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Abstract

A complete characterization of neurometabolite profiles in the dorsolateral prefrontal cortex 

(DLPFC) in recent onset schizophrenia (SZ) remains elusive. Filling in this knowledge gap is 

essential in order to better understand how the neurochemistry of this region contributes to SZ 

pathology. To that end, DLPFC N-acetyl aspartate (NAA), myo-inositol, glutamate, choline, and 

creatine levels were examined by 3 T magnetic resonance spectroscopy (MRS) in recent onset 

individuals with SZ (n = 40) and healthy controls (HC) (n = 47). Metabolite levels were also 

examined in the visual cortex (VC) as a control region. People with SZ showed significantly 

higher choline in both the DLPFC and VC, but no differences in NAA, myo-inositol, glutamate, or 

creatine in either region. A trend-level negative correlation was also observed between DLPFC 

NAA and negative symptoms in SZ. Our results suggest that choline is increased in both 

the prefrontal and occipital cortices in recent onset SZ, and that DLPFC NAA levels may be 

inversely related to negative symptoms in the illness. The observed increase in choline-containing 

compounds in both DLPFC and VC in recent onset SZ could reflect increased membrane 

remodeling such as occurs in activated microglia and astrocytes in response to neuroinflammation.
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1. Introduction

Multiple lines of evidence suggest that the dorsolateral prefrontal cortex (DLPFC) is 

abnormal in schizophrenia (SZ). Behaviorally, it is well established that cognitive processes 

associated with the region are impaired in SZ, such as cognitive control and working 

memory [22,31]. Neuroimaging studies further suggest these regions are functionally 

abnormal in SZ during tasks that measure activation during these cognitive processes 

[25]. Postmortem studies demonstrating morphological abnormalities in pyramidal cells and 

inhibitory interneurons further suggest that the DLPFC is altered on a microscopic level, and 

that these changes contribute to its functional pathology [12,31].

Given the nature of these abnormalities, one may speculate that the DLPFC is also altered 

on a neurochemical level in SZ. Indeed, as first demonstrated in a study by Bertolino [8] and 

subsequently shown by meta-analysis [36], evidence suggests that the illness is associated 

with reduced levels of N-acetyl aspartate (NAA), a putative marker of neuronal integrity 

and metabolism [26]. Meta-analyses of DLPFC glutamate, in contrast, have reported no 

difference in levels of the excitatory neurotransmitter between patients and controls [17,30]. 

As demonstrated in these meta-analyses, however [17,30,36], the great majority of DLPFC 

MRS studies in SZ to date have been conducted in chronic patients. The biochemical 

make-up of the DLPFC in recent onset and/or first episode SZ is therefore comparatively 

less well studied.

Here we report on levels of five reliably measured brain metabolites in the DLPFC in 

individuals with recent onset SZ and healthy control subjects. Specifically, we measured 

the content of NAA, glutamate (essential roles in both neurotransmission and cellular 

metabolism), myo-inositol (neuronal and glial osmolyte that is produced by recycling 

of inositol phosphate second messengers and de-novo synthesis from glucose; elevated 

in gliosis [14,37]), choline-containing compounds (putative index of cell membrane 

metabolism [28]) and creatine (carrier molecule for high energy phosphate bonds in all 

brain cell types [23]). As a control region, we also examined levels of these metabolites in 

the visual cortex (VC).

2. Methods

2.1. Participants

50 HCs and 41 individuals with recent-onset SZ-spectrum disorders (including SZ, 

schizoaffective disorder, and schizophreniform disorder, who were combined into a single 

“SZ” group) were recruited from the UC Davis Early Psychosis Programs (EDAPT and 

SacEDAPT Clinics) for a study examining neuroinflammatory processes in SZ [21]. Of 

these, DLPFC voxel acquisitions were available for 46 HCs and 40 SZ individuals, and VC 

voxel acquisitions for 44 HCs and 40 people with SZ. All individuals were between 14 

and 30 years of age. SZ-spectrum participants were scanned within two years of their first 

psychotic episode (including duration of untreated psychosis). The University of California, 

Davis Institutional Review Board approved the study. Participants gave written informed 

consent and were paid for their participation.
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Patients were assessed with the Structured Clinical Interview for DSM-IV-TR (SCID) [13]. 

