
I. Introduction

Human motion analysis has diverse applications in medi-
cine, healthcare, rehabilitation, game engineering, surveil-
lance, search and rescue, and defense. Human motion analy-
sis can be used for the diagnosis of motion-related diseases, 
such as cumulative trauma disorders, psychosomatic disor-
ders, and autism spectrum disorders [1]. Energy expendi-
ture can be estimated by the class of human motion [2]. In 
addition, human gait analysis is essential for the evaluation 
of the degree of rehabilitation. Radar offers a unique oppor-
tunity for monitoring human motion remotely. In particular, 
micro-Doppler signatures produced by human limb motion 
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contain information pertaining to such motion. Because 
micro-Doppler signatures are represented as a spectrogram 
in the form of an image, human motions can be recognized 
through analysis of spectrogram images. 
 Due to the advancement of deep learning, the image recog-
nition/classification problem can be effectively addressed by 
the use of deep convolutional neural networks (DCNN). To 
train a DCNN effectively to achieve high classification ac-
curacy requires a large amount of image data. In the case of 
radar data, such an effort is challenging due to a lack of his-
torical records as well as the high costs of collecting a large 
data set. Therefore, it is necessary to augment the radar data 
set to fully explore the capability of a DCNN. Recently, gen-
erative adversarial networks (GANs) have been successfully 
used to address the radar data augmentation problem [3].
 A GAN is a machine learning algorithm designed to pro-
duce large amounts of synthesized data that have similar dis-
tributions to that of the original data. Owing to this capabil-
ity, GANs have many applications, such as image synthesis, 
image de-noising, and image-to-image translation. A GAN 
consists of two networks, a generative network and a dis-
criminative network, that compete against each other during 
the training process. The generative network generates syn-
thesized images, and the discriminative network evaluates 
the generated images. During training, the cost function is 
defined such that the generative network decreases the clas-
sification rate of the discriminative network, while the dis-
criminative network is trained to increase the classification 
accuracy. Over the course of training, each of the networks 
contributes to improve the appearance of generated images 
[4]. 
 This tutorial will describe the process of setting up envi-
ronments for GANs through the installation of the GPU 
driver, cuDNN library, CUDA library, and Anaconda along 
with the training of GANs using a measured data set. Finally, 
we will apply this approach to augment a human motion 
data set measured by Doppler radar to investigate whether 
the augmented data are effective in the training of a DCNN. 

II. Methods 

In this study, the data set included 7 activities that were 
recorded using 12 human subjects for 12 iterations; the 
total number of data points was 1,008. Figure 1 shows the 
measurement setup. The 7 activities included boxing while 
moving forward, boxing while standing in place, crawling, 
running, sitting still, walking, and walking low while hold-
ing a stick. The data were organized in a MATLAB .mat 

file named Seven_activity. The .mat file has a structure file 
named activity. The structure has three fields. The first field, 
name, is a string containing the activity name; the second 
field, human_number, is a numerical number with a data-
type double; and the third field, data, has a matrix sized 600 
× 140. 
 The GAN we designed consists of two neural networks. 
The generative network takes an input of a noise vector and 
tries to produce a synthesized image, while the discrimina-
tive network tries to classify the data correctly as synthe-
sized or real data. To train networks, an Adam optimizer is 
employed to reduce the loss function. The loss function is 
defined using the error from the discriminative network. For 
the activation, a sigmoid function is used. To initialize the 
weight and biases in the neural networks, Xavier initializa-
tion is used. The steps and processes are described in below. 
 This tutorial was completed on Windows 7 with an i7 CPU 
and an NVIDIA GTX 770 GPU. Since Anaconda and GPU 
drivers are available on MacOS and Ubuntu, this should be 
easy to replicate on any OS and any NVIDIA graphic card 
with cuDNN support and the same software as that used 
in our work. Training a GAN requires significant memory 
space to complete the process; a GPU is preferred because 
of the large amount of memory available. To use the GPU, 
the right drivers must be installed correctly, starting with 
the graphic card driver and followed by the CUDA library 
and the cuDNN library. To download the CUDA library, go 
to website (https://developer.nvidia.com/cuda-toolkit), click 
on ‘Download now’, then choose the appropriate operating 
system and follow the installation instructions [5]. To down-
load the cuDNN library, go to website (https://developer.
nvidia.com/rdp/form/cudnn-download-survey). A mem-
bership must be created to download the file. It is necessary 
to download the latest library with the appropriate CUDA 
version and then follow the installation process [6]. In a 
Windows environment, the following path variable must be 
added: 

 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\
v10.1\bin;
 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\

Figure 1.  Setup for the seven human motion measurement using 
Doppler radar.

https://developer.nvidia.com/rdp/form/cudnn-download-survey
https://developer.nvidia.com/rdp/form/cudnn-download-survey
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v10.1\libnvvp.

 The procedure to set the path variable is shown in Figure 2.
To use TensorFlow, Anaconda version 4.3 with Python 2 
must be installed. This Anaconda version can be found at 
https://repo.continuum.io/archive/. Download ‘Anaconda2-
4.3.1-Windows-x86.exe’ for a 32-bit system or ‘Anaconda2-
4.3.1-Windows-x86_64.exe’ for a 64-bit system. Then follow 
the installation process. After installation of Anaconda, the 

following path variable must be added:

 C:\Program Files\Anaconda2; 
 C:\Program Files\Anaconda2\Scripts;
 C:\Program Files\Anaconda2\Library\bin.

