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Background: Pulmonary hypertension (PH) is a life-threatening disease in dogs

characterized by an increase in pulmonary arterial pressure (PAP) and/or pulmonary

vascular resistance. Right ventricle adapts to its pressure overload through various

right ventricular (RV) compensative mechanisms: adaptive and maladaptive remodeling.

The former is characterized by concentric hypertrophy and increased compensatory

myocardial contractility, whereas the latter is distinguished by eccentric hypertrophy

associated with impaired myocardial function.

Objectives: To evaluate the RV adaptation associated with the increase of PAP using

two-dimensional speckle tracking echocardiography.

Animals: Seven experimentally induced PH models.

Methods: Dogs were anesthetized and then a pulmonary artery catheter was placed

via the right jugular vein. Canine models of PH were induced by the repeated injection

of microspheres through the catheter and monitored pulmonary artery pressure. Dogs

were performed echocardiography and hemodynamic measurements in a conscious

state when baseline and systolic PAP (sPAP) rose to 30, 40, 50 mmHg, and chronic

phase. The chronic phase was defined that the sPAP was maintained at 50 mmHg or

more for 4 weeks without injection of microspheres.

Results: Pulmonary artery to aortic diameter ratio, RV area, end-diastolic RV wall

thickness, and RV myocardial performance index were significantly increased in the

chronic phase compared with that in the baseline. Tricuspid annular plane systolic

excursion was significantly decreased in the chronic phase compared with that in the

baseline. The RV longitudinal strain was significantly decreased in the sPAP30 phase,

increased in the sPAP40 and sPAP50 phases, and decreased in the chronic phase.
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Conclusions: Changes in two-dimensional speckle tracking echocardiography-derived

RV longitudinal strain might reflect the intrinsic RV myocardial contractility

during the PH progression, which could not be detected by conventional

echocardiographic parameters.

Keywords: dog, right ventricular remodeling, right ventricular strain, right ventricular-arterial coupling, wall stress,

myocardial function

INTRODUCTION

Pulmonary hypertension (PH), a life-threatening disease in dogs,
is characterized by increased pulmonary arterial pressure (PAP,
normal range: systolic PAP; 15–25 mmHg, mean PAP; 10–15
mmHg, and diastolic PAP; 5–10 mmHg) and/or pulmonary
vascular resistance (1, 2). The disease would be caused by various
diseases in dogs, including pulmonary arterial disease, left heart
disease, respiratory disease, hypoxia, pulmonary embolic disease,
parasitic disease, or some combination of these (1). Recent
studies have reported that PH was one of the risk factors for
the worse outcome especially in dogs with myxomatous mitral
valve disease and respiratory disease/hypoxia (3, 4). Considering
the structural characteristics of the right ventricle, the right
ventricular (RV) pressure overload would critically impact RV
function and cardiac output (5). In humans, to compensate for
low cardiac output due to increased PAP, the right ventricle
responds through two compensatory mechanisms: adaptive and
maladaptive remodeling (6–9). The former is characterized by
concentric hypertrophy and increased compensatory myocardial
contractility, whereas the latter is distinguished by eccentric
hypertrophy associated with impaired myocardial function.
Therefore, to estimate the progression of PH, the change in RV
myocardial function and remodeling associated with increasing
RV pressure overload must be evaluated.

Currently, various echocardiographic variables are used as
clinical, non-invasive tools to assess RV function in veterinary
medicine; specifically, two-dimensional speckle tracking
echocardiography (2D-STE) enables quantitative, non-invasive
assessment of the intrinsic RV myocardial function (10–12).
However, studies that have assessed the relationship between
invasively measured PAP and echocardiographic variables
for RV function in the same individuals are limited (13, 14).
Furthermore, almost all these studies have evaluated the
association in the acute phase of RV pressure overload in

Abbreviations: 2D-STE, two-dimensional speckle tracking echocardiography;

3seg, only right ventricular free wall analysis; 6seg, right ventricular global analysis;

CV, coefficient of variation; PA:Ao, pulmonary artery to aortic diameter ratio;