Patients were excluded for a diagnosis of major medical or neurological illness, head 

trauma, substance abuse in the previous 3 months (or a positive urinalysis on the day of 

scanning), Weschler Abbreviated Scale of Intelligence-2 score (WASI) [35] score < 70, 

and magnetic resonance imaging (MRI) exclusion criteria (e.g. claustrophobia, metal in the 

body). Control subjects were excluded for all of the above as well as a history of Axis I 

mental illness or first-degree family history of psychosis.

2.2. Clinical assessments

Consistent with prior work [6], three core symptom dimensions were calculated. “Poverty” 

combined emotional withdrawal, motor retardation, and blunted affect from the Brief 

Psychiatric Rating Scale (BPRS) [34] with anhedonia/asociality, avolition/apathy, alogia, 

and affective flattening from the Scale for the Assessment of Negative Symptoms (SANS) 

[4]. “Disorganization” combined conceptual disorganization, mannerisms and posturing, and 

disorientation scores from the BPRS with attention score from the SANS as well as positive 

formal thought disorder, and bizarre behavior scores from the Scale for the Assessment of 

Positive Symptoms (SAPS) [5]. “Reality distortion” combined grandiosity, suspiciousness, 

hallucinations, and unusual thought content from the BPRS with hallucinations and 

delusions from the SAPS [6]. Functioning was assessed using the Global Assessment of 

Function (GAF) [2]. Chlorpromazine equivalent antipsychotic doses were calculated using 

published guidelines for conventional [3] and atypical [38] antipsychotics.

2.3. Scanning parameters

Imaging data were obtained using a 3 T Siemens Tim Trio MRI scanner with a 32 channel 

head coil. T1-weighted MPRAGE structural images were acquired with the following 

settings: TR = 2530-msec, echo time = 3.5-msec, flip-angle = 7°, field of view = 256 mm, 

1 mm isotropic voxels. Water suppressed 1H-MRS data were acquired from voxels placed 

in the left DLPFC and VC using a PRESS sequence with the following parameters: TE/TR 

= 30/1500; bandwidth = 2000 Hz; delta frequency = −1.7 ppm, NEX = 160 scans, duration 

= 240 s. Water non-suppressed spectra were acquired from the same location with the same 

scanning parameters except NEX = 16. The DLPFC voxel was 15.75 cc in volume (30 × 

15 × 35 mm) and was placed in the left middle frontal gyrus over Brodmann areas 9 and 

46, angled to be parallel to the brain surface (Fig. 1). The visual cortex voxel was 18.75 cc 

in volume (30 × 25 × 25 mm) and was centered on the midline over the calcarine fissures 

bilaterally with its posterior face 8 mm anterior to the posterior limit of the occipital cortex 

(Fig. 1).

2.4. MRS data analysis and quality control

MRS spectra were analyzed using LCModel 6.3-1L [29]. Water-suppressed individual 

spectra were fit within an analysis window of 4.0 to 1.7 ppm and a basis set 

matched to the scanning parameters provided with LCModel (consisting of the following: 

creatine, phosphocreatine, NAA, n-acetylaspartylglutamate (NAAG), phosphocholine, 

glycerophosphorylcholine, myo-inositol, glutamate, glutamine, glutathione, scyllo-inositol, 

aspartate, taurine, GABA, and glucose. The PRESS voxels were segmented using the 

MPRAGE images, the FAST algorithm in FSL [39] and in-house software to estimate 
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the CSF, gray matter and white matter fractions. Fitted NAA, glutamate, myo-inositol, 

total choline (phosphocholine + glycerophosphorylcholine), and total creatine (creatine + 

phosphocreatine) levels for each voxel were normalized to the unsuppressed water signal, 

incorporating corrections for the fractional volumes of CSF, gray matter, and white matter 

in the voxel (as described in equation 3 of the recent consensus paper by Near, et al. 