 After installing Anaconda and setting the path variable, 
open the Anaconda Prompt and create an environment us-
ing the following command: 

A B

C D

Figure 2.  Procedure for setting up 
a path: (A) open Windows 
Explorer then choose Prop-
erties, (B) open advanced 
system setting, (C) setting 
up environment variables, 
and (D) select path then 
click edit.

A

B

C

Figure 3.  Anaconda environment and 
training process: (A) creating 
and activating an Anaconda 
environment, (B) installing 
a package in Anaconda, and 
(C) running a training ses-
sion.

https://repo.continuum.io/archive/
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 conda create --name env_name python = 3.5.

 The name of the environment in this case is env_name. 
The Python version must be set to 3.5 because this is what 
TensorFlow uses. The environment can be activated using 
the following command line:

 activate env_name.

 Figure 3A shows a screenshot of an example for creating 
and activating an environment. The following packages 
must then be installed—Keras-GPU, SciPy, Pillow, OpenCV, 
Matplotlib, and Git—in the env_name environment [7-12]. 

These packages can easily be installed by typing the follow-
ing command lines:

 conda install -c conda-forge keras-gpu 
 conda install -c anaconda scipy 
 conda install -c anaconda pillow 
 conda install -c conda-forge opencv 
 conda install -c conda-forge matplotlib 
 conda install -c anaconda git 

 Each line must be executed in sequence. See Figure 3B 
for an example of a package installation using Anaconda 
Prompt. 
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Figure 5.   Augmented micro-Doppler image using generative adversarial networks: (A) boxing while moving forward, (B) boxing while 
standing in place, (C) crawling, (D) running, (E) sitting still, (F) walking, and (G) walking hunched over while holding a stick.

Figure 4.   Original micro-Doppler image of the following seven activities: (A) boxing while moving forward, (B) boxing while standing 
in place, (C) crawling, (D) running, (E) sitting still, (F) walking, and (G) walking hunched over while holding a stick.
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 Once everything is installed, the code must be downloaded 
to start the training process. The recommendation is to 
create a folder into which the code can be saved. Next, the 
folder should be set as the current directory by using the 
command cd. The code can be downloaded by using the fol-
lowing command [13]: 

 git clone https://github.com/isn350/e_hir_GAN.git

 Open read.py to edit the path to the data set in line:

 data_file = 'C:/Users/STUDENT/Desktop/Ibrahim/GAN_tot' 

 The size of the data used in this study was 600 × 140, but 
if the size of data used is different, this can be modified in 
read.py as in the following lines:

 original_image_dim_x = 600
 original_image_dim_y = 140

 The number of data points in the data set must be set in 
read.py in the following line:

 if x % 144 == 0: 

 The function read.py has three objectives, namely, reading 
the data, preparing the data for GANs training, and visual-
ization of the data. The function reads a .mat file and resizes 
the images to 64 × 64 to input to the GANs, while the size of 
the input image can be any in the .mat file. For example, the 
original data size in our case was 600 × 140. Once the codes 
are saved, to run the code, run the following command:

 python GAN_train.py

 Running the above command only produces a GAN im-
age for boxing while moving forward. To change the activity, 
open GAN_train.py using Notepad, find the line below to 
change the activity, activity = ‘boxingmoving’, and change the 
name between single quotation marks. The code in GAN_
train.py initiates the training process of GANs. In the code, 
the directory of the input data and output data from GANs 
is determined. Figure 3C shows an example of running the 
code and the output lines.

III. Results

After visual inspection, augmented images were produced at 

2,700 epochs. Images of the original data are shown in Fig-
ure 4, and Figure 5 presents the augmented images. As seen 
in Figures 4 and 5, the synthesized images from the GANs 
show a similar distribution to that of the original images. 
With the combination of original data and synthesized data, 
the DCNN is designed and trained. The number of layers 
of the DCNN structure is selected heuristically until the 
classification accuracy becomes saturated. The DCNN we 
designed has 6 layers including 3 convolutional layers and 3 
fully connected layers. The numbers of filters in the convolu-
tional layers are 16, 32, and 64, while the numbers of nodes 
in the fully connected layers are 124, 124 and 7. In the con-
volutional layer, batch normalization, a rectified linear unit, 
and max pooling are employed. The convolutional filter size 
is 2 × 2. We have only considered the motion classification 
accuracy of original data because the classification of synthe-
sized data is meaningless even though they are used in the 
training process. The results reveal that the use of GANs can 
improve the recognition of human motion from 90% to 94% 
when the same DCNN structure is used. 

IV. Discussion

This paper presented the overall process of preparing an 
environment for GANs and training them. In particular, we 
have presented an example of augmenting micro-Doppler 
radar data of human motion measured by Doppler radar. 
Owing to the augmented data set, deeper neural networks 
can be constructed and effectively trained, resulting in bet-
ter classification accuracy. This preliminary research on the 
automatic recognition of human motion has the potential 
to contribute to diverse applications in healthcare and reha-
bilitation, such as human gait analysis or energy expenditure 
estimation.
 It should be noted that the current use of GANs presents 
challenges as it is an emerging and advancing technology. 
First, no standard currently exists to evaluate the quality of 
GANs outputs. The number of epochs should be determined 
by visual inspection, which can be subjective. Therefore, it is 
not easy to quantify the success of GANs training. Second, 
GANs occasionally have a mode-collapsing issue that limits 
the production of outputs with diverse characteristics. In ad-
dition, improperly trained GANs produce only very similar 
images. These issues should be addressed in the future to en-
able the wider use of GANs in radar image processing. 

https://github.com/isn350/e_hir_GAN.git
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