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A B S T R A C T   

Machine learning (ML) and its subset, deep learning (DL), are branches of artificial intelligence (AI) showing 
promising findings in the medical field, especially when applied to imaging data. Given the substantial role of 
MRI in the diagnosis and management of patients with multiple sclerosis (MS), this disease is an ideal candidate 
for the application of AI techniques. In this narrative review, we are going to discuss the potential applications of 
AI for MS clinical practice, together with their limitations. Among their several advantages, ML algorithms are 
able to automate repetitive tasks, to analyze more data in less time and to achieve higher accuracy and repro-
ducibility than the human counterpart. To date, these algorithms have been applied to MS diagnosis, prognosis, 
disease and treatment monitoring. Other fields of application have been improvement of MRI protocols as well as 
automated lesion and tissue segmentation. However, several challenges remain, including a better understanding 
of the information selected by AI algorithms, appropriate multicenter and longitudinal validations of results and 
practical aspects regarding hardware and software integration. Finally, one cannot overemphasize the para-
mount importance of human supervision, in order to optimize the use and take full advantage of the potential of 
AI approaches.   

1. Introduction 

Multiple sclerosis (MS) is a chronic autoimmune disease of the cen-
tral nervous system (CNS), characterized pathologically by demyelin-
ation and neurodegeneration, and clinically by acute attacks and 
progressive accumulation of disability, which can be produced by 
incomplete recovery from attacks and/or by relapse-independent 
progression. 

MRI has revolutionized the approach to MS, playing a major role in 
early diagnosis, differential diagnosis, prognostication, treatment and 
disease monitoring (Filippi et al., 2021b; Sastre-Garriga et al., 2020; 
Wattjes et al., 2021). Increasing knowledge and expansion of the 
availability of advanced MRI techniques are requiring more and more 
time, resources and expertise, which conflicts with the clinical appli-
cations of these tools. 

Artificial intelligence (AI) is an attractive approach to overcome 
most of these difficulties. It refers to the ability of digital computers to 
perform tasks that are commonly associated with human intelligence 
(Muthukrishnan et al., 2020). The possibility to automate repetitive 
tasks, to analyze more data in less time and to achieve higher accuracy 
and reproducibility than the human counterpart, have made AI algo-
rithms extremely appealing for medical applications (Hamet and 
Tremblay, 2017). 

In this review, we discuss the potential applications of AI for MS 
clinical practice. First, we present a brief introduction on the topic of AI. 
Then, we examine ongoing research on the use of AI techniques in MS 
for clinical and (briefly) technical applications, together with the limi-
tations of AI recognized so far. Finally, we propose future developments 
in the area. This review is aimed at providing MS clinicians with a basic 
overview of ongoing research on AI in the field of MS, with an emphasis 
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on clinical applications. We direct the readers more interested in tech-
nical methods to other valid work (Cacciaguerra et al., 2022; Hartmann 
et al., 2021). 

2. Methods 

For this narrative review, we searched PubMed for studies on AI in 
MS published in any language, with the search terms “multiple sclerosis 
AND (artificial intelligence OR machine learning OR deep learning OR 
neural networks OR random forest OR nearest neighbor OR support 
vector machine OR k-means OR random fields)”. Results were then 
cross-checked using queries through Scopus and Web of Science. We ran 
the search on February 10th, 2022 and we found 1121 articles, from 
which we identified 654 studies that met the search criteria. All the 
studies were examined, but only the most pertinent to this narrative 
review according to Authors’ opinions are going to be discussed. 

3. AI techniques 

The vast majority of studies in MS field have applied bottom-up AI 
algorithms, mainly based on machine learning (ML) and deep learning 
(DL) approaches (Afzal et al., 2020). The bottom-up approach is con-
cerned with creating basic elements, and then allowing the basic system 
to evolve through interactions with data. In particular, bottom-up AI 
tries to create connections within data, and it is referred to as a “con-
nectionist” approach, which is similar to how the human brain is un-
derstood to work. This is opposed to top-down (or “symbolic”) AI 
approach, which seeks to replicate intelligence by analyzing cognition 
independent of the biological structure of the brain, in terms of the 
processing of symbols. 

ML involves algorithms that are capable of learning complex tasks 
and developing predictive models through sample data. Through a 
procedure referred to as feature engineering, often a set of informative 
features are selected or generated by an expert for building predictive 
models. ML is used to learn from specific data features and make 
decisions. 

On the basis of the desired output, ML algorithms can be classified as 
supervised or unsupervised (Lundervold and Lundervold, 2019). In su-
pervised ML, the output labels are already defined, taking advantage of 
previous knowledge, and the machine has to map or assign the input to 
one of the output values (Oren et al., 2020). The algorithm can be used 
for classification, when the output is restricted to a limited set of values, 
or for regression, when the output is a continuous value within a range. 
For instance, a ML algorithm can be applied to MRI data to classify 
subjects as MS patients or healthy controls (HC) (classification), or to 
interpret data from wearable device to calculate gait speed of given 
subjects (regression). Examples of supervised learning algorithms 
applied to MS include support vector machine (Cristianini and Shawe- 
Taylor, 2000), logistic regression (Wang et al., 2019), k-nearest 
neighbor (Zhang et al., 2018) and random forest (Breiman, 2001). 

