus become part of the GENIE cohort, 
while being less likely to enroll on the MATCH trial.

Assessing Clinical Actionability: Analysis of 
Alterations Associated with Sensitivity or 
Resistance to Targeted Therapies

To determine the frequency of clinically actionable altera-
tions across the current GENIE data set, we mapped muta-
tions to variant interpretations from the OncoKB knowledge 
base version 3.10 (15). Since our previous analysis in 2017, 
we observed more than a 2-fold increase in the percentage of 

tumors harboring level 1 or level 2 (formerly level 2A) altera-
tions corresponding to FDA-approved biomarker-specific 
therapies or standard-care therapies, increasing from 7.3% to  
17.0% (Fig.  5). At the same time, the frequency of level 3A  
alterations, which correlate to promising investigational 
therapies in a specific tumor type, have decreased slightly 
to 4.7% from 6.4%. These changes are likely the result of 
several recent FDA approvals. Of note, our previous analysis 
found the highest percentage of level 3A alterations in breast 
cancer in part due to the high frequency of PIK3CA muta-
tions. Following the approval of the alpha-selective PI3K 
inhibitor alpelisib for the treatment of PIK3CA-mutated, hor-
mone receptor–positive breast cancer in 2019, these patients 
now have a level 1 therapy option (16). Other recent FDA 
approvals include sotorasib for KRASG12C-mutant non–small 
cell lung carcinoma (17), PARP inhibitors for prostate can-
cer with homologous recombination repair gene mutations  
(18, 19), IDH and FLT3 inhibitors for leukemia (20–23), FGFR 
inhibitors for bladder and hepatobiliary cancers (24, 25), MET 
inhibitors for NSCLC (26), and BRAF inhibitors for colorectal, 
thyroid, and histiocytic neoplasms (13, 27, 28). An additional 
16.5% of cases harbor a level 3B alteration (formerly level 2B 
or 3B), indicating that the alteration has been associated with 
clinical benefit in another tumor type. Overall, 38.3% of cases 
harbored at least one potentially actionable therapeutic altera-
tion, although this varied considerably across tumor types.

In addition to sensitizing alterations, we examined the 
frequency of alterations associated with therapeutic resist-
ance. Resistance to molecularly targeted therapies can be a 
major obstacle in the treatment of patients with cancer. The 
mechanisms underlying therapeutic resistance are complex 
and can include innate insensitivity, gain of secondary muta-
tions in the drug target, and other adaptive responses (29). 
The GENIE data set, which is enriched with samples from 
patients with late-stage, heavily treated cancer, can serve as an 
important resource to examine mechanisms of therapeutic 
resistance. To better evaluate the frequency of clinically sig-
nificant resistance mutations, we mapped alterations known 
to be associated with disease context–specific therapeutic 
resistance from the OncoKB knowledge base. Additionally, 
we curated a list of alterations with emerging evidence of 
clinical resistance from the COSMIC database (30) and the 
scientific literature (Supplementary Table  S1). These altera-
tions have been strongly associated with therapeutic resist-
ance in tumor types in which targeted therapy is standard, 
but do not currently influence clinical decision-making. High 
percentages of resistance alterations were identified in colo-
rectal cancer, in which 46.6% of cases harbored KRAS or 
NRAS alterations associated with resistance to cetuximab 
and panitumumab, and gastrointestinal stromal tumors, in 
which 18.2% of cases harbored a KIT or PDGFRA mutation 
associated with imatinib, sunitinib, or avapritinib resistance 
(Fig. 5). The highest variety of resistance mutations occurred 
in NSCLC, in which 5.4% of cases harbored alterations in 
EGFR, MET, ALK, ROS1, or RET. Many of these alterations are 
associated with acquired resistance following treatment with 
a tyrosine kinase inhibitor, which reflects the high number of 
targeted therapies available for these patients. In the future, 
the addition of more detailed clinical data through the BioP-
harma Collaborative (BPC) will allow a more comprehensive 
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analysis of resistance mechanisms, with the potential to 
inform strategies to overcome therapeutic resistance.