[27]). Analyses were also performed in which the same metabolites other than creatine were 

normalized to total creatine.

A recent meta-analysis showed that use of strict quality thresholds for inclusion of MRS data 

increases sensitivity for demonstrating metabolite abnormalities in studies of schizophrenia 

[25]. Thus, rigorous quality control procedures were performed prior to between group 

analyses. First, spectra were visually inspected for distortion of baseline or peaks suggesting 

significant movement during scanning. Next, spectral quality was assessed by LCModel-

calculated spectral line width (FWHM) and signal-to-noise ratio (SNR). For line width, 

individual spectra with FWHM > 0.06 ppm and/or FWHM > 3 SD above the overall mean 

across all participants were excluded. For SNR, spectra with SNR < 20 or > 3 SD below 

the overall mean were excluded. Spectral data for a voxel were also excluded if the tissue 

fraction of gray matter (T%GM calculated as %GM/(%GM+%WM)) was not within 3 SD 

of the mean for that voxel across all participants. Finally, individual metabolite data were 

excluded if Cramer-Rao lower bound values were ≥ 15 or if a metabolite measurement was 

not within 3 SD of the within-group mean for that voxel. A representative spectrum is shown 

in the Supplement.

To compare metabolite levels for the DLPFC and VC voxels between groups, a univariate 

ANCOVA analysis was performed in SPSS v. 27 (IBM) with diagnosis (HC vs. SZ) as a 

fixed factor, T%GM as a covariate, and metabolite concentration as the dependent variable. 

T%GM fraction was included as a covariate because metabolite values may correlate 

with the relative amount of gray matter in the tissue fraction of the voxel [32]. P < .05 

was considered significant and 0.05 ≤ p < .10 trend-level for ANCOVA analyses. Effect 

size for each dataset was calculated as partial η2. Analyses were also performed without 

covariates (i.e., using two-tailed t-tests) with results presented in Supplementary Material. 

Age, education, WASI-2, segmentation, and quality control (FWHM and SNR) data were 

similarly compared between groups using t-tests with significance threshold p < .05. Sex 

was compared between groups using the chi-square test with threshold p < .05.

As an additional exploratory analysis, we examined partial correlations (controlling for 

%GM fraction) between metabolites and each of the core symptom domains (poverty, 

disorganization, and reality distortion) in patients using Spearman’s correlation coefficients 

with significance threshold p < .05. Partial Spearman’s correlations were calculated in SPSS 

[1]. Clinical correlations were non-parametric as core symptom domains were non-normally 

distributed.
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3. Results

3.1. Demographic and clinical

Demographic and clinical information for participants with usable data in at least one voxel 

(DLPFC or VC) is presented in Table 1. No significant differences were observed between 

groups for age, sex, or parental education. Patients had signficantly lower years of education 

and WASI-2 scores.

3.2. DLPFC voxel excluded data

For the DPLFC voxel, of the initial sample of 46 HCs and 40 people with SZ, 3 HCs and 

2 SZ were excluded for FWHM criteria, 1 HC and 1 HC for SNR criteria, and none for 

T%GM or CRLB criteria. From the included spectra, the NAA measurement for 1 HC was 

excluded for being a > 3 SD outlier.

3.3. DLPFC voxel analysis and clinical correlates

MRS quality and segmentation data for the remaining sample of 42 HCs and 37 people with 

SZ is presented in Table 2. No significant differences were observed between groups for 

%GM, %WM, %CSF, FWHM, or SNR measures for any metabolite. CRLB values for all 

metabolites except glutamate were ≤ 5. Glutamate CRLB values were all ≤ 8.

Group differences in DLPFC metabolites with T%GM fraction as a covariate are also 

presented in Table 2. Patients with SZ had significantly higher choline content than HC for 

both water-normalized and creatine-normalized values (Fig. 2A). No significant effects of 

diagnosis were observed for the other four metabolites. Qualitatively, people with SZ and 

HC had similar levels of NAA and creatine, while SZ had higher myo-inositol and lower 

glutamate than HC, with small effect sizes. Analyses without the covariate (t-tests) yielded 

similar results (Supplementary Table 1).