In unsupervised ML, the ground-truth label for an observation is 
missing. An unsupervised ML algorithm is usually trained on unlabeled 
data, of which it finds the structure, extracting features and patterns on 
its own. At this point, same as for supervised ML, a step of feature se-
lection is needed, either by the human reader or by a dedicated algo-
rithm. Then, the engineered algorithm can be applied to further data and 
it will be able to sort it out. Unsupervised ML models are utilized for 
three main tasks: clustering, association, and dimensionality reduction. 
A clustering ML algorithm aims to discover the inherent groupings in the 
data, such as identifying “MRI phenotypes” among MS patients. An as-
sociation ML algorithm tries to discover rules of associations between 
variables, such as the identifications of patterns (rules) among the 
known MS genetic risk variants that explain the risk of developing MS. A 
dimensionality reduction ML algorithm is used when the number of 
features, or dimensions, in a given dataset is too high, potentially 
causing the problem of “overfitting” (see below). The algorithm reduces 

the number of data inputs to a manageable size while also preserving the 
integrity of the dataset as much as possible. It is commonly used in the 
preprocessing data stage. Examples of unsupervised ML methods 
comprise K-means (Krishna and Narasimha Murty, 1999), hierarchical 
clustering (Johnson, 1967; Dueck and Frey, 2007), Gaussian mixture 
modeling (Birant, 2007), Markov random fields (Nadabar, 1993) and 
fuzzy C-means systems (Zhou et al., 2009)for clustering; a priori algo-
rithms (Bush et al., 2007) for association; principal component analysis 
(Monaghan et al., 2021) and singular value decomposition (Peruzzo 
et al., 2017) for dimensionality reduction. 

DL is a subset of ML that learns directly from data and makes de-
cisions with the help of artificial neural network architectures, so-called 
because they were initially designed to simulate neural activities in the 
human brain (Lundervold and Lundervold, 2019). DL methods eliminate 
the need for feature engineering by trying to learn the optimal set of 
features from data (although in some applications feature selection can 
still be used for improving performance). Convolutional neural network 
(CNN) is the most used type of artificial neural network for medical 
image analysis (Eitel et al., 2019; Suzuki, 2017; Wang et al., 2018; Yoo 
et al., 2018; Zhang et al., 2018). The idea is to use convolutions to 
generate features that can describe the characteristics of the images. The 
CNN finds the important features as part of its training process, elimi-
nating those steps of feature engineering and selection, which are parts 
of classical ML. 

Despite the wide potential applications and the enormous power of 
AI, all available algorithms have inherent limitations. The quality of the 
training sample of the algorithm is of paramount importance for bottom- 
up algorithms, which benefit from large datasets (“big data”), including 
thousands of subjects. Moreover, the type of input should be adequate 
for the required output, not only in terms of raw data but also of methods 
or tools used for data pre-processing and assessment. A step of feature 
selection (by the human reader or by an additional algorithm) is 
extremely important to obtain good performance of ML algorithms, but 
it can be biased by current knowledge. Instead, compared to other ML 
algorithms, DL algorithms do not suffer from this last limitation, and 
they are bound to identify new and unexpected hidden data properties, 
which is a new and exciting research field. However, the lack of un-
derstandability of data features that a given DL model extracts can be an 
issue in many cases, though this is an active area of research, aiming to 
resolve this problem. Finally, although it is possible to compute many 
features from image data, including too many features in the model can 
lead to problems of generalizability of the results (overfitting problem), 
especially in small datasets (Koprowski and Foster, 2018), and with DL 
algorithms, for which feature selection by the human reader is usually 
not operated. The problem of overfitting occurs when the model has a 
high variance, and thus the model performs well on the training data but 
does not perform accurately in the evaluation set. In other words, the 
model memorizes the data patterns in the training dataset but fails to 
generalize to unseen examples. For reducing the problem of overfitting, 
DL algorithms need large datasets, validations on multiple datasets and a 
modulation of network complexity by changing network parameters and 
structure, based on available input (i.e., less complex networks for 
smaller datasets). 

4. Clinical applications of AI 

In the next paragraphs, the application of AI algorithms in the 
context of MS diagnosis, differential diagnosis, prognosis, disease and 
treatment monitoring is discussed. 

4.1. Diagnosis of MS 

The diagnosis of MS is based on the demonstration of disease 
dissemination in space (DIS) and time (DIT) and the exclusion of other 
neurological conditions that can mimic this disorder. Due to its sensi-
tivity in revealing lesional features that are considered typical for MS, 
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MRI has been formally included into the diagnostic work-up of patients 
with a suspicious of this condition, to obtain objective evidence of DIS 
and DIT. Current MS diagnostic criteria perform quite well in terms of 
sensitivity, in the hands of expert MS clinicians (Filippi et al., 2021b; 
Thompson et al., 2018). 

AI techniques have been applied to obtain an even earlier and more 
specific diagnosis of MS. The application of CNNs on T2-weighted (Wang 
et al., 2018; Zhang et al., 2018), fluid attenuated inversion recovery 
(FLAIR) (Eitel et al., 2019), and susceptibility-weighted (Lopatina et al., 
2020) images was able to separate MS patients from HC with high ac-
curacy (70–99%). Heatmaps were used to try to “back-engineer” these 
algorithms (i.e., decode how they work) and highlight features 
contributing to algorithm classification. This strategy showed that DL 
extracts relevant information from the presence of lesions on T2 and 
FLAIR sequences (especially around the posterior ventricular horns and 
in the corpus callosum) (Wang et al., 2018; Zhang et al., 2018) , from 
brain tissue abnormalities beyond the presence of lesions on lesion- 
refilled FLAIR sequences (corpus callosum, fornix, and thalamus) 
(Eitel et al., 2019) and from voxels around the anterior ventricular 
horns, the occipital cortex and the veins in susceptibility-weighted scans 
(Lopatina et al., 2020). The recognition of some abnormalities, present 
in MRI and not included in the diagnostic criteria for MS so far, might 
guide future revisions of diagnostic criteria. 

Other studies applied ML algorithms on advanced MRI sequences, 
such as quantitative T1- and T2-weighted (Neeb and Schenk, 2019; Yoo 
et al., 2018), diffusion-weighted (Zurita et al., 2018), and functional 
(Sacca et al., 2019; Zurita et al., 2018) MRI. Basically, they showed that 
structural abnormalities in the normal appearing white matter (WM), 
grey matter (GM), and of resting state functional connectivity within 
selected functional networks can contribute to the diagnostic task. 
However, the clinical use and applicability of these approaches is still 
limited by the difficulties of obtaining repeatable measures with these 
advanced MRI techniques and by their cost in terms of time and 
equipment. 