Driver Mutations in Rare Cancers Are Discoverable 
in GENIE

To demonstrate the power of GENIE to uncover driver 
mutations associated with rare cancers, we performed a 
mutational analysis of tumors with fewer than 50 samples 
assigned to a terminal OncoTree classification node or a set 
of terminal child nodes related to one ancestor (∼0.05% of 
the cohort; Fig.  6A). This approach identified 399 unique 
OncoTree codes across 32 tissue types from 5,552 tumor 
samples comprising 2% of the data set (Supplementary 
Fig.  S4A). To the 35,312 somatic mutations within these 
tumor samples, we applied the 20/20+  algorithm (31), 

which identifies oncogenes and tumor suppressor genes 
from panel-derived mutations by integrating data from 
mutational clustering, in silico pathogenicity, mutation con-
sequences, and replication timing. This method identified 
171 putative driver genes (FDR  <0.05) associated with 29 
cancer types, all of which were known drivers consistent 
with the current content of clinical gene panels that make 
up the bulk of data in GENIE. Consistent with known 
mutational frequencies in common cancers, the most com-
monly mutated tumor suppressor genes across all rare 
tumors were TP53, KMT2D, and TET2, whereas the most 
commonly mutated oncogenes were PIK3CA, KRAS, and 
BRAF (Fig. 6B; Supplementary Fig. S4B).

We also identified sets of driver mutations that were unique 
to subsets of rare tumors, some of which we have highlighted 

Figure 4.  NCI-MATCH + GENIE. A, Results per substudy of NCI-MATCH showing the number of patients matching based on the GENIE 9.1 release and 
the proportion of matches for each of the top 10 most frequently matched cancer types based on top-level OncoTree codes. The number of patients 
who matched to each substudy in the first GENIE article is also provided for comparison. amp, amplification; CNS, central nervous system; CUP, cancer 
of unknown primary; del, deletion; mut, mutation. B, The overall percentage of patients who match the eligibility for each substudy for the latest GENIE 
cohort compared with reported results for NCI-MATCH. A linear regression, shown in blue, shows a high correlation with an r-squared of 0.62. C, Overall 
frequency of the eight most common cancer types among patients in the GENIE cohort compared with the frequency among 5,540 patients screened 
through NCI-MATCH. 95% confidence intervals are shown.
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here. In an example of recapitulating known biology in a 
large number of related rare tumors, we detected a high prev-
alence of somatic mutations in DICER1, an RNase-III endo-
nuclease that is essential for processing pre-miRNA into 
active mature miRNA. Somatic nonsilent DICER1 mutations 
were detected in 108 tumor cases, with a higher frequency 
in Sertoli–Leydig cell tumors (n  =  12), uterine adenosarco-
mas (n = 10), and pleuropulmonary blastomas (n = 4), all of 
which have also been reported in individuals carrying ger-
mline variants. We observed a high abundance of pathogenic 
mutations within two hotspots in the DICER1 ribonuclease 
3 domains (Fig.  6C), which occurred at a frequency higher 
than that observed in TCGA: p.E1813 (14% vs. 1%) and 
p.D1790N (9% vs. 1%). These two hotspot mutations were 
observed in 11 of the 12 Sertoli–Leydig cell tumors, with yolk 
sac tumors exclusively harboring the p.D1790N mutations. 
Similarly, we noted a high prevalence of β-catenin (CTNNB1) 
mutations (n = 218 tumors; Fig. 6C) in adamantinomatous  
craniopharyngiomas (n = 25) and rare hepatobiliary tumors 

(n  =  46: pancreatoblastomas, solid pseudopapillary neo-
plasms, and hepatoblastomas). The most common mutations 
in this oncogene occurred in known hotspot regions that dis-
rupt phosphorylation-dependent ubiquitination of β-catenin, 
thereby resulting in its stabilization and continued activation 
(p.S45 phosphorylated by CK1-α as well as p.S33, p.S37, and 
p.T41 phosphorylated by GSK-3β). These findings confirm 
known biological drivers of these rare tumors in both adults 
and children and recapitulate recent cohort studies of similar 
size (32–34). As GENIE case numbers increase, the targeted 
in-depth annotation will provide unique opportunities to 
determine the clinical consequences of specific alterations in 
rare cancers, as well as rare alterations in common cancers.

