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Abstract

Experimental breakthroughs have provided unprecedented insights into the genes involved

in cancer. The identification of such cancer driver genes is a major step in gaining a fuller

understanding of oncogenesis and provides novel lists of potential therapeutic targets. A

key area that requires additional study is the posttranscriptional control mechanisms at work

in cancer driver genes. This is important not only for basic insights into the biology of cancer,

but also to advance new therapeutic modalities that target RNA—an emerging field with

great promise toward the treatment of various cancers. In the current study we performed

an in silico analysis on the transcripts associated with 800 cancer driver genes (10,390

unique transcripts) that identified 179,190 secondary structural motifs with evidence of evo-

lutionarily ordered structures with unusual thermodynamic stability. Narrowing to one tran-

script per gene, 35,426 predicted structures were subjected to phylogenetic comparisons of

sequence and structural conservation. This identified 7,001 RNA secondary structures

embedded in transcripts with evidence of covariation between paired sites, supporting struc-

ture models and suggesting functional significance. A select set of seven structures were

tested in vitro for their ability to regulate gene expression; all were found to have significant

effects. These results indicate potentially widespread roles for RNA structure in posttran-

scriptional control of human cancer driver genes.

Introduction

Identification of cancer driver genes is an ongoing process [1, 2]. The ability to separate genes

whose mutations are not directly responsible for the progress of neoplasticity (passengers)

compared to genes whose mutations stimulate neoplasticity and malignancy (drivers) is

important for future cancer therapeutic targeting. New computational methods are uncover-

ing previously unappreciated oncogenes and tumor suppressors. One such recently developed

method considered the nucleotide context in which mutational events occur to distinguish
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driver from passenger mutations. Dietlein et al. (2020) developed a method called Mutpanning

[3], to identify driver genes based on a high number of mutational occurrences in unusual

nucleotide contexts or outside mutational patterning normally observed for passenger muta-

tions. The method does not require any prior knowledge of mutational functionality. Mutpan-

ning alone identified 460 genes; some that were previously known and others that were

previously unappreciated potential cancer driver genes. Another strategy is to combine several

computational methods to identify both known and novel driver genes. Martinez-Jiménez

et al. combined seven distinct methods, including Mutpanning, to identify 568 genes in their

Integrative OncoGenomics compendium of drivers. About one-quarter of these had not been

previously recognized in the Cancer Gene Census [4]. Combined, these methods point to 800

genes (228 in common, 232 unique to Mutpanning alone, 340 unique to the compendium)

that have potential to drive cancer development and progression.

These driver gene identification methods focus on mutations in DNA coding regions that

alter the protein output or quality–inducing a change in protein function in a context of time

and space that enables acquisition of survival and proliferative advantages. Effects of non-syn-

onymous mutations are relatively easy to understand because they directly affect the sequence

of the protein. The role of synonymous and untranslated region (UTR) mutations in driver

genes, however, are generally not well understood.

One step toward better understanding these driver genes is to enhance the knowledge of

their RNA structure, which is known to play wide-ranging roles in posttranscriptional control

mechanisms [5, 6]. We have developed a user-friendly computational tool to find structured

regions in RNA that could potentially function in cellular homeostasis or in disease [7]. Scan-

Fold makes use of a simple but powerful metric, a z-score that is rooted in thermodynamic sta-

bility of a given sequence of nucleotides. This z-score uses random sequence shuffling to relate

the mean predicted minimum free energy (MFE) of random sequence folding to that of the

native sequence, providing an estimated likelihood that the structure of the sequence with that

native nucleotide order is more stable than by chance. That is to say, the z-score measures the

unusual, ordered stability of RNA fragments, which can indicate that structure is an evolved

property of that sequence. A further innovation of the ScanFold approach is that unique con-

sensus model secondary structures are generated from recurring base pairs across low z-score

regions, which tend to better reflect native folding [8]. We have shown that ScanFold is a reli-

able method for defining and modeling local RNA structural regions and have applied this

approach to a variety of human genes including, most significantly to this current work, the

MYC proto-oncogene, where an exceptionally stable motif was found that showed in vitro

activity in regulating gene expression [9, 10].