Clinically, after controlling for T%GM fraction, a trend-level negative correlation was 

observed between poverty symptoms and water-normalized NAA (ρ = −0.33, p = .068). 

A trend-level negative correlation was also observed between reality distortion and water-

normalized creatine (ρ = −0.32, p = .071). No other correlations with symptom ratings or 

antipsychotic dose were observed.

3.4. VC voxel excluded data

Of the initial sample of 44 HCs and 39 people with SZ, VC voxel data from 2 HCs and 2 

SZ were excluded for FWHM criteria, none for SNR criteria, and 1 HC and 1 SZ for T%GM 

criteria. 1 additional HC was excluded for having a significant artifact in the spectrum. From 

the included spectra, the glutamate measurement for 1 HC was excluded for being a > 3 SD 

outlier.

3.5. VC voxel analysis and clinical correlates

MRS quality control information for the remaining sample of 40 HCs and 36 people with 

SZ is presented in Table 3. No significant differences were observed between groups for 

%GM, %WM, %CSF, or SNR. FWHM was significantly greater in the patient group (t = 
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2.60, p = .011). No associations, however, were observed between FWHM and levels of any 

metabolite. CRLB values for all metabolites except glutamate were ≤ 5. CRLB values for 

glutamate were all ≤ 7.

Group differences in VC metabolites with T%GM fraction as a covariate are also presented 

in Table 3. As in the DLPFC voxel, water-normalized choline levels were significantly 

higher in patients with SZ relative to HC (Fig. 2B). A trend in the same direction was 

observed for creatine-normalized choline. No significant effects of diagnosis were observed 

for any other metabolite. Qualitatively, SZ and HC had similar levels of NAA and creatine, 

while SZ had higher myo-inositol and lower glutamate than HC, with small effect sizes. 

Analyses without covariates (t-tests) yielded similar results (Supplementary Table 2).

No clinical correlations were observed with VC metabolites. No correlations with 

antipsychotic dose were observed.

4. Discussion

In this study, we examined the levels of NAA, glutamate, myo-inositol, choline, and creatine 

in the DLPFC and VC in HC and patients with SZ using 3 T MRS. Applying strict 

quality control measures to our analysis, we found a significant increase in total choline in 

both the DLPFC and VC in SZ. Similar elevations in choline were observed using creatine-

normalized values, although only at a trend level in the VC. No significant group differences 

in NAA, glutamate, inositol, or creatine were observed in DLPFC or VC. Clinically, we 

observed trend-level negative correlations between DLPFC NAA and negative symptoms as 

well as between DLPFC creatine and reality distortion symptoms in the patient group.

The single metabolite that showed a significant difference between early onset SZ patients 

and healthy control subjects was choline, with moderate to large effect sizes for both DLPFC 

and VC voxels. The group difference for DLPFC choline also would be significant using 

a stringent Bonferroni-corrected p < .05/5 (for 5 metabolites)). As choline is an esssential 

building block of membranes, high choline levels are conventionally considered an index 

of membrane turnover [28] and may reflect inflammation and/or homeostatic responses 

to pathological processes, e.g., membrane repair [10]. Choline is also highly expressed 

in glial cells and may thus also represent a neuroinflammatory response associated with 

glial activation [33]. Our finding of significantly increased choline is thus in conceptual 

agreement with the viewpoint that neuroinflammatory processes may contribute to SZ 

pathology [18]. In contrast to our finding, 2012 and 2018 meta-analyses found no signfiicant 

differences in frontal region choline levels in SZ [16,19], although these analyses did 

not find a sufficient number of studies to conduct a subgroup analysis of recent onset 

individuals. More recent studies have reported evidence of significantly elevated choline in 

frontal regions in SZ [15], including one study of recent onset patients [11]. These findings 

will require replication in future studies before strong conclusions can be made regarding the 

nature of abnormalities in mobile choline-containing compounds in recent onset SZ.