Cancers without Driver or Actionable  
Mutations in GENIE

As clinical genome and transcriptome sequencing strate-
gies have begun to mature (35), we sought to determine 
the frequency of tumors with no alterations detectable by  

Figure 5.  Actionability—sensitizing and resistance alterations. Tumor types are shown by decreasing overall frequency of actionable therapeutic 
sensitizing alterations on the top, whereas the frequency of alterations associated with therapeutic resistance is shown below. Actionable sensitizing 
alterations were defined by the OncoKB knowledge base, whereas resistance alterations include actionable alterations from OncoKB and alterations with 
emerging evidence curated from the COSMIC database and the scientific literature. For resistance alterations, additional information showing genes and 
percentage of samples mutated are included below each bar. This analysis includes the top 30 tumor types in GENIE by sample count.
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the consortium’s current targeted sequencing strategies. Of the 
110,704 samples included in this analysis, 19% had either no 
mutations identified (n = 12,138) or only nondriver mutations 
(n = 9,161; Supplementary Fig. S5). This indicates that at least 
one in five patients might benefit from a more comprehensive 
analytic approach, such as whole-genome and transcriptome 
sequencing, to provide insight into the molecular landscape 
of these tumors beyond that captured by current targeted 
panels and to fuel novel precision medicine approaches.

DISCUSSION
AACR Project GENIE has now released clinical and genomic 

data from >100,000 patients, a full year ahead of the initial 
projection of 100,000 cases within 5 years of the initial release 
of 19,000 cases in January 2017 (1). With a focus on clini-
cally derived cohorts, accredited laboratory testing, and strict 
data standards, GENIE is an important resource for linking 
cancer genotypes to treatment outcomes for cancer. Through 
regular, periodic data releases, longitudinal data within the 
GENIE registry enable data analysts to “take the pulse” of 

precision oncology practices as changes in clinical practice 
and trial design are mirrored in the underlying data. Since 
the publication of the initial release, over a dozen genomic 
variants have been upgraded to FDA recognized or standard 
of care (OncoKB level 1 or 2), reflecting the broad adoption of 
genomic medicine approaches throughout oncology practice. 
This represents an opportunity to capture and learn from 
an increasing scale of outcomes data as genome profiling 
becomes a part of standard practice.

The growth of GENIE has been driven by broader adop-
tion of genome-guided precision medicine worldwide and 
increased participation, as data are now included from 19 
cancer centers from the United States, Canada, the United 
Kingdom, France, the Netherlands, and Spain. This growth 
has led to process improvements at all participating centers 
as well as an open forum for regular discussions of technical 
aspects of clinically implemented genome profiling. Centrali-
zation of the data by Sage Biosystems has enabled cross-insti-
tutional evaluation of technical artifacts, systematic filtering 
of common germline variants and mutations associated 
with clonal hematopoiesis, and dissemination to the broader 

Figure 6.  The somatic mutational landscape of rare tumor subtypes. A, Strategy for the identification of rare tumor subtypes, using cancers 
annotated under the top-level “Pancreas” OncoTree node as an example. Terminal OncoTree nodes with fewer than 50 associated sequenced samples 
(colored red) were included in the rare tumor analysis. IPMN, intraductal papillary mucinous neoplasm; MCN, mucinous cystic neoplasm; PAAC, acinar cell 
carcinoma of the pancreas; PAAD, pancreatic adenocarcinoma; PAASC, adenosquamous carcinoma of the pancreas; PACT, cystic tumor of the pancreas; 
PANET, pancreatic neuroendocrine tumor; PB, pancreatoblastoma; PSC, serous cystadenoma of the pancreas; SPN, solid pseudopapillary neoplasm of the 
pancreas; UCP, undifferentiated carcinoma of the pancreas. B, Heat map showing the distribution of the proportion of nonsilent mutations across rare 
tumor sites. For brevity, only tumor subtypes with more than 40 samples sequenced are included and driver genes with a mutational prevalence less than 
10% across all analyzed tumor subtypes have been omitted. PNS, peripheral nervous system. C, Mutational plots showing high frequency of mutations in 
uncommonly mutated driver genes: DICER1 (tumor suppressor gene) and CTNNB1 (oncogene).
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community through a dedicated instance of cBioPortal. As 
the data set and scientific understanding continue to grow, 
process improvement efforts continuously refine these cen-
tralized filters to identify and address lower frequency clonal 
hematopoiesis variants, center- or platform-specific hotspot 
artifacts, and differences in panel performance across sites. 
An example of this is the development of a computational 
model to enable the comparison of tumor mutation burden 
measurements across the many different testing platforms 
within the GENIE consortium (36). These systems and pro-
cesses are readily expandible to the comprehensive whole-
exome, genome, and transcriptome sequencing as well as 
other types of genomic data that are increasingly affecting the 
management of patients with cancer.