While methods such as ScanFold can help to define regions of interest that may have

evolved RNA structure/function, additional work is needed to validate those regions. One

approach, which can also help to home-in on exceptionally interesting motifs, is analysis of

covariation. Covariation model building [11–13] can be used to assess predicted structures

against evolutionary mutations that preserve predicted base-pairing. Combined with statistical

power analysis, the presence of covarying base pairs supports the presence of structured RNA

[14] that has been selected over time, strongly suggesting a structure/function relationship.

Together, thermodynamic predictions from sequence and historical evidence from covariation

modeling boosts the likelihood of predicting functional RNA structures. Recently, we made

use of these tools to identify structured regions of the SARS-CoV-2 virus [15], several of which

have been explored as potential drug targets [16]—including one that was used to uncover a

small-molecule inhibitor of viral gene expression [17].

Here, we apply our optimized RNA secondary structure discovery pipeline to transcripts of

known and putative cancer driver genes. We describe a variety of extracted structural models
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with potential roles in posttranscriptional control and validate a small subset of select targets.

The remainder provide a trove of potential targets for future studies (e.g. functional assays,

drug targeting efforts); a resource we have organized and made publicly available.

Materials and methods

ScanFold

A list of 800 unique genes (Fig 1) was compiled using HGNC gene symbols from supplemen-

tary S3 Table of Dietlein et al. (2020) (460) and from the download section of the Integrative

OncoGenomics website (https://www.intogen.org/) (568) [3, 4] (S1 Table). Ensembl BioMart

(https://useast.ensembl.org/) was used to determine and download all Ensembl transcript

identifiers (10,390 ENSTs) and sequences (Human GRCh38.p13) (S2 Table). All transcript

sequences were analyzed using the ScanFold pipeline (ScanFold-Scan followed by Scan-

Fold-Fold) with a single nucleotide step size, a 120-nucleotide window size, and 100 ran-

domizations for z-score determination [7]. The z-score is the number of standard deviations

from the difference in predicted minimum free energy (MFE) of base-pairing for a given

sequence to the average MFE of 100 randomly arranged sequences of the same nucleotide

composition [7]. All raw outputs (as described in [8]) are available at doi: 10.5281/zenodo.

5747774. ScanFold determined all nucleotides with an average z-score of -1 or less from all

windows containing that nucleotide. These were then constrained to base pair and the whole

sequence was refolded using RNAfold [18]. A dot-bracket notation (dbn) file of this refolded

(from Zavg_-1_pairs.dbn files) structure was used to extract nearly all predicted structures

using in-house scripts (available upon request). During extraction, a new z-score was calcu-

lated for each extracted structure sequence. These structures are referred to as cancer driver -1

(CD-1) structures.

Determination of MANE transcripts and mapping of UTRs

One transcript per gene was selected (except CDKN2A, where a transcript each for p16INK4A

and p14ARF were used) based on the common form of the gene or Matched Annotation from

NCBI and EMBL_EBI (MANE) transcript as indicated by Ensembl (Refseq match). A list of

MANE transcripts was obtained from NCBI (https://www.ncbi.nlm.nih.gov/refseq/MANE/).

If no MANE transcript was listed, a predominant protein-coding form was chosen. A list of

gene symbols and Ensembl transcript identifiers (ENSTs) are provided (S1 Table). UTR and

coding determinations were made by comparing transcript structure coordinates to a table of

UTR coordinates using exon data from Ensembl Biomart (S1 Table).

Genomic and variant mapping

CD-1 structures were mapped to the human genome (GRCh38) using Bowtie2 (v2.4.2; [19]) to

obtain genomic coordinates. These coordinates were used to identify clinical variant mutations

(ClinVar; [20]) and COSMIC non-coding mutations (v93; [21]) within the sequences of CD-1

predicted structures (S3 and S4 Tables, respectively). Post-variant mapping, results were cor-

rected by ensuring structures were mapped to the correct chromosome. The matched-

sequence mapping was not perfect and it is possible that not all of the predicted structured

sequences are included here.