We did not observe significant differences in DLPFC or VC NAA in these recent onset 

SZ patients. This contrasts with a recent meta-analysis by Whitehurst et al. [36], which 
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reported that DLPFC NAA was significantly reduced in patients with chronic schizophrenia 

across 20 studies and reduced at a trend level in first episode patients across 9 studies. 

The pattern of NAA findings across the 9 studies of first episode patients, however, was 

highly heterogeneous. It is also possible that we did not observe NAA differences due to 

antipsychotic effects, as almost all patients in this study were medicated and previous work 

suggests NAA levels are higher in patients receiving neuroleptics [7]. No prior studies of 

VC NAA in first episode patients were found by Whitehurst et al. [36]. Exploratory clinical 

correlations in our patients, however, found a trend-level association between negative 

symptoms and NAA in the DLPFC. NAA, one of the most highly concentrated central 

nervous system molecules, is synthesized in neuronal mitochondria and is considered a 

useful indicator of neuronal integrity [26]. NAA is also involved in oligodendrocyte acetate 

metabolism [24], which in turn may be important for myelin synthesis [9,20]. The trend 

toward a negative association between NAA and negative symptoms observed in this study 

may thus suggest that these symptoms are related to prefrontal hypofunction or loss of 

white matter integrity. It is important to note that the DLPFC voxels in our study typically 

contained more white matter than gray matter. Thus our metabolite findings in this region 

may be as representative of white matter as of cortex.

In conclusion, our findings suggest that recent onset SZ is associated with significantly 

increased DLPFC and VC choline, possibly indicating increased membrane turnover and/or 

inflammatory processes in these regions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Representative voxel locations for the dorsolateral prefrontal cortex (DLPFC) (top) and 

visual cortex (VC) (bottom).
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Fig. 2. 
Box and whisker plots of water-normalized choline-containing compounds (institutional 

units, adjusted for percent gray matter in tissue fraction of voxel) showing elevation in 

patients with schizophrenia (SZ) compared to healthy control subjects (HC). A. Dorsolateral 

prefrontal cortex (DLPFC) data. B. Visual cortex (VC) data. ** p < .001; * p = .015.
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Table 1

Demographic and clinical information for participants with usable data in at least one voxel (dorsolateral 

prefrontal cortex or visual cortex). Numbers in parentheses represent the standard deviation unless noted in the 

column heading. Abbreviations: AA = Atypical Antipsychotic, BPRS = Brief Psychiatric Rating Scale, CPZ = 

Chlorpromazine, GAF = Global Assessment of Function, HC = Healthy Controls, P = Typical Antipsychotic, 

SANS = Scale for the Assessment of Negative Symptoms, SAPS = Scale for the Assessment of Positive 

Symptoms, SZ = Schizophrenia, WASI-2 = Weschler Abbreviated Scale of Intelligence, 2nd Edition. *p < 

0.05.

HC (n = 47) SZ (n = 40) t or χ 2 (p)

Age 21.17 (3.35) 20.55 (3.30) 0.87 (0.39)

Sex (M/F) 32/15 27/13 0.00 (0.95)

Education Level (Years) 14.33 (2.69) 12.23 (1.90) *4.12 (<0.001)

Parental Education Level (Years) 14.54 (3.29) 13.93 (2.84) 0.90 (0.37)

IQ (WASI-2) 115.45 (12.07) 102.74 (16.61) *3.96 (<0.001)

Duration of Illness (Days) — 326.49 (172.72)

Antipsychotics (P/AA/None) — 0/36/4 —

Antipsychotic Dose (CPZ Equivalent) — 225.06 (187.65)

GAF — 45.08 (10.53) —

Total BPRS — 44.38 (11.66) —

Total SANS — 10.54 (4.07) —

Total SAPS — 4.00 (3.73) —

Poverty Symptoms — 15.00 (6.13) —

Disorganization Symptoms — 7.58 (3.71) —

Reality Distortion Symptoms — 11.61 (6.88) —
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