Although the GENIE database is largely populated by targeted 
gene sequencing panels applied to solid tumor specimens (91.5%, 
although 9,433 hematologic cancers are included), consortium 
members have communicated plans to broaden current 
approaches. Current assays under consideration for inclusion 
in GENIE include clinical genome and transcriptome sequenc-
ing, cell-free DNA (cfDNA) sequencing, and immune profiling 
strategies. To expand the scope and accelerate the pace at which 
clinical data are collected, the project embarked on a 5-year 
precompetitive collaboration with nine biopharmaceutical cor-
porations, called the BPC, to provide deeper clinical annotation  
of  ∼50,000 patients within the registry. In keeping with the 
commitment of the project to open science, these data are made 
publicly available 12 months following data lock, with the first 
such data set released in May 2022 (https://www.aacr.org/
professionals/research/aacr-project-genie/the-aacr-project-
genie-biopharma-collaborative-bpc/bpc-nsclc-2–0-public/).  
This data set is a cohort of nearly 1,900 patients with NSCLC  
and includes prior treatment histories and real-world out
comes in addition to the detailed genomic data (https://genie.
cbioportal.org/study/summary?id=nsclc_public_genie_bpc and 
https://repo-prod.prod.sagebase.org/repo/v1/doi/locate?id=
syn27056697&type=ENTITY). The BPC has already begun a  
pilot cfDNA data sharing study within GENIE and is well 
aligned with other international cfDNA data sharing col-
laboratives such as the Friends of Cancer Research ctMoniTR 
study (https://friendsofcancerresearch.org/ctdna/). To under-
pin this expanded scope, we are currently assessing the feasi-
bility of sharing raw DNA sequencing data in addition to the 
derived calls currently shared through GENIE.

In the United States alone, an estimated 500,000 patients 
are expected to receive tumor genomic profiling in the com-
ing year, with broad uptake by the community (37). However, 
as we have seen in Project GENIE, genome data alone do 
not achieve full potential without associated clinical, his-
topathologic, and outcomes information. The collection of 
these data, however, is costly and time-consuming; therefore, 
a limited set of clinical variables is currently collected for 
each patient, with deeper clinical annotation reserved for 
specific projects, such as the AKT1 breast cancer study and 
BPC-funded collaborations. To optimize broad patient ben-
efit, clinical data sharing would ideally become as routine as 
genomic data sharing, with appropriate safeguards in place to 
protect patient anonymity. Similarly, access to genomic profil-
ing is not equally distributed across racial, socioeconomic, and 
geographic backgrounds—a fact evident in the current GENIE 

data set that reflects predominantly white, non-Hispanic 
(∼62%) patients with common cancers (∼37% of samples from 
lung, breast, and colon cancers) treated at 18 academic medi-
cal centers in large urban areas. There is therefore significant 
work to be done to increase the global representation of the 
cancer burden through reduced cost and technical barriers to 
access, increased geographic accessibility potentially through 
less-invasive cfDNA profiling, and a more inclusive approach 
to patient engagement and participation in data sharing.

Paving the way to a true learning health system will require 
consent and technical mechanisms for data generated dur-
ing the course of cancer care to be seamlessly captured and 
subsequently translated into data systems for broader down-
stream use. This may entail modifications to current privacy 
and legal statutory standards (such as the Health Insurance 
Portability and Accountability Act in the United States, the 
Personal Health Information Protection Act in Canada, and 
the General Data Protection Regulation in Europe) to expand 
the use of clinically consented data and fully enable genomic 
data sharing. The international governance framework of 
AACR Project GENIE is a model for such a global precision 
medicine strategy that has served research and clinical aspects 
of oncology well for the past 5 years and will continue to do 
so long into the future.

METHODS
Data and Analysis Standardization

All participating centers committed to providing (i) mutation, 
copy-number, and gene fusion data in standardized file formats 
(Supplementary Table S1); (ii) a minimal clinical data set of 12 data 
elements (Supplementary Table  S2); and (iii) a detailed account-
ing of the genomic regions analyzed by each assay and the speci-
mens to which each assay was applied (Supplementary Table  S3). 
The GENIE releases are hosted on Synapse (https://www.synapse.
org/#!Synapse:syn3380222) and cBioPortal (ref.  38; https://genie.
cbioportal.org). The GENIE processing pipeline, developed and 
maintained by Sage Bionetworks (https://sagebionetworks.org), is 
responsible for the transformation of input files into a merged, 
consistently formatted data set that is released on Synapse and cBio-
Portal (Fig. 3). The consortium requires centers to upload files that 
conform to each file format’s submission guidelines; a requirement 
that is checked using automated scripts run on upload. Examples 
of validation include ensuring all column headers exist, columns 
containing age values are all numerical, and values of a column fall 
within a required range. Centers are automatically alerted when 
invalid files are encountered and are required to correct them prior 
to each release upload deadline. Consortium releases are created 
once a month to give centers sufficient time to address these issues 
in advance of each biannual public release. Releases are standard-
ized by centralizing processes such as gene symbol harmonization, 
clinical attribute remapping, and variant reannotation with Genome 
Nexus (https://www.genomenexus.org).