Covariation model building (CMbuilder) analysis

All CD-1 structures (35,426) were analyzed for covariation using the cm-builder perl script

[15, 22]. This script builds off the RNAFramework toolkit [11, 12] and utilizes Infernal (here
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Fig 1. Flow diagram for study outline. Top oval shows the numbers of cancer driver genes and transcripts included

in this study, as well as their sources–either from Mutpanning [3] or the Integrative OncoGenomics Compendium of

drivers [4]. The gene symbols surrounding the flow diagram include all 800 genes in this study. The second oval shows

the number of structures that were extracted from all the transcripts as well as from the matched annotation for NCBI

and Ensembl (MANE) transcripts chosen for further analysis. The number of MANE structures exhibiting at least one

covarying base pair (bp) after covariation analysis using structure-informed R-scape [12, 13] are shown in the bottom

oval.

https://doi.org/10.1371/journal.pone.0264025.g001

PLOS ONE RNA secondary structures in human cancer drivers

PLOS ONE | https://doi.org/10.1371/journal.pone.0264025 February 25, 2022 4 / 21

https://doi.org/10.1371/journal.pone.0264025.g001
https://doi.org/10.1371/journal.pone.0264025


using release 1.1.2; [22, 23]) to build and search for covariation models from each predicted

ScanFold secondary structure. To build a database for Infernal, BLAST from the NCBI Refseq

database was performed for each of the 801 MANE reference sequences used in ScanFold with

the following parameters:

$ blastn -db refseq_rna -query "sequence_file.txt" -task blastn -out "name_b.txt" -gapopen 5
-gapextend 2 -reward 1 -penalty "-1" -outfmt "6 sallgi sallseqid sallacc" -max_target_seqs
2500

$ blastdbcmd -db refseq_rna -entry_batch "name_b.txt" -out "name_DB.txt" -outfmt "%f"

Perl scripts were then used both to convert the resulting fasta files into single line format

and to remove any duplicate sequences. A Python script further narrowed the resulting data-

base down to headers that included the exact gene name of interest and eliminated any pseu-

dogenes. For successful covariation models, the resulting structural alignment files (in

Stockholm format) were tested for covarying base pairs and also analyzed with the CaCoFold

algorithm using R-scape (version 1.5.16); statistical significance was evaluated by the APC cor-

rected G-test [13, 24] using the default E value of 0.05. All Stockholm alignments and R-scape/

CaCoFold results can be found at doi: 10.5281/zenodo.5747774. Expected versus observed

covarying base pairs from power files were used to generate a Z-score of CMbuilder (Zcm)

for the covariation modeling; Zcm is calculated by taking the difference between the number

of observed versus expected covarying pairs divided by the standard deviation of the number

of expected pairs (Zcm = (observed—expected) / SD).

Reporter assays and translational efficiency

Cloning into a modified pmirGLO dual luciferase plasmid (Promega) was done after restric-

tion enzyme digestion with XhoI using the HiFi DNA Assembly kit (NEB) with either gBlocks

or Ultramer oligonucleotides (IDT). The pmirGLO modification consisted of introns intro-

duced into each of the firefly and renilla luciferase genes. Sequences were verified using Sanger

sequencing (Iowa State University DNA Facility). Empty pmirGLO was the control. HeLa cell

(HeLa) transfections were carried out using Lipofectamine 3000 (Invitrogen) into 96-well

dishes (5 ng pmirGLO construct, 95 ng pUC19; at least 5 wells each) for reporter analysis and

into 24-well dishes (25 ng pmirGLO construct, 475 ng pUC19; 3 wells each) for isolation of

RNA. HeLa cells were cultured in DMEM (Gibco) supplemented with 10% FBS (Atlanta Bio-

logicals), penicillin/streptomycin (Gibco), and L-glutamine (Gibco) at 37˚C in 5% CO2. The

overall procedure was as follows: day 0–90–100% confluent cells passaged 1 to 2; day 1 –cells

plated (96-well: 20,000 c/well in 100 ul; 24-well: 120,000 c/well in 500 ul); day 2 –transfections;

day 3 –cells fed fresh medium (100 ul or 500 ul, respectively); day 4—Dual-Luciferase Reporter

Assay System (Promega) carried out (96-well samples) using the GloMax instrument (Pro-

mega), and RNA isolated. Relative Response Ratio (RRR) was calculated by dividing the light

units from firefly by those of renilla on a per-well basis. This was then normalized to the aver-

age of the control and averaged ± standard deviation.