Paraclinical tools other than MRI can be used for supporting MS 
diagnosis. For instance, multimodal evoked potentials (EP) can show 
evidence of demyelination through increased latency of impulse con-
duction and modifications in wave shape (Giffroy et al., 2016). ML 
analysis was used for improving the evaluation of visual and motor EP. 
Optical coherence tomography (OCT) is a noninvasive technique able to 
identify and quantify retinal damage, which correlates with neurological 
and neurophysiological measures in MS patients (Petzold et al., 2010). A 
ML algorithm was able to achieve a 97% accuracy in separating MS 
patients from HC, through the analysis of retinal nerve fiber layer data in 
the macular area with OCT (Perez del Palomar et al., 2019). Another ML 
study on OCT achieved an accuracy of 91% (Cavaliere et al., 2019). 

ML algorithms were also applied to blood and cerebrospinal fluid 
(CSF) samples of MS patients, to identify disease-specific and easily 
obtainable patterns of cytokines, lipids and amino acids (Acquaviva 
et al., 2020; Andersen et al., 2019; Goyal et al., 2019; Lotsch et al., 2018; 
Lotsch et al., 2017; Martynova et al., 2020). In a cross-sectional study 
(Gross et al., 2021) including 546 patients with autoimmune neuro-
inflammatory, degenerative, or vascular conditions, a combined feature 
selection with dimensionality reduction and ML approach on blood and 
CSF cellular and molecular data was able to identify pan-disease pa-
rameters that were altered across all autoimmune neuroinflammatory 
CNS diseases and differentiated them from other neurological condi-
tions. Such an approach also managed to identify inter-autoimmunity 
classifiers that sub-differentiated variants of CNS-directed 
autoimmunity. 

A fundamental requirement for the diagnosis of MS is the exclusion 
of MS-mimics (Filippi et al., 2021b; Thompson et al., 2018). These dis-
orders include many inflammatory (acute disseminated encephalomy-
elitis, neuromyelitis optica spectrum disorders [NMOSD], 
neurosarcoidosis, CNS vasculitis, etc.) and non-inflammatory conditions 
(cerebral small-vessel disease, migraine, genetic leukoencephalopathies, 

brain tumors, etc.). In a study by Eshaghi et al. (Eshaghi et al., 2016), a 
random forest approach was used for separating NMOSD patients from 
MS patients and HC, based on regional cortical and deep GM atrophy. 
The accuracy of the classification of MS vs NMO was 80%, while the 
classifications of MS vs HC and NMOSD vs HC achieved higher accu-
racies (92% and 88%). Using a ML approach, Cacciaguerra et al. (Cac-
ciaguerra et al., 2019) identified clinically feasible MRI criteria for the 
differential diagnosis of NMOSD vs MS based on imaging features on 
conventional brain and spinal cord MRI sequences. In a study by Kim 
et al. (Kim et al., 2020), CNNs were used to discriminate between 
aquaporin-4 seropositive NMOSD and MS patients using brain FLAIR 
sequences and patients’ clinical information (age at disease onset, age at 
the time of MRI, disease duration, time from the last relapse). The DL 
algorithm performed similarly to expert neurologists (accuracy = 71% 
vs 60–66%), but it was more reliable (human intra-rater reliability of 
0.47–0.50). In a study by Rocca et al. (Rocca et al., 2020), a CNN al-
gorithm trained on brain FLAIR and T1-weighted sequences was applied 
to separate patients with MS from those with MS-mimics (NMOSD, 
migraine, and CNS vasculitis) (Fig. 1). The algorithm exceeded the ac-
curacy of two expert neuroradiologists, evaluating the same MRI se-
quences blinded to clinical information, in the classification of the 
different WM conditions (99% vs 73–82%). Other studies focused on the 
separation of MS from non-inflammatory WM disorders (hereditary 
diffuse leukodystrophy with spheroids and cerebral microangiopathy) 
(Mangeat et al., 2020; Theocharakis et al., 2009), with ML and DL al-
gorithms trained on conventional MRI sequences (FLAIR, proton den-
sity, T2-weighted and T1-weighted). Finally, DL outperformed ML to 
identify tumoral vs MS brain lesions, based on the increased peak in-
tensity of choline and creatine in tumors on proton magnetic resonance 
spectroscopy (1H-MRS) (Eksi et al., 2021). 

4.2. Prognosis 

The contemporary approach to MS therapy depends on evidence- 
based prognostication (Rotstein and Montalban, 2019), which is essen-
tial for making personalized choices in such a heterogenous disease. 

In patients at presentation with a clinically isolated syndrome, ML 
was applied to predict conversion to clinically definite MS. Early studies 
applied support vector machine on baseline demographic, clinical, and 
conventional brain MRI features (derived from fast spin-echo dual-echo 
sequences) (Bendfeldt et al., 2019; Wottschel et al., 2015). Interestingly, 
the addition of GM volume fraction and T2-hyperintense lesion count 
benefited the algorithms (Bendfeldt et al., 2019). Another study (Zhang 
et al., 2019) used ML to predict clinically defined MS using only baseline 
MRI lesion features derived from FLAIR and T1-weighted sequences, 
reaching the same performance of 2010 McDonald criteria. Support 
vector machine was also applied in a multicenter setting, on a large 
cohort of CIS patients coming from six European centers (Wottschel 
et al., 2019). Patients underwent a brain MRI protocol (including T2- 
weighted and T1-weighted sequences) according to local clinical stan-
dards and MRI features were extracted (including GM probability map, 
GM and WM volume, T2 lesion volume [LV], cortical thickness) and 
integrated with demographic and clinical data (age, sex, type of onset 
and EDSS). In the final model, the most relevant features for predicting 
clinically defined MS (accuracy = 92%) were T2 LV, GM volume of the 
cerebellum, deep nuclei (especially the thalamus), occipital and tem-
poral lobes, cortical thickness of the frontal and temporal lobes, volumes 
of the whole brain and of specific brain regions (limbic lobe, middle 
temporal gyrus, supramarginal gyrus) and type of onset. 