In addition to validation and processing, there is a set of GENIE-
specified sample and variant filters that are applied to the data set to 
further assist with releasing high-quality data for each consortium 
release. Sample checks consist of (i) confirmation of sequencing date 
falling within the time frame for the release, (ii) association of each sam-
ple with a test assay definition that includes a browser extensible data 
(BED) file with the coordinates tested, (iii) provision of a cancer type 
mapped to an OncoTree code, and (iv) a scan of the variant calls to flag 
any potential multinucleotide mutations that have been reported as 
individual mutation calls and should be merged. These latter mutations 

https://www.aacr.org/professionals/research/aacr-project-genie/the-aacr-project-genie-biopharma-collaborative-bpc/bpc-nsclc-2-0-public/
https://www.aacr.org/professionals/research/aacr-project-genie/the-aacr-project-genie-biopharma-collaborative-bpc/bpc-nsclc-2-0-public/
https://www.aacr.org/professionals/research/aacr-project-genie/the-aacr-project-genie-biopharma-collaborative-bpc/bpc-nsclc-2-0-public/
https://genie.cbioportal.org/study/summary?id=nsclc_public_genie_bpc
https://genie.cbioportal.org/study/summary?id=nsclc_public_genie_bpc
https://repo-prod.prod.sagebase.org/repo/v1/doi/locate?id=syn27056697&type=ENTITY
https://repo-prod.prod.sagebase.org/repo/v1/doi/locate?id=syn27056697&type=ENTITY
https://friendsofcancerresearch.org/ctdna/
https://www.synapse.org/#!Synapse:syn3380222
https://www.synapse.org/#!Synapse:syn3380222
https://genie.cbioportal.org
https://genie.cbioportal.org
https://sagebionetworks.org
https://www.genomenexus.org
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are flagged to the contributing center for manual review and merging 
should the underlying variant calls be confirmed as “in-cis” on the same 
strand of DNA. Subsequent variant filters consist of (i) a population 
variant frequency filter to remove putative germline variants (variants 
present at <0.05% in any population in gnomAD, except for two com-
mon variants associated with clonal hematopoiesis, JAK2 p.V617F and 
DNMT3A p.R882H, which are kept), (ii) removal of variant calls outside 
of the genome coordinate regions defined for a sample’s associated 
assay, and (iii) removal of variants with reference alleles that do not 
match the human genome reference sequence (Fig. 2).

Each consortium release is accompanied by release notes and a 
dashboard document that contain release summary plots and tables. 
This dashboard contains information like sample and variant distri-
butions per center, top mutated genes per panel, and clinical attribute 
distributions. The consortium release is also imported into cBioPortal 
to provide in-depth visualization and analysis for further quality con-
trol. Although automated validation, processing, and filtering steps of 
the GENIE pipeline are essential to flag potential data problems, these 
issues are routinely followed up by a manual review of the data by the 
contributing center, which often adjusts internal processes for future 
uploads. On a monthly basis, AACR and Sage Bionetworks coordi-
nate with the centers to ensure that any validation and data issues are 
resolved to provide the highest quality public releases.

Growth of the GENIE Registry with Time
The data_mutations_extended.txt, data_clinical_sample.txt, data_

CNA.txt, and data_fusions.txt files from the most current public 
release from 1.0.1 through 9.1-public were used to determine the 
numbers of mutations, samples, copy-number alterations, and fusions 
(structural variants), respectively, for each public release.

Comparison with TCGA
Somatic mutation calls from the TCGA MC3 project (8) were 

compared with the GENIE 9.1-public release, with cancer types 
grouped together by GENIE OncoTree codes in order to match 
TCGA cancer types (refer to JSON mapping included in the code 
repository). To quantify concordance between TCGA and GENIE, 
RMSD was calculated between all data points and the diagonal for 
each cancer type. These values are included in each cancer type panel 
within Supplementary Fig.  S2. RMSD was also calculated for each 
gene to the diagonal across all cancers and ordered in Supplementary 
Fig.  S3. To mitigate the effect of low-frequency noise and identify 
high-frequency outliers, a wRMSD was calculated for all genes and 
cancers, where the weights are based on the maximum TCGA or 
GENIE frequency for a gene in a given cancer type.