RNA isolation was done using TriZol (Invitrogen) and 1-bromo-3-chloropropane (Sigma-

Aldrich) with QuantBio Heavy PLG tubes. The aqueous phase had an equal volume of 100%

ethanol added before loading it onto a column from the Direct-Zol RNA Miniprep Kit

(Zymo). The RNA prep followed the manufacturer’s instructions with the exception that the

on-column DNAse was carried out for 40 minutes. RNA was stored at -80˚C. RNA was quanti-

fied and analyzed using a NanoDrop One (Thermo-Fisher). First-strand cDNA synthesis was

carried out using 1 ug of RNA with Superscript III (Invitrogen) and random hexamers (IDT)

on a SimpliAmp (Thermo-Fisher) instrument. Quantitative PCR was performed with 1 ul of
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10X-diluted cDNA, cPrimeTime1 primer/probes (IDT) designed to overlap the introduced

intron for each of the firefly and renilla luciferase genes (firefly: forward 500 –ACAAAACCA
TCGCCCTGATC– 30, reverse 50 –ATCTGGTTGCCGAAGATGG– 30, probe 506-FAM/
ACCGCTTGT/ZEN/GTCCGATTCAGTCAT/30IABkFQ; renilla: forward 50 –CCTACGAGCA
CCAAGACAAG– 30, reverse 50 –ACCATTTTCTCGCCCTCTTC– 30, probe 50SUN/
CACGTCCAC/ZEN/GACACTCTCAGCAT/30IABkFQ), and PrimeTime1 Gene Expression

Master Mix (10 ul total) on a QuantStudio3 (Thermo-Fisher). Ct values were calculated using

the automatic settings of the QuantStudio Design & Analysis desktop software (v1.5.1). The

ddCt method was employed with renilla and empty pmirGLO as references to get the average

fold expression (2-ddCt) and standard deviation. Translational efficiencies were calculated by

dividing the normalized RRR by the mRNA expression and propagating the error. T-tests

were carried out using values of the per well, normalized RRR values divided by the average

mRNA expression value with α at 0.05. Raw data can be found in S1 File.

Results

To scan for potential functional RNA structural motifs in cancer driver genes, we analyzed

data from two different sources. Dietlein et al. (2020) identified 460 potential cancer driver

genes through MutPanning. Martinez-Jiménez et al. (2020) identified 568 in the Compen-

dium. Combined, 232 were unique to MutPanning, 340 were unique to the Compendium, and

228 were common to both. We scanned all Ensembl-identified transcripts (10390) for each of

these 800 cancer driver genes using ScanFold (Fig 1), identifying 179,190 structures con-

strained by an original ScanFold z-score of -1 or less (S5 Table). Reducing these structures to

one transcript per gene (excepting CDKN2A; see Methods) resulted in a total of 35,426 pre-

dicted structures with at least one nucleotide exhibiting an average z-score of< -1 after the ini-

tial scan (S6 Table). Of these cancer driver -1 (CD-1) structures, about 4% were found in

50UTR sequences, 52% in coding sequences, and 44% in 300UTR sequences. Furthermore, 415

transcripts had structures overlapping either the start codon (233 transcripts) or the stop

codon (267 transcripts), with 85 transcripts having structures overlapping both ends of the

coding sequence (Fig 2; S7 Table).

Covarying base pairs were observed in three of the start or stop codons that overlap struc-

tures shown in Fig 2 (MYCN_2, WRN_3, WRN_35). All CD-1 structures were analyzed for

covariation using CMbuilder [12, 15, 22]. By building stringent Infernal alignment databases

for each gene–devoid of pseudogenes and matching the gene-name in the header–a high-con-

fidence set of structures that contain covarying base pairs was identified (S8 Table). S2 File

provides seven examples of the phylogenetic depth (gene symbol and structure number are

indicated at the tops of the trees) based on the nucleotide accession numbers from Stockholm

alignment files. R-scape (ScanFold-Fold model structure informed) detected covarying base

pairs in 7,001 predicted structures. The majority, 4,105, had only a single covarying pair; how-

ever, multiple covarying pairs were detected in other structures (up to 38; Fig 3A). To aid pri-

oritization based on statistics generated by Rscape, a z-score, Zcm, was developed that

indicates the number of standard deviations that separate the number of observed versus

expected covarying base pairs. Table 1 lists 11 structures with the highest Zcm and at least 5

covarying base pairs. Fig 3A compares the number of structures to the number of covarying

base pairs. To highlight an example of a structure with about half the maximum number of

identified covarying base pairs: Fibroblast Growth Factor Receptor Like 1 structure 13

(FGFRL1_13), located in the 30UTR, was found to have 17 covarying base pairs (Fig 3B). To

further test these results, the program CaCoFold, which uses an orthogonal approach to pre-

dict structure based on potential covariation [25] rather than through guidance by ScanFold
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models, was used. All six of the CaCoFold covarying base pairs (Fig 3B, cyan) were also present

in the ScanFold identified structure. Several miR-210-3p binding sites have been identified in

the 30UTR of FGFRL1, which is known to reduce FGFRL1 expression [26]. A COSMIC muta-

tion (COSV53257308) in a miR-210-3p seed binding region of FGFRL1_13 increased the pre-

dicted ED by a factor of two when analyzed by RNA2Dmut [27], indicating a strong mutation-

induced structural shift in this 30UTR region. Notably, FGFRL1_13 had over five standard

deviations more covarying base pairs than expected (Zcm = 5.43).

To make comparisons to available genomic variation data, the sequences corresponding to

predicted CD-1 structures were mapped to the human genome using Bowtie2 [19]. The

genomic coordinates (GRCh38) were used to identify predicted CD-1 structures that contain

COSMIC non-coding variants or ClinVars (S3 and S4 Tables). For COSMIC, 141,221 variants

were mapped to 11,740 structures in 767 genes, whereas 36,255 ClinVars were mapped to

6,115 structures in 545 genes. Fig 4A shows data for the 25 structures with the most reported

variants (not length adjusted). Many of these structures contribute heavily to the number of

variant-containing structures per gene (S1A Fig). Musashi homolog 6 structure 10 (MSH6_10)

was chosen as an example because it has the lowest Zcm of the top 25 structures that had at

least one covarying base pair (Fig 4B). Though found in a coding region, it also sustained

many synonymous mutations. To query potential effects of these, the sequence was analyzed

using RNA2Dmut [27] (S1B Fig). Six of the synonymous mutations increased the predicted

ensemble diversity (ED; a measure of different potential conformations–the lower the more

likely a single conformation predominates) by at least four (Fig 4B). Two of these, structure

positions 69 (T>G) and 81 (T>C) (ClinVars 818324 and 743181, respectively), resulted in a

four-fold increase in ED, suggesting that these mutations have high potential for disrupting

secondary structure.

Fig 2. Examples of ScanFold identified structures that overlap the start and stop codons. The neuronal myelocytomatosis (MYCN) and Werner’s helicase

(WRN) transcript diagrams are shown with secondary structures diagramed below. The AUG start codons are shown in green while the stop codons are

shown in red. The multi-coloration of the bases represents the per nucleotide z-score mean as generated from ScanFold scanned windows; the scale is

indicated. Base pairs boxed in green were found to be covarying after CMbuilder analysis. Values of the structure z-score (not the average of per nucleotide

windows) and the Zcm are provided under the structure names, respectively.

https://doi.org/10.1371/journal.pone.0264025.g002
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MSH6_10 also contained covarying base pairs (green boxes, Fig 4B), indicating that the

base pairing has been preserved through mutational events in evolution. Structures with

covariation were found in all mRNA regions, but with more in the UTRs, proportional to the

number of total identified structures (Fig 5A; mean lengths: 5’UTR = 258, coding = 3,136,

30UTR = 2,306). Interesting structures in coding regions were, however, still predicted. For

example, three structures encoded in exon 2 of the Myelocytomatosis gene (MYC) each had 10

covarying base pairs (Fig 5B); a covarying base pair found on each of the predicted stem loops

in each of these multi-branch structures lends support to the structure models. Interestingly, a

larger region that encompassed structures MYC_4 and MYC_6 was previously found to confer

downregulation of MYC mRNA during induced myoblast differentiation [28, 29] Whether

these structures in particular play a role in the destabilization of the MYC transcript remains to

be determined.

Many interesting 50UTR discoveries were made (S8 Table). For example, the chromatin

remodeling factor Special AT-rich sequence binding protein 1 (SATB1) had three structures

(_8, _15, _19) in the 50UTR with over 10 covarying base pairs. Eight Androgen Receptor (AR)

structures were found throughout the transcript—each contained five or more covarying base

pairs, including structure 6 (AR_6) that overlaps a mutationally-induced upstream open read-

ing frame (uORF) in its 50UTR (Fig 6A). When this mutation occurs, Complete Androgen

Insensitivity Syndrome (CAIS) can result from production of an uORF which ablates AR pro-

tein production [30]. Intriguingly, the C>U mutation that generates the uORF is predicted to

Fig 3. Covariation analysis and example. (A) Graph showing the number of structures per the number of covarying

base pairs determined by R-scape covariation analysis of all structures. (B) Predicted secondary structure of Fibroblast

growth factor receptor like 1 structure 13 (FGFRL1_13) shown as a middle of the road example with both R-scape

(green boxes) and CaCoFold (cyan lines) covariation results. The TargetScan predicted miR-210-3p binding site and

an identified COSMIC mutation are marked in purple and red, respectively. Per nucleotide z-score mean is shown as

indicated. Values of the structure z-score (not the average of per nucleotide windows) and the Zcm are provided under

the structure name, respectively.

https://doi.org/10.1371/journal.pone.0264025.g003
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Fig 4. Structure-filtered mutations. Mutations found within ScanFold extracted structures were mapped back to the

genome prior to mapping variants from the COSMIC non-coding database [21] and from ClinVar [20]. (A) 25 most

frequently mutated structures from each of COSMIC and ClinVar are shown. (B) MSH6_10 (Musashi homolog 6

structure 10) is highlighted because it contains the lowest Zcm of structures from A that have at least one covarying

base pair (green boxes; R-scape). The only nucleotides that do not have a reported CinVar mutation are circled in
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form a stabilizing UA base pair, further strengthening the predicted conserved hairpin struc-

ture in which it falls.

Additional examples of conserved RNA structures in 500UTRs can be seen in Forkhead

box Q1 structures 2 and 3 (FOXQ1_2, _3), which are adjacent to one another and are just 16

nucleotides away from the start codon. Cross-referenced enhanced crosslinking immunopre-

cipitation (eCLIP) studies found through ENCODE [31] revealed many potential regulatory

RNA-binding proteins (Fig 6B) overlapping these predicted structures. Notably, the 50UTR of

FOXQ1 mRNA is methylated in the first hairpin’s terminal tetraloop adjacent to the binding

region of the methyltransferase RBM15, which binds at the base of that stem loop. This region

overlaps the binding region of TRA2A, which has been shown to enhance methylation of

mRNA in association with methytransferases [32]. Another potential connection involving

TRA2A is that both it and FOXQ1 activity have been implicated during the cancer progressing

epithelial to mesenchymal transition (EMT) [33–35], as has the DEAD (Asp-Glu-Ala-Asp)-

box helicase 3X (DDX3X) protein that was also found to bind in the same region of FOXQ1
mRNA [36].

A final example of a predicted conserved 50UTR structure is anaphase promoting complex

subunit Cell Division Cycle 27 (CDC27_1) that was found just seven nucleotides away from

the start codon and contained eCLIP-identified binding sites for nuclear cap binding protein 2

(NCBP2; also CBP20) and DDX3X (Fig 6C). NCBP2 is part of the cap-binding complex

responsible for translational control and monitoring mRNA integrity [37] and association

with DDX3X on 50UTRs has been shown to drive uORF translation [38]. A potential uORF of

CDC27 that begins in the loop of the long hairpin would result in a premature stop codon just

prior to the start codon, likely disrupting CDC27 translation. Notably, this 50UTR region con-

tains many clinically relevant variants, with 11 different mutations found in cancers. All but

four mutations occurred in base paired sites, where they are predicted to disrupt structure (S3

File).

As mentioned above, the greatest number of structures were predicted in 30