In patients with relapsing-remitting (RR) MS ML approaches were 
applied to predict conversion to secondary progressive (SP) MS. Support 
vector machine on clinical variables was able to predict evolution to 
SPMS after 2 years with an accuracy of 86% (Pinto et al., 2020). Older 
age at onset, higher EDSS, and relapses involving the brainstem, cere-
bellar or sensory functions were the best predictors (Pinto et al., 2020). 
Another study ran a recurrent neural network model on a large cohort of 
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MS patients, predicting 2-year evolution with a sensitivity of 67% and a 
positive predictive value of 42% (Seccia et al., 2020). 

In RRMS patients, several studies aimed at predicting EDSS wors-
ening by combining clinical and MRI data. A hybrid DL-ML algorithm 
was able to predict 2-year EDSS with reasonable accuracy on a large 
European dataset of MS patients (Roca et al., 2020). The DL approach 
consisted of a CNN ran on brain MRI data (FLAIR sequences and WM 
lesion map) and age. ML predictors were based on random forest re-
gressors and manifold learning trained on FLAIR LV (global and ac-
cording to location in WM tracts), volumes of the lateral ventricles, age, 
and sex. The most informative variables were a higher LV in the poste-
rior corona radiata, age, and volumes of the lateral ventricles. Another 
study (Law et al., 2019) applied decision tree-based frameworks to 
predict 6-month sustained disability progression over two years in SPMS 
patients participating to a phase III placebo-controlled negative phar-
macological trial. Although the performance was not excellent (area- 
under-the-curve [AUC] between 0.62 and 0.60), the work showed that 
Timed 25-Foot Walk Test was the best predictor of disability worsening 
in SPMS patients, outperforming other important clinical and MRI var-
iables such as Expanded Disability Status Scale (EDSS), brain T2 LV, age 
and disease duration. 

In all MS patients, 5-year prognosis was studied with ML on large- 
scale datasets, such as the CLIMB (Zhao et al., 2017; Zhao et al., 
2020) and the EPIC study cohorts (Zhao et al., 2020). The best per-
forming algorithm used an “ensemble learning” approach, which inte-
grated information from multiple ML classifiers, achieving better 
performance. Clinical worsening was predicted by the algorithm with an 

AUC between 0.79 and 0.83 (Zhao et al., 2020). The most relevant 
predictors were: among clinical variables, EDSS score changes over the 
first two years, baseline pyramidal function, MS phenotypes, disease 
activity, and ambulation index; among MRI variables, CSF and brain GM 
volumes. Another ML study on a small cohort showed superior relevance 
of MRI variables than clinical variables for predicting EDSS worsening at 
2–6 years (Tommasin et al., 2021). In relapse-onset MS patients, a study 
by Filippi et al. (Filippi et al., 2013), using a random forest approach, 
identified early measures of GM damage (volumes and microstructural 
abnormalities) as best predictors of disability progression and cognitive 
deterioration after 13 years. These studies are examples of how the 
analysis of big data by ML approaches offers considerable advantages, 
such as flexibility, scalability and the ability to analyze diverse data, 
compared with traditional biostatistical methods. Furthermore, in one 
study several ML models were combined (“ensemble learning”), proving 
to be more performant than single models to estimate disability in MS 
(Barile et al., 2021a). 

4.3. Phenotype classification 

The classification of MS patients into clinical phenotypes is debated, 
but still actual (Lublin et al., 2014). A ML algorithm was able to 
discriminate between RRMS and progressive MS (PMS) patients with 
good accuracy (60–92%) based on diffusion tensor MRI data (Kocevar 
et al., 2016; Marzullo et al., 2019). For the same task, the manual 
measurement of upper cervical cord GM atrophy was very accurate 
(sensitivity = 90%, specificity = 91%) at multivariable logistic 

Fig. 1. A DL approach for the classification of CNS diseases from MRI scans (adapted from (Rocca et al., 2020) (permission pending)). First, the CNN 
algorithm was trained using 3D T1- and T2-weighted images from a training dataset. The algorithm was based on 4 blocks, created for each of the image contrasts and 
finally concatenated. A final model (f) was then generated after feature extraction, concluding Step 1 (algorithm training). Then, new unseen images from the test 
dataset were processed using the same architecture and parameters as the trained CNN, and the algorithm (f) was applied. A probability of belonging to each disease 
class was obtained and the final classification of the patient was the class with the highest probability, concluding Step 2 (algorithm application). Finally, algorithm 
performance was compared against two expert neuroradiologists blinded to clinical information. The images on the right show two examples of correctly diagnosed 
images by the CNN but not by expert neuroradiologists. Axial T2-weighted (first row) and T1-weighted (second row) slices are included for each patient. A) is a 
patient showing T2-hyperintense periventricular lesions (stars), with a diagnosis of NMOSD classified as NMOSD by the algorithm and as MS by neuroradiologists. B) 
is a patient with migraine, having multiple subcortical T2-hyperintense lesions (stars), correctly classified as migraine by the algotithm but as CNS vasculitis by 
neuroradiologists. Abbreviations: CNN, convoluted neural networks; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorders. 
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regression analysis (Bonacchi et al., 2020) (Fig. 2). Interestingly, DL 
algorithms based on CNNs were recently proposed for performing 
automated segmentation of upper cervical cord GM (Paugam et al., 
2019; Tsagkas et al., 2019). Other studies applied AI on 1H-MRS and 
identified N-acetylaspartate as the most significant metabolite differ-
entiating between RRMS and SPMS (83% accuracy) (Ek et al., 2020), 
although T2 LV and clinical history contributed as well (up to 87%) (Ion- 

Margineanu et al., 2017). Similarly, 1H-MRS metabolic profile was su-
perior to T2 LV in differentiating between primary progressive MS and 
RRMS (85% vs 79%) (Ion-Margineanu et al., 2017). These studies are, 
again, examples of how ML approaches can be used for advanced sta-
tistical analysis, including different data types (eg, demographic and 
clinical data, together with MRI images), in this case identifying pre-
dictors of traditional clinical phenotype. 