Comparison with NCI-MATCH
Matching of GENIE patient data to NCI-MATCH was performed 

using the MatchEngine from the open-source clinical trial matching 
software MatchMiner (ref.  12; https://github.com/dfci/matchengine-
V2). NCI-MATCH eligibility was curated based on protocol documents 
and https://ecog-acrin.org/trials/nci-match-eay131 (accessed on Janu-
ary 17, 2021). Arms were curated to include eligibility based on muta-
tions, copy-number alterations, structural variants, and cancer type 
(oncotree_2019_12_01). Some panels included in GENIE do not iden-
tify copy-number alterations or structural variants; for those patients, 
matches were based on available data. Three arms were excluded from 
analysis due to eligibility requirements for mismatch repair deficiency 
status (Z1D) and protein loss by IHC (P and Z1G), which are not avail-
able in the GENIE cohort. Patients were matched independently to each 
arm, and each patient was counted once per arm. The output of the 
MatchEngine was processed in Python and R to generate the figures.

The match rate per arm for NCI-MATCH was obtained from 
https://ecog-acrin.org/trials/nci-match-eay131 on January 17, 2021. 
The cancer type breakdown of the MATCH cohort was obtained from 
Table  2 of Flaherty and colleagues (14). The most common GENIE 

cancer types (NSCLC, breast cancer, colorectal cancer, glioma, mela-
noma, pancreatic cancer, ovarian cancer, and prostate cancer) were 
mapped to these MATCH cancer types, respectively: NSCLC, breast, 
colorectal, central nervous system (CNS), melanoma, pancreas, ovar-
ian, and prostate.

Annotation of Clinical Significance
Annotation of clinically significant alterations was performed 

using the OncoKB Annotator (https://github.com/oncokb/oncokb-
annotator). GENIE mutation, copy-number alteration, and fusion 
data files were processed by the MafAnnotator, CnaAnnotator, and 
FusionAnnotator scripts, respectively, to add OncoKB version 3.10 
variant annotations. Output files were then imported into Tableau 
(Tableau Software, LLC) for additional visualization and analysis, 
including annotation of resistance alterations, with emerging clini-
cal evidence not annotated in OncoKB (Supplementary Table  S1). 
For samples with multiple actionable alterations, only the alteration 
associated with the highest level of clinical evidence was considered.

Driver Mutations in Rare Cancers
Rare tumors were defined as those with fewer than 50 sequenced 

samples assigned to a terminal OncoTree classification node. Sample 
selection was performed using a graph-based analysis using igraph 
(version 1.2.6) in R (version 4.0.3). The 20/20+ package (31), which 
extends the original interpretation of the 20/20 rule as proposed by 
Vogelstein and colleagues (39), was subsequently used to identify 
putative driver genes. This method integrates data from mutational 
clustering, in silico pathogenicity, mutation consequences, and repli-
cation timing within a machine-learning classifier to identify onco-
genes and tumor suppressor genes and is well suited to analyze panel 
data. We ran this classifier on the combined mutational data set 
using a pretrained pan-cancer classifier, using 100,000 simulations, 
as recommended by the authors. An FDR threshold of 0.05 was used 
to identify putative tumor suppressors and oncogenes.

Identifying Cancers without Driver or Actionable 
Mutations

Using the clinical sample file, we added OncoTree codes to the MAF 
file, which we then processed using the OncoKB Annotator (https://
github.com/oncokb/oncokb-annotator). We then summarized the 
number of “Driver” and “Non-Driver” mutations detected in each 
sample. We defined “Driver” as having an “Oncogenic,” “Likely 
Oncogenic,” “Predicted Oncogenic,” or “Resistance” label in the 
“ONCOGENIC” column added to the MAF by the OncoKB Annota-
tor. Samples missing from the MAF file were added to this summary 
as “Non-mutated” cases, and values were then summarized by cancer 
type. The top 30 most prevalent cancer types in the GENIE cohort 
were then plotted as stacked bar plots showing the breakdown of 
samples with no mutations and with or without driver mutations.

Data Availability Statement
All analyses used data from the GENIE public release 9.1, which  

are available through Synapse (https://www.synapse.org/#!Synapse: 
syn7222066/wiki/) and cBioPortal (https://genie.cbioportal.org). The  
code used to generate all figures is available at https://github.com/Sage- 
Bionetworks/Genie-analysis.
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