PAP, pulmonary arterial pressure; PH, pulmonary hypertension; RV CO, right

ventricular cardiac output; RV FACn, right ventricular fractional area change

normalized by body weight; RV MPI, right ventricular myocardial performance

index; RV s’, tissue Doppler imaging-derived peak systolic myocardial velocity of

lateral tricuspid annulus; RV SV, right ventricular stroke volume; RVEDA index,

end-diastolic right ventricular area normalized by body weight; RVESA index, end-

systolic right ventricular area normalized by body weight; RV-SL, right ventricular

longitudinal strain; RV-SrL, right ventricular longitudinal strain rate; RVWTd,

end-diastolic right ventricular wall thickness; TAPSEn, tricuspid annular plane

systolic excursion normalized by body weight.

anesthetized dogs (13, 14), although in majority of the cases, PH
runs a chronic course and various RV adaptations are exhibited.

We hypothesized that 2D-STE indices would reflect the
changes in RV function associated with RV adaptation, and there
would be differences in RV function between the acute and
chronic phase of RV pressure overload. This study aimed to assess
RVmorphology and function associated with the increase in PAP
during the process of creating model dogs with chronic PH.

MATERIALS AND METHODS

Our prospective, experimental study consisted of procedures that
were performed in accordance with the Guide for Institutional
Laboratory Animal Care and Use in Nippon Veterinary and Life
ScienceUniversity andwas approved by the ethical committee for
laboratory animal use of the Nippon Veterinary and Life Science
University, Japan (approval number: 2019S-56).

Animals
Seven laboratory male beagles (body weight: 9.1 ± 1.5 kg, age:
1.0± 0.2 years) were used in this study. All dogs were determined
to be healthy based on a complete physical examination, blood
tests, thoracic and abdominal radiography, transthoracic and
abdominal ultrasonography, and oscillometric method-derived
blood pressure measurement.

Study Preparation
The study dogs were administered butorphanol tartrate
(0.2 mg/kg, IV) (Meiji Seika Pharma Co. Ltd., Tokyo,
Japan), midazolam hydrochloride (0.2 mg/kg, IV) (Maruishi
Pharmaceutical. Co., Ltd., Osaka, Japan), heparin sodium
(100 IU/kg, IV) (AY Pharmaceuticals Co. Ltd., Tokyo, Japan),
and cefazolin sodium hydrate (20 mg/kg, IV) (LTL Pharma
Co. Ltd., Tokyo, Japan) as pre-anesthetic medication. They
were then anesthetized intravenously with propofol (Nichi-Iko
Pharmaceutical Co., Ltd., Toyama, Japan), maintained with 1.5–
2.0% isoflurane (Mylan Seiyaku Ltd., Osaka, Japan) mixed with
100% oxygen. The end-tidal partial pressure of carbon dioxide
was monitored and maintained between 35 and 45 mmHg by
manual ventilation at a rate of 8–12 breaths per minute. The
anesthetized dogs were placed in left lateral recumbency and the
right lateral neck region was clipped, prepared aseptically, and
draped. An ∼5.0-cm surgical cutdown was performed over the
right jugular furrow to exteriorize the right jugular vein. Then an
8-Fr multipurpose catheter (Atom Medical Corp., Tokyo, Japan)
was placed in the main pulmonary artery under fluoroscopic
guidance. The right side of the neck was sutured, and all the dogs
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completely recovered from anesthesia through the conventional
method (15).

Creating Model Dogs With Chronic PH and
Hemodynamic Measurements
The PAP was measured using circulatory function analysis
software (SBP2000, Softron, Tokyo, Japan). The conscious dogs
were restrained in the most stable position, and the PAP (systolic,
mean, and diastolic) was measured invasively by calibrating with
the atmospheric pressure. The average value of PAP calculated
from nine consecutive cardiac cycles was considered as “baseline”
data and used for the statistical analysis. After baseline PAP
measurements were taken, microspheres measuring between
150 and 300µm in diameter (Sephadex G-25 Coarse, Cytiva,
Tokyo, Japan) were injected repeatedly and the peripheral
pulmonary artery was embolized via the prepared catheter (16,
17). The time points at which systolic PAP (sPAP) rose to
∼30, 40, and 50 mmHg were defined as “sPAP30,” “sPAP40,”
and “sPAP50,” respectively. Each time point was at least 2
days after injection of the microspheres to eliminate the acute
effects of microspheres on RV function. When the sPAP was
maintained at 50 mmHg or more for 4 weeks without injection
of microspheres, the time point was defined as “chronic” and
the same examinations as those carried out at the other time
points were performed. At each time point, the systemic arterial
pressure was measured for all dogs using the oscillometric
method. The dogs were sedated using butorphanol tartrate (0.1
mg/kg, IV) and midazolam hydrochloride (0.1 mg/kg, IV) to
perform the microsphere injection, PAP measurements, and
echocardiography when necessary.