Fig. 2. Clinical, MRI and cognitive phenotypes. A. Despite 
no MRI biomarkers have been validated for separating RRMS 
from PMS patients in the clinical setting, Fig. 2A illustrates the 
promising approach of measuring upper cervical cord GM 
cross-sectional area through manual segmentation on a high- 
resolution phase sensitive inversion recovery (PSIR) 
sequence at C2-C3 intervertebral level. An example from a 
patient with RRMS (left) and a patient with PMS (right) is 
reported, with blue and red lines indicating spinal cord and 
GM segmentations, respectively. The latter is used for calcu-
lating upper cervical cord GM cross-sectional area. B. 
(adapted from Eshaghi et al. (Eshaghi et al., 2021)) illustrates 
the evolution of MRI abnormalities in each of the three 
identified MRI-based subtypes. The colour shade ranges from 
blue to pink, with increasing degree probability of abnor-
mality. The cortex-led subtype (left) showed cortical atrophy 
in the occipital, parietal and frontal cortex in the early stages 
of the sequences, and a reduction in T1/T2 ratio in the 
normal-appearing WM in the later stages. The normal- 
appearing WM-led subtype (middle) showed a reduction in 
T1/ T2 ratio of the cingulate bundle and corpus callosum in 
the earlier stages of the sequence, and deep grey matter and 
temporal grey matter atrophy in the later stages. The lesion- 
led subtype (right) shows early and extensive accumulation 
of lesions in the earlier stages of the sequence, and a reduction 
in the T1/T2 ratio in the normal-appearing WM in the later 
stages. C. illustrates the study by De Meo et al. (De Meo et al., 
2021) identifying cognitive phenotypes. A cohort of 1212 MS 
patients and 196 HC underwent a standardized neuropsy-
chological battery. Age-, sex- and education-corrected z-scores 
were derived for each neuropsychological test and a ML 
approach (latent profile analysis) was used to identify five 
cognitive phenotypes: preserved cognition, mild verbal 
memory/semantic fluency, mild multi-domain, severe atten-
tion/executive, and severe multi-domain involvement. Ab-
breviations: RRMS, relapsing-remitting multiple sclerosis; 
PMS, progressive multiple sclerosis; WM, white matter.   
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On the other hand, an exciting AI approach was used to put forward a 
new concept of “MRI phenotypes”. Its main logic is that MRI has revo-
lutionized MS diagnosis, prognosis and treatment decisions, and it has 
also raised doubts onto the accuracy and completeness of a clinical 
classification of disease phenotypes (University of California et al., 
2019). In this perspective, the study by Eshaghi et al. (Eshaghi et al., 
2021) was a major breakthrough. Images from two large datasets of HC 
and MS patients were used to build a ML algorithm, which was able to 
discover three data-driven MS phenotypes through the analysis of 
regional GM volumes, volume of total T2 lesions, and regional WM T1/ 
T2 ratio. These MRI-phenotypes were classified according to the earliest 
site of damage and its topographical spreading: cortex-led (43% of pa-
tients), normal appearing WM-led (32%), and lesion-led (25%). Such 
MRI-phenotypes and their staging correlated with time to disability 
progression (Eshaghi et al., 2021) (Fig. 2). 

The cognitive evaluation of MS patients produces a wealth of infor-
mation, which is not always easy to interpret. Similar to the approaches 
adopted for clinical and MRI data, Leavitt et al. (Leavitt et al., 2018) 
were able to identify cognitively homogeneous subgroups of patients 
(defined as cognitive phenotypes), which is a first step towards 
personalized treatment approaches and improved understanding of the 
pathophysiological mechanisms. They identified three cognitive phe-
notypes: isolated memory impairment, isolated information processing 
speed impairment, and combined deficits in processing speed and 
memory. Another study by De Meo et al. (De Meo et al., 2021) used a ML 
approach (latent profile analysis) on z-scores derived from a standard-
ized neuropsychological battery, to identify five type of cognitive 
involvement in MS patients (Fig. 2). These cognitive phenotypes were: 
preserved cognition, mild–verbal memory/semantic fluency (showing 
decreased hippocampal volume), mild–multidomain (showing 
decreased cortical GM volume), severe–executive/attention (showing 
higher T2 LV), and severe–multidomain involvement (showing severe 
brain damage). 

4.4. Treatment monitoring 

Longitudinal ML approaches for monitoring treatment response are 
still very limited, for several reasons. First, ML approaches need to be 
refined in a cross-sectional setting before they can be applied to longi-
tudinal data. Second, large datasets, including thousands of subjects, are 
needed for profitably applying AI algorithms, and it is not easy to obtain 
and manage such “big data”. Third, the interpretation of clinical and 
MRI data by expert MS clinicians is already satisfactory for monitoring 
RRMS patients. Instead, with the advent of tailored disease-modifying 
drugs for progressive MS patients, there is an imperative need for sen-
sitive and reliable tools assessing motor and cognitive disability pro-
gression, for which ML approaches might lead to breakthroughs (Fox 
et al., 2012). 

In RRMS patients, conventional MRI techniques are very accurate for 
monitoring treatment response, through the identification of new/ 
enlarging T2-lesions and gadolinium enhancing lesions. However, the 
concept of silent progression in disease activity-free RRMS was recently 
introduced, showing ongoing brain atrophy and disability accumulation 
independent of clinical relapses and MRI activity (University of Cali-
fornia et al., 2019). Trying to bridge this gap, Kanber et al. (Kanber et al., 
2019) applied a ML algorithm to compare conventional measures of MRI 
activity against high-dimensional models incorporating a wide multi-
plicity of imaging factors (144 regional, longitudinal trajectories of pre- 
and post- treatment changes in brain volume and disconnection 
measured on diffusion-weighted sequences), for monitoring the 
response to natalizumab. Compared to existing methods, high- 
dimensional models were superior in treatment response detection 
(AUC = 0.890 vs 0.686, P < 0.01). Especially for progressive MS pa-
tients, dedicated MRI approaches are needed, but still under investiga-
tion, as reviewed elsewhere (Filippi et al., 2021a; Filippi et al., 2020). 

From a clinical point of view, the EDSS is clearly inadequate, while 

timed 25-foot walk, nine-hole peg test, Symbol Digits Modalities Test 
and other neuropsychological batteries can provide quantitative esti-
mates and they are widely used. However, all these tests are biased by 
punctual evaluation and clinical rather than “real-world” sampling of 
patients’ performance. The recent availability of wearable devices rep-
resents a novel tool for remote monitoring of patients during daily motor 
activities and in their home environment (Birchmeier et al., 2020; 
Creagh et al., 2020; Supratak et al., 2018). AI is proving to be a prom-
ising instrument for the analysis of data measured by these devices. For 
instance, a combined k-nearest neighbor and support vector machine 
approach was used to determine the best diagnostic gait system (DIERS 
pedogait, GAITRite system, and Mobility Lab) for the differentiation 
between MS patients and HC, and mildly from moderately disabled MS 
patients (Trentzsch et al., 2021). Furthermore, the analysis of 
smartphone-derived measures with AI was able to separate MS patients 
from HC, and mildly from moderately disabled MS patients (Creagh 
et al., 2020). 

5. Technical applications of AI for MRI acquisition and analysis 

Quantitative and advanced MRI metrics are becoming increasingly 
important for clinical application. AI techniques are bound to facilitate 
this breakthrough, as long as they are applied for MRI protocol 
improvement, automated lesion and tissue segmentation, and atrophy 
assessment. 

5.1. MRI protocol improvement 

The identification of specific imaging biomarkers for MS is a high- 
priority area of research (Filippi et al., 2019). Indeed, current diag-
nostic criteria (Thompson et al., 2018) show high sensitivity, but spec-
ificity still needs improvement (Filippi et al., 2021b). In this perspective, 
advanced MRI sequences show promise (Bendfeldt et al., 2019), but 
their acquisition is time and resource consuming (Filippi et al., 2018; 
Wattjes et al., 2021). AI techniques could be applied to extract addi-
tional information from conventional MRI techniques (Wattjes et al., 
2021), or to reduce the resources needed for advanced MRI sequences. 

AI was successfully applied for generating synthetic sequences from 
already acquired image contrasts. Finck et al. used generative adversa-
rial network to generate a double inversion recovery (DIR) sequence 
from a FLAIR (FLuid Attenuated Inversion Recovery), a T2-weighted and 
a T1-weighted sequence (Finck et al., 2020). Computationally generated 
DIR images improved lesion detection compared with standard modal-
ities. In another study, 3D fully-CNNs have been used for the synthesis of 
FLAIR images from multisequence MRI (T1-weighted, T2-weighted, 
proton density and DIR contrasts) (Wei et al., 2019b). AI algorithms 
have been also used to predict gadolinium-enhancing lesions on unen-
hanced multiparametric MRI (pre-contrast T1-weighted, T2-weighted 
and FLAIR) (Narayana et al., 2020), thus reducing or avoiding gado-
linium injection (Gong et al., 2018). 

AI based methods (mainly CNN) can be used to generate high- 
resolution images from low-resolution images (Dong et al., 2016; 
Higaki et al., 2019). Bahrami et al. used paired 3T and 7T images ob-
tained from the same subjects to train a CNN architecture, which was 
able to reconstruct T1-images with the quality standards of 7T sequences 
from 3T images (Bahrami et al., 2016). Qu et al. introduced a novel DL 
algorithm able to perform the same task without the necessity of a sig-
nificant amount of 3T-7T paired data for training, but based on unpaired 
3T and 7T MR images (Qu et al., 2020). Zhao et al. proposed a deep CNN 
approach to perform artifact correction and to improve resolution on 
FLAIR sequences (Zhao et al., 2019), leading to an improved visualiza-
tion of brain WM lesions. 

Finally, AI techniques were applied to shorten the acquisition time of 
advanced MRI pulse sequences. Traditionally, acquisition time can be 
shortened by reducing the number of raw data samples, at the price of 
reconstructing suboptimal images with conventional algorithms. 
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Currently, DL can produce images with good quality from these under- 
sampled data (Shaul et al., 2020). This approach was applied to recon-
struct advanced diffusion image shells from less sophisticated diffusion 
sequences (Collorone et al., 2020; Li et al., 2018; Schneider et al., 2017). 
For instance, Golkov et al. (Golkov et al., 2016) were able to reconstruct 
Diffusion Kurtosis Imaging from only 12 data points and Neurite 
Orientation Dispersion and Density Imaging from only 8 data points, 

achieving an unprecedented scan time reduction for quantitative diffu-
sion MRI, which is used to characterize WM microstructural damage in 
MS. Image post-processing can also require prohibitive time and ma-
chine power. For instance, myelin water fraction is a quantitative MR 
method measuring water trapped in myelin bilayers, burdened by time- 
consuming and complex data analysis. Liu et al. proposed a DL neural 
network architecture to produce a whole-brain myelin water fraction 

Fig. 3. CNN algorithms for automated MS lesion segmentation. In the upper part of the figure (adapted with permission from Valverde et al. (Valverde et al., 
2017)), the algorithm proposed by Valverde et al. based on 3D FLAIR and T1-weighted images was compared with older DL algorithms (showing superior per-
formance), holding manual segmentation as the gold standard. The figure depicts a FLAIR (A) and T1-weighted (B) slice, and WM lesion segmentation mask per-
formed manually (C), by older algorithms (D-E) and by the proposed algorithm (F). On all images, true positives are denoted in green, false positives in red and false 
negatives with a blue square. Likewise, in the lower part of the figure (adapted with permission from Aslani et al. (Aslani et al., 2019)), the algorithm proposed by 
Aslani et al. based on 3D FLAIR and T1-weighted images was compared with older DL algorithms (showing superior performance), holding manual segmentation as 
the gold standard. Each algorithm is illustrated by one column of images: from up to below, axial, coronal and sagittal FLAIR slices, together with WM lesion masks, 
and 3D lesion masks. On all images, true positives, false negatives, and false positives are colored in red, green and blue, respectively. 
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map in approximately 33 s (Liu et al., 2020). Of course, similar AI ap-
proaches can also be applied to acquire accelerated conventional T1- 
and T2-weighted sequences (Mani et al., 2021). 

However, an inherent limitation of DL methods for all these ap-
proaches is the danger of creating false, unexplainable structures in 
images, known as hallucinations, which can lead to incorrect diagnoses 
by the human reader (Bhadra et al., 2021). Of course, this is an active 
area of technical research, hopefully leading to solutions or adaptation 
strategies in the near future. 

5.2. Lesion identification and segmentation 

WM lesion identification and quantification is an essential process 
for the diagnosis and monitoring of MS patients (Filippi et al., 2016). 
Thanks to 3D MRI images, LV measurements are now very accurate. 
However, they traditionally require expert manual reading and anno-
tation, which is feasible but very time-consuming and prone to intra- and 
inter-observer variability (Garcia-Lorenzo et al., 2013). 

Automatic lesion identification and segmentation with DL ap-
proaches (typically CNNs) offers the possibility to obtain LV in a tireless 
and reproducible way. Numerous algorithms have been proposed, as 
reviewed elsewhere (Afzal et al., 2020; Danelakis et al., 2018; Garcia- 
Lorenzo et al., 2013). Fig. 3 illustrates some examples. Importantly, 
standard MRI databases for testing MS lesion segmentation techniques 
have been recently created, such as the Medical Image Computing and 
Computer-Assisted Intervention (MICCAI) and International Symposium 
on Biomedical Imaging (ISBI) MS Lesion Segmentation Challenges 
(Carass et al., 2017; Commowick et al., 2018; Styner et al., 2008). These 
two platforms allow researchers to compare their methods with those of 
other researches with the same established metrics. Manual annotations 
from expert radiologists are provided as a ground truth. Thanks to these 
datasets, the best performing methods using AI approaches were iden-
tified (Afzal et al., 2020; Danelakis et al., 2018). Supervised 3D volume- 
based methodologies using a CNN or random forest classifier showed top 
performances among other techniques tested. A possible explanation is 
that CNN are a particular kind of artificial neural network aimed at 
preserving spatial relationships in the data, with very few connections 
between the layers. CNN are able to form highly efficient representation 
of the input data, well-suited for image-oriented tasks (Zaharchuk et al., 
2018). Some examples are the algorithms by Aslani et al. (Aslani et al., 
2019) and by Valverde et al. (Valverde et al., 2017), which use multiple 
MRI sequences as input images (T2-weighted, FLAIR and T1-weighted 
images). Other two AI approaches for fully automated MS lesion 
detection, based on FLAIR and T1-weighted images, deserve to be 
mentioned. One is the Brain Intensity AbNormality Classification Algo-
rithm (BIANCA), based on the k-nearest neighbor algorithm, which 
classifies each voxel by the prevailing characteristics of its neighboring 
voxels, in terms of voxel intensity and spatial features (Griffanti et al., 
2016). The other one is the Lesion-Topology-Preserving Anatomical 
Segmentation (TOADS) algorithm, which separates the WM from the 
GM and CSF, and WM lesions from normal-appearing WM by using a 
fuzzy c-means classifier statistical algorithm and a topological WM atlas 
obtained from HC (Shiee et al., 2010). The fuzzy c-means classifier in-
volves assigning data points to clusters such that items in the same 
cluster are as similar as possible, while items belonging to different 
clusters are as dissimilar as possible. 

A recent evolution was introduced by La Rosa et al. (La Rosa et al., 
2020), who were able to build a CNN pipeline for the automated seg-
mentation of cortical, in addition to WM, lesions at 3T, using T2- 
weighted FLAIR and T1-weighted MP2RAGE contrasts as input im-
ages. Cortical lesions are an accurate biomarker for MS diagnosis (Filippi 
et al., 2021b), and they provide important pieces of information for 
prognosis and treatment decision (Haider et al., 2021; Rotstein and 
Montalban, 2019). Another innovation was the application of AI for the 
automated assessment of the central vein sign (CVS) in WM lesions, 
which is an accurate tool for distinguishing MS from other conditions 

characterized by WM lesions on MRI (Bendfeldt et al., 2019). Maggi 
et al. (Maggi et al., 2020) proposed a 3D CNN DL approach using an 
optimized 3D T2*-weighted segmented echo-planar imaging (T2*-EPI) 
sequence as input to efficiently discriminate between MS and inflam-
matory vasculopathies of the CNS. The method showed high perfor-
mance across different scanner types, strengthening its potential for 
clinical applicability. 

Finally, automatic segmentation of spinal cord cross sectional area 
and lesions was developed to obtain a fast and reproducible measure for 
disease monitoring and phenotype classification. Gros et al. (Gros et al., 
2019) elaborated a CNN algorithm for a fully-automatic segmentation of 
the spinal cord and intramedullary MS lesions, based on T1-weighted, 
T2-weighted and T2*-weighted MRI scans. Spinal cord segmentation 
with the proposed open-source method outperformed the compared 
state-of-the-art method (DSC = 95% vs 88% of PropSeg), while intra-
medullary MS lesion segmentation performance were comparable to 
manual segmentations. Other DL algorithms based on CNN were pro-
posed for performing automated segmentation of upper cervical cord 
GM (Paugam et al., 2019; Tsagkas et al., 2019). 

5.3. Atrophy measurements 

Brain atrophy, especially of its GM compartment, is a key predictor of 
disease evolution, disability progression and cognitive deterioration in 
MS patients (Eijlers et al., 2018; Eshaghi et al., 2018; Filippi et al., 2013; 
Fisher et al., 2008). However, technical issues limit the applicability of 
GM volume quantification in clinical practice, while whole brain atro-
phy measures have proven to be more reproducible (Sastre-Garriga 
et al., 2020). Thus, AI algorithms were studied to improve today’s gold 
standard software for brain segmentation, which needs manual work 
and revision by expert technicians. Several methods have been proposed 
and tested, which go beyond the scopes of this Review (Akkus et al., 
2017; Dolz et al., 2018; Kushibar et al., 2018; Mehta et al., 2017; Mil-
letari et al., 2017; Wachinger et al., 2018). It may suffice to say that work 
is ongoing in this field and, while promising breakthroughs have been 
achieved, there is not yet an accepted method that can be established for 
brain tissue segmentation in clinical practice. This is probably because 
the results are still below experts’ performance and they require some 
technical effort (both hardware and software) to be largely employed. 

It is also useful to remember that algorithms for GM or WM volume 
quantification are affected by the presence of WM lesions in MS, which 
can reduce the accuracy of WM-GM segmentation (i.e., separating the 
WM from the GM) (Battaglini et al., 2012). Thus, a step of “lesion-filling” 
is usually performed beforehand, consisting in assigning intensities that 
are similar to those in the non-lesion neighbourhood (restricted to WM 
only) to lesion voxels (Battaglini et al., 2012). 

6. Current limitations and future developments 

Although AI methods have been showing increasingly promising 
results for clinical application in the field of MS, a major limitation of 
these studies is the impossibility to explain neural network decisions. 
This is an active area of research in computer science (Castelvecchi, 
2016), which could lead to major breakthroughs in the medical field. For 
instance, AI methods may detect subtle imaging abnormalities not 
detected by the human eye, which might reflect important pathophysi-
ological mechanisms yet to be discovered. To the opposite, AI methods 
might follow unintended “shortcut” strategies, which, while superfi-
cially successful, typically fail under slightly different circumstances. 
For instance, an algorithm might learn to separate MS patients from HC 
based on the presence/absence of lesions, but this “shortcut” strategy 
will obviously fail when the algorithm is confronted with subjects with 
WM lesions due to cerebral small vessel disease. Recent work focused on 
generating and visualizing images indicating the relevance of each voxel 
for the final classification decisions of DL algorithms (Bach et al., 2015). 
Elenberg et al. (Elenberg et al., 2017) proposed an approach where the 
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image is first segmented into regions and the network predictions are re- 
evaluated with most of the image regions to estimate their impact on the 
prediction. However, despite the numerous attempts, so far, no general 
solution has emerged. Further studies, especially applied to MS, are 
needed to interpret how AI performs its prediction (especially DL algo-
rithms) and even understand new pathophysiologic knowledge from AI 
models. 

An inherent limitation shared by all AI, and especially ML, ap-
proaches is the need of large datasets, which are challenging to obtain 
due to system availability, cost constraints, acquisition methodology, 
and pathology-related variability. To overcome this issue, an interesting 
alternative is represented by the application of new generative DL-based 
models, able to obtain synthetic data with characteristics spanning the 
original data manifold. Generative adversarial networks represent a 
subclass of DL frameworks able to generate complex data structure, 
including the recent modeling approach used to characterize brain 
networks by means of graph theory (Guo et al., 2017). However, to date 
the application of generative adversarial networks in the MS field is 
limited to three studied exploring brain structural connectivity (Barile 
et al., 2021b) and PET-based measurements of myelin content (Wei 
et al., 2019a; Wei et al., 2020). This new strategy should be pursued by 
future studies. 

On the other hand, future studies are needed to cross-validate AI 
algorithms in multicenter, prospective and longitudinal cohorts. For 
instance, AI algorithms are known to suffer from the issue of domain 
shift, which is a change in data distribution between an algorithm’s 
training dataset, and a dataset it encounters when deployed (e.g., image 
acquisition parameters, scanner model). The use of multicenter data 
would allow a better study of this issue and the development of strate-
gies of domain adaptation, in addition to the training of the algorithm on 
large and mixed data. 

Studies with a multicenter, prospective and longitudinal design are 
bound to play a major role in allowing the clinical application of 
advanced MRI, neurophysiological and laboratory exams, which are 
increasingly complicated to acquire and interpret. 

Furthermore, the literature on AI in the field of MS would greatly 
benefit from expert consensus-driven guidelines that ensure reliability 
and validity of findings, and standard thresholds for the accuracy of 
models required for publication, which are lacking at present. These 
guidelines should also deal with the inherent limitations of AI in general 
(e.g., adequate dataset, overfitting problem) and specific to MS (e.g., 
WM lesions affecting volumetric measures, domain shift, “hallucina-
tions”, short-cut learning, discriminative maps of image classifiers), 
which were discussed above. 

AI algorithms should be very helpful for achieving the contemporary 
paradigm of personalized medicine, according to which giving the most 
precise diagnosis, prognosis and treatment to every patient should be the 
ultimate goal of clinical practice. Finally, practical aspects, such as the 
integration of AI software into existing IT infrastructures and the access 
to the required computing power, should receive close attention in the 
near future. 

7. Conclusions 

In this review, we provided a basic overview of the potential appli-
cations of AI for MS clinical practice, mainly from a clinical rather than a 
technical point of view. All workplaces are increasingly relying on 
computers for rapid and accurate information processing, and the 
medical field should be no exception. Thus, not just neuro-radiologists 
but also MS clinicians should become familiar with the main applica-
tions of AI in the field of MS, which are bound to enter clinical practice in 
the near future. Although an expert reader should always be required to 
review the final output (and intermediate steps, if needed), AI tech-
niques are very promising for many clinical applications in the field of 
MS, including diagnosis, differential diagnosis, prognosis, disease and 
treatment monitoring, MRI protocol improvement, automated lesion 

and tissue segmentation. Future challenges are a better understanding of 
the information selected by AI algorithms, appropriate multicenter and 
longitudinal validations of existing software and practical aspects 
regarding hardware and software integration. 
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