Echocardiographic Assessment of the
Right Heart
Echocardiography was performed in all dogs on the same day as
the hemodynamic measurements were taken at all time points.
Conventional 2D and Doppler examinations were performed
by a single investigator (RS) using a Vivid 7 or Vivid E95
echocardiographic system (GE Healthcare, Tokyo, Japan) and
a 3.5–6.9 MHz transducer. A lead II electrocardiogram was
recorded simultaneously and the images were displayed. Data
obtained from at least five consecutive cardiac cycles in sinus
rhythm from the dogs that were manually restrained in right and
left lateral recumbency were stored. The images were analyzed
using an offline workstation (EchoPAC PC, Version 204; GE
Healthcare, Tokyo, Japan) by a single observer (YY).

For studying the right heart morphology, the end-diastolic
and end-systolic RV areas (RVEDA and RVESA) along with the
end-diastolic RV wall thickness (RVWTd) were measured using
the left apical four-chamber view optimized for the right heart
(RV focus view), as described previously (18–20). Each variable
except for the RVWTd was measured by tracing the endocardial
border of the right ventricle and normalized by body weight (20).

RVEDA index =
(RVEDA [cm2])

(body weight [kg])0.624

RVESA index =
RVESA (cm2)

body weight (kg)0.628

The RVWTd was measured as the largest diameter of the RV
free wall at end-diastole using the B-mode method. Additionally,
the ratio of pulmonary artery to aortic diameter (PA:Ao) was
obtained from the right parasternal short-axis view at the level
of the pulmonary artery, as described previously (21).

Tricuspid annular plane systolic excursion (TAPSE), RV
fractional area change, peak systolic change (RV FAC), tissue
Doppler imaging-derived peak systolic myocardial velocity of
lateral tricuspid annulus (RV s’), RV myocardial performance
index (RV MPI), RV stroke volume (RV SV), and RV cardiac
output (RV CO) were measured as indicators of RV systolic
function, as described previously (19, 20, 22). All RV functional
variables were obtained from the RV focus view. The TAPSE was
measured using the B-mode method as described previously (23–
25). The TAPSE and RV FAC were normalized by body weight
using the following formula (22, 25):

TAPSEn =
(TAPSE [cm])

(body weight [kg])0.284

RV FACn =
(RV FAC [%])

(body weight [kg])−0.097

The RV MPI was obtained from the tissue Doppler imaging-
derived lateral tricuspid annular motion wave using the
following formula:

RV MPI =
(b− a)

a

where a is the duration of the systolic tricuspid annular motion
wave, and b is the interval from the end of the late diastolic
tricuspid annular motion wave to the onset of the early diastolic
tricuspid annular motion wave (19). The RV SV was calculated
by multiplying the velocity-time integral of the pulmonary
artery flow and the cross-sectional area of the pulmonary trunk
obtained from the right parasternal short-axis view at the level
of pulmonary artery, as described previously (26). The RV CO
was obtained using RV SV and heart rate calculated by mean
R-R intervals obtained from the same cardiac cycle used for RV
SV measurement.

If the dogs had tricuspid valve or pulmonary valve
regurgitation, we classified these severities as mild, moderate,
or severe using color Doppler and continuous wave Doppler
methods, as described previously (27, 28).

Two-Dimensional Speckle Tracking
Echocardiography
All 2D-STE analyses were performed by a single investigator
using the same ultrasound machine and evaluated by the
same investigator using the same offline workstation as that
used for standard echocardiography. The strain and strain
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rate were obtained from the RV focus view using the left
ventricular four-chamber algorithms (23, 29). The region of
interest for 2D-STE was defined by manually tracing the RV
endocardial border. Only RV free wall analysis (3seg) was
performed by tracing from the level of the lateral tricuspid
annulus to the RV apex for the longitudinal strain (RV-SL3seg)
and strain rate (RV-SrL3seg) (Figure 1A). Right ventricular global
analysis (6seg) was also performed by tracing from the lateral
tricuspid annulus to the septal tricuspid annulus (including
the interventricular septum) via the RV apex for the 6seg
longitudinal strain (RV-SL6seg), and strain rate (RV-SrL6seg)
(Figure 1B). Manual adjustments were made to include and track
the entire myocardial thickness over the cardiac cycle when
necessary. When the automated software could not track the
myocardial regions, the regions of interest were retraced and
recalculated. The RV-SL was defined as the absolute value of
the negative peak value obtained from the strain wave (23, 30).
The RV-SrL was obtained from the strain rate wave and was
defined as the absolute value of the negative peak value during
systole (30–32).

Variability of Intra- and Inter-Observer
Measurements
Intra-observer measurement of variability was performed by
a single observer who performed all the echocardiographic
and radiographic measurements (YY). The baseline RV
morphological and functional indices were obtained from the
seven dogs. All measurements were performed on two different
days at >7-day intervals using the same cardiogram and cardiac
cycles. A second blinded observer (HK) measured the same
indices for the determination of inter-observer variability using
the same echocardiogram and heart cycles.

Statistical Analysis
All statistical analyses were performed using the commercially
available EZR software, version 1.41 (Saitama Medical Center,
Jichi Medical University, Saitama, Japan) (33). All continuous
data were reported as median (interquartile range).

The normality of data was tested using the Shapiro–Wilk test.
Continuous variables were compared between each timepoint by
means of repeated measures analysis of variance with subsequent
pairwise comparisons using the Bonferroni-adjusted paired t-
test for normally distributed data or Friedman rank sum test
with subsequent pairwise comparisons using the Bonferroni-
adjusted Wilcoxon signed rank sum test for non-normally
distributed data.

Variability of intra- and inter-observer measurements was
quantified by the coefficient of variation (CV), which was
calculated using the following formula:

CV (%) =
(standard deviation)

(mean value)
× 100

Intra- and inter-class correlation coefficients (ICC) were also
used to evaluate the measurement variability. Low measurement

variability was defined as CV < 10.0 and ICC > 0.7. Statistical
significance was set at P < 0.050.

RESULTS

Creating PH Model Dogs
The dogs were administered repeated microsphere infusions for
2.2± 1.0, 6.9± 3.8, 14.9± 5.7, and 50.9± 13.1 weeks to meet the
definition of sPAP30, sPAP40, sPAP50, and chronic, respectively.
The median total dose of microspheres was 1.24 mg/kg (range:
0.93–1.37). There was no significant change in body weight. Two
dogs required sedation with butorphanol tartrate and midazolam
hydrochloride to perform echocardiography and for taking PAP
measurements at each timepoint. None of the dogs showed
any clinical symptoms associated with PH, including syncope,
dyspnea, lethargy, ascites, and pleural effusion throughout this
study protocol.

Hemodynamic Measurements
The hemodynamic data obtained from all seven model dogs
were included in the statistical analysis. Table 1 shows the results
of hemodynamic parameters in the PH model dogs. With the
rise in sPAP, the mean PAP also increased in the sPAP30,
sPAP40, sPAP50, and chronic phases compared with the baseline
(P = 0.012, P = 0.018, P < 0.001, and P = 0.021, respectively)
parameters. The diastolic PAP was significantly increased in the
sPAP50 and chronic phases compared with the baseline and
sPAP30 values (sPAP50: P = 0.003 and P = 0.004, respectively;
chronic: P = 0.013 and P = 0.023, respectively). There were
no significant changes in systolic, mean, and diastolic systemic
arterial pressure and heart rate with increased sPAP.

Echocardiographic Measurements
In this study, the echocardiographic data obtained from all seven
model dogs were included in the statistical analysis. All the dogs
had mild pulmonary valve regurgitation at baseline, sPAP30,
and sPAP40 phases, and that was progressed to moderate at
sPAP50 and chronic phases in four dogs (57%). Additionally,
three dogs (43%) had mild tricuspid valve regurgitation at
each timepoint.

Table 2 shows the results of echocardiographic parameters for
RV morphology and function. The PA:Ao value was significantly
higher in the sPAP50 phase than the baseline values and those
of the sPAP40 phase (P = 0.034 and P = 0.038, respectively).
This value was also significantly elevated in the chronic phase
compared with those in the baseline, sPAP30, and sPAP40 phases
(P = 0.021, P = 0.004, and P = 0.010, respectively). The RVEDA
index and RVESA index were significantly increased in the
chronic phase compared with those in the sPAP30 phase (P =

0.041 and P= 0.048, respectively). The RVWTd was significantly
higher in the sPAP50 phase compared with that in baseline phase
(P = 0.042). This value was also significantly elevated in the
chronic phase compared with those in the baseline and sPAP30
phases (P = 0.002 and P = 0.047, respectively). The TAPSEn
and RV MPI were significantly worse in the chronic phase
compared with the baseline values (P = 0.008 and P = 0.003,
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FIGURE 1 | Two-dimensional speckle tracking echocardiography-derived right ventricular longitudinal strain and strain rate (RV-SL and RV-SrL, respectively). (A)

RV-SL and RV-SrL of the right ventricular free wall (RV-SL3seg and RV-SrL3seg, respectively). (B) RV-SL and RV-SrL of the global right ventricle (RV-SL6seg and

RV-SrL6seg, respectively).

TABLE 1 | Changes in hemodynamic parameters during the process of creating canine models of chronic embolic pulmonary hypertension.

Variables Baseline sPAP30 sPAP40 sPAP50 Chronic

Pulmonary arterial pressure (mmHg)

Systole 20.0 (17.3, 24.6) 33.0 (30.0, 34.6)a 42.3 (40.4, 47.8)ab 52.4 (50.7, 52.9)abc 51.4 (50.3, 65.9)abc

Mean 12.8 (11.0, 15.0) 16.8 (16, 20.4)a 21.7 (18.3, 23.9)ab 29.4 (27.9, 33.7)abc 30.1 (29.3, 31.9)abc

Diastole 6.4 (5.1, 9.0) 8.8 (8.3, 12.6) 11.8 (7, 17.2) 16.1 (15.4, 18.8)ab 16.3 (15.2, 19.4)ab

Systemic arterial pressure (mmHg)

Systole 126 (116, 134) 124 (113, 137) 132 (116, 136) 130 (130, 131) 128 (120, 142)

Mean 92 (88, 97) 91 (78, 106) 97 (81, 107) 99 (91, 102) 93 (82, 98)

Diastole 80 (70, 82) 75 (65, 87) 82 (64, 93) 80 (73, 88) 69 (60, 77)

Heart rate (bpm) 88 (81, 115) 99 (91, 120) 102 (82, 124) 94 (64, 112) 84 (81, 100)

Continuous variables were displayed as median (interquartile range).
aThe value is significantly different from the Baseline (P < 0.050).
bThe value is significantly different from the sPAP30 (P < 0.050).
cThe value is significantly different from the sPAP40 (P < 0.050).

respectively). The RV SV was significantly higher in the chronic
phase compared with that in the sPAP30 phase (P = 0.016),
whereas, RV FACn, RV s’, and RV CO showed no significant
changes with increased sPAP.

The results of 2D-STE indices are summarized in Figures 2,
3. The RV-SL3seg and RV-SL6seg were significantly decreased
in the sPAP30 phase compared with the baseline values
(P = 0.047 and P = 0.040, respectively). Additionally, RV-SL3seg

was significantly lower in the chronic phase compared with
those in the baseline, sPAP40, and sPAP50 phases (P =

0.012, P = 0.010, and P = 0.011, respectively) (Figure 2A).
However, RV-SL6seg was significantly reduced in the chronic
phase compared with those in the baseline and sPAP40 phases
(P = 0.047 and P = 0.044, respectively) (Figure 2B). The
RV-SrL3seg and RV-SrL6seg were significantly lower in the
chronic phase compared with those in the sPAP50 and sPAP40
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TABLE 2 | Changes in echocardiographic parameters during the process of creating canine models of chronic embolic pulmonary hypertension.

Variables Baseline sPAP30 sPAP40 sPAP50 Chronic

PA:Ao 0.80 (0.78, 0.81) 0.78 (0.76, 0.81) 0.78 (0.74, 0.79) 0.92 (0.85, 0.93)ac 0.97 (0.96, 0.99)abc

RVEDA index (cm2/kg0.624) 1.43 (1.11, 1.44) 1.08 (0.91, 1.17) 1.02 (0.96, 1.27) 1.08 (0.96, 1.14) 1.47 (1.28, 1.63)b

RVESA index (cm2/kg0.628) 0.77 (0.60, 0.85) 0.73 (0.55, 0.82) 0.72 (0.52, 0.82) 0.65 (0.60, 0.72) 0.99 (0.88, 1.10)b

RVWTd (mm) 3.7 (3.4, 3.8) 4.0 (3.8, 4.2) 4.4 (3.9, 4.9) 4.9 (4.5, 5.0)a 5.6 (5.2, 6.1)ab

RV FACn (%/kg−0.097) 53.7 (49.1, 61.0) 47.9 (46.3, 50.2) 44.0 (42.7, 56.6) 47.7 (41.6, 50.1) 37.1 (36.7, 40.0)

TAPSEn (mm/kg0.33) 6.2 (5.9, 6.6) 5.5 (3.9, 5.9) 6.2 (6.0, 6.6) 5.9 (5.3, 6.4) 4.6 (4.3, 5.5)a

RV s’ (cm/s) 11.0 (10.6, 12.2) 11.8 (9.8, 14.0) 13.1 (11.6, 14.8) 13.4 (11.6, 14.7) 9.1 (7.6, 11.0)

RV MPI 0.41 (0.36, 0.43) 0.41 (0.39, 0.56) 0.55 (0.43, 0.64) 0.55 (0.44, 0.62) 0.72 (0.68, 0.76)a

RV SV (mL) 18.5 (16.1, 19.4) 15.0 (10.9, 16.6) 15.5 (13.4, 17.6) 16.9 (15.7, 21.7) 21.8 (20.8, 23.4)b

RV CO (L/min) 1.5 (1.3, 2.2) 1.5 (1.4, 1.6) 1.5 (1.3, 1.9) 1.5 (1.4, 1.6) 1.8 (1.7, 2.1)

PA:Ao, pulmonary artery to aortic diameter ratio; RV CO, right ventricular cardiac output; RV FACn, right ventricular fractional area change normalized by body weight; RV MPI, right

ventricular myocardial performance index; RV s’, tissue Doppler imaging-derived peak systolic myocardial velocity of lateral tricuspid annulus; RV SV, right ventricular stroke volume;

RVEDA index, end-diastolic right ventricular area normalized by body weight; RVESA index, end-systolic right ventricular area normalized by body weight; RVWTd, end-diastolic right

ventricular wall thickness; TAPSEn, tricuspid annular plane systolic excursion normalized by body weight.

Continuous variables were displayed as median (interquartile range).
aThe value is significantly different from Baseline (P < 0.050).
bThe value is significantly different from sPAP30 (P < 0.050).
cThe value is significantly different from sPAP40 (P < 0.050).

FIGURE 2 | Box and whisker plots of the right ventricular longitudinal strain (RV-SL) obtained from two-dimensional speckle tracking echocardiography. The bottom of

the box is 25%, the middle line is the median, the top of the box is 75%, and the whiskers represent the range. (A) RV-SL of the right ventricular free wall (RV-SL3seg).

(B) RV-SL of the global right ventricle (RV-SL6seg).

phases, respectively (P = 0.028 and P = 0.039, respectively)
(Figure 3).

Intra- and Inter-Observer Measurement
Variability
The results of intra- and inter-observer measurement
variability for the echocardiographic indices assessed in
this study are summarized in Table 3. Considering the intra-
observer measurement variability, all the echocardiographic
parameters showed low measurement variability. Further, all the
echocardiographic indices except for RVESA, RV FAC, and RV
MPI showed low measurement variability based on CV and ICC.

DISCUSSION

We created model dogs with chronic pre-capillary PH with
moderately increased PAP and substantial right heart remodeling
and compared the changes in RV function associated with
increased PAP that was measured invasively in conscious dogs.
In the acute phase, 2D-STE-derived RV systolic function was
temporarily decreased due to the acute rise in PAP; however,
it improved with RV hypertrophy; this may be a sign of RV
adaptive remodeling. In contrast to the acute phase, RV systolic
dysfunction assessed by RV-SL and RV dilatation were observed
in the chronic phase of PH, which could be because of RV
maladaptive remodeling and myocardial dysfunction.
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FIGURE 3 | Box and whisker plots of the right ventricular longitudinal strain rate (RV-SrL) obtained from two-dimensional speckle tracking echocardiography. The

bottom of the box is 25%, the middle line is the median, the top of the box is 75%, and the whiskers represent the range. (A) RV-SrL of the right ventricular free wall

(RV-SrL3seg). (B) RV-SrL of the global right ventricle (RV-SrL6seg).

TABLE 3 | Inter- and intra-observer measurement variability for echocardiographic parameters evaluated in this study.

Variables Intra-observer Inter-observer

CV (%) ICC P CV (%) ICC P

PA:Ao 4.2 0.94 < 0.001 5.9 0.80 0.012

RVEDA 4.1 0.99 < 0.001 8.6 0.82 < 0.001

RVESA 5.8 0.94 < 0.001 11.4 0.66 0.012

RVWTd 3.2 0.93 < 0.001 6.5 0.80 0.004

RV FAC 5.0 0.81 0.001 8.8 0.50 0.002

TAPSE 3.1 0.90 < 0.001 5.9 0.80 0.002

RV s’ 2.8 0.97 < 0.001 2.9 0.95 < 0.001

RV MPI 7.8 0.88 < 0.001 12.3 0.64 0.002

RV SV 4.4 0.98 < 0.001 8.9 0.94 < 0.001

RV-SL3seg 4.4 0.93 < 0.001 5.0 0.92 < 0.001

RV-SrL3seg 6.1 0.95 < 0.001 9.3 0.89 < 0.001

RV-SL6seg 5.2 0.90 < 0.001 7.2 0.85 < 0.001

RV-SrL6seg 5.8 0.94 < 0.001 7.6 0.93 < 0.001

3seg, only right ventricular free wall analysis; 6seg, right ventricular global analysis; CI, confidence interval; CV, coefficient of variation; ICC, intra- or inter-class correlation coefficients;

PA:Ao, pulmonary artery to aortic diameter ratio; RV FAC, right ventricular fractional area change; RV MPI, right ventricular myocardial performance index; RV s’, tissue Doppler

imaging-derived peak systolic myocardial velocity of lateral tricuspid annulus; RV SV, right ventricular stroke volume; RVEDA, end-diastolic right ventricular area; RVESA, end-systolic

right ventricular area; RV-SL, right ventricular longitudinal strain; RV-SrL, right ventricular longitudinal strain rate; RVWTd, end-diastolic right ventricular wall thickness; TAPSE, tricuspid

annular plane systolic excursion.

In this study, certain conventional echocardiographic indices,
such as TAPSEn and RV MPI, did not significantly change with
increased PAP in the acute phase, although these indices were
significantly worse in the chronic phase of PH. Nonetheless,
2D-STE indices showed substantial changes in the acute phase
as well as in the chronic phase of PH. Previous studies
reported that these conventional echocardiographic indices
are affected by angle- and load-dependent limitations (34–
36). Furthermore, all the model dogs in our study had
echocardiographic evidence of tricuspid valve and pulmonary
valve regurgitation; therefore, these volume overloads may

prevent the detection of RV dysfunction using conventional
indices. In contrast, 2D-STE variables have been used to assess
intrinsic RV myocardial function with angle-independency and
the low effect of these loading conditions (10). Additionally,
considering PH would induce full RV remodeling against RV
pressure overload, assessment of the global right ventricular
function based on 2D-STE indices may help detect precise RV
myocardial function more sensitively than conventional indices.
Therefore, 2D-STE indices can be used to detect changes in
intrinsic RV systolic function, which cannot be detected using
conventional indices.
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In the acute phase, RV-SL was significantly reduced in the
sPAP30 phase and gradually increased in the sPAP40 and sPAP50
phases. In the sPAP30 phase, all the dogs did not have RV
remodeling; therefore, the acute rise in PAP might have induced
the imbalance between RV contractility and RV pressure overload
(i.e., RV arterial uncoupling caused by increased RV pressure
overload). However, RV-SL gradually increased with PAP and
RVWTd, which indicates RV adaptive remodeling. In human
medicine, RV adaptation remodeling was induced in PH patients
through various mechanisms such as neurological activation,
inflammation, and altered bioenergetics (19, 37, 38). In this
study, the RVWTd gradually increased with the rise in PAP
during the process of creating the chronic PH model dogs.
Therefore, our results indicate that 2D-STE indices may be
highly sensitive to changes that reflect the adaptation in RV
myocardial contractility.

There was a significant difference between the 2D-STE-
derived RV systolic functional indices of the sPAP50 and the
chronic phases, although there was no significant difference
in the RV loading condition (sPAP was stable at 50 mmHg).
In general, chronic RV pressure overload increases myocardial
wall stress, which in turn increases RV wall thickness and
contractility to maintain RV CO (6–9). However, the RV
myocardial contractility may be unable to cope with the chronic,
excessive pressure overload. Our results suggest that RV-SL
may reflect the intrinsic RV myocardial contractility, which
showed decompensation in the chronic phase. Additionally,
myocardial fibrosis might have also affected the results. Several
studies have reported the prevalence of RV myocardial fibrosis in
patients with PH (39, 40). Furthermore, in human patients with
severe heart failure, the 2D-STE-derived RV-SL was reported to
have a strong correlation with RV myocardial fibrosis, which
could induce RV maladaptive remodeling and subsequent RV
myocardial dysfunction (41). Although we have not conducted
histopathological examinations in all themodel dogs, the changes
in RV-SL may also be indicative of RV fibrosis and RV
maladaptation with PH progression.

In this study, RV-SL changed more drastically in 3seg than in
6seg in the acute phase, although both indices were significantly
decreased in the chronic phase. Considering the interventricular
septum when evaluating RV function is a matter of controversy
(14, 42). A previous study has reported that RV-SL in the RV
free wall is more sensitive to mild RV pressure overload than
that in the interventricular septum (14). Our results also suggest
that 2D-STE indices in the RV free wall may be more sensitive to
increased RV pressure overload than those in the interventricular
septum in dogs with moderate RV pressure overload. However,
through the current 2D-STE assessment, we could not distinguish
between the interventricular septum function of the RV and
left ventricular components. Our results may vary in dogs with
moderate PH secondary to left heart disease, which might impair
the septal left ventricular function. Further studies to assess the
precise myocardial function of both ventricles in dogs with PH
secondary to left heart disease are expected in the future.

Our study has several limitations. First, the results were
obtained from dogs with PH that was experimentally induced
by microsphere infusion, which may vary in actual clinical

settings or dogs with PH. Additionally, our findings may not
be applicable in dogs with PH because of other causes such
as left heart disease owing to its different pathophysiology that
can increase PAP. Further studies are warranted to evaluate
the relationship between echocardiographic indices and invasive
PAP in dogs with spontaneous PH. Second, two of the seven
dogs were sedated using butorphanol tartrate and midazolam
hydrochloride. However, sedation with these agents have
minimal effect on cardiovascular function (43). Furthermore, in
dogs that required sedation so that hemodynamic measurements
could be taken and echocardiography could be performed, these
agents were used throughout the study protocol. Thus, sedation
would have had minimal effect on our results. Finally, we
have evaluated only longitudinal RV strain and strain rate. RV
circumferential function would also contribute to RV systolic
function in addition to the longitudinal function (30, 44, 45).

In conclusion, our study found that 2D-STE-derived RV-
SL was significantly decreased in the sPAP30 phase compared
with that in the baseline phase; it gradually increased in the
sPAP40 and sPAP50 phases compared with that in the sPAP30
phase and decreased in the chronic phase compared with the
baseline and sPAP50 phases. These results suggest that this
non-invasive echocardiographic variable may reflect the RV
compensative mechanism against PH pathophysiology, which
could not be detected by conventional echocardiographic indices
for RV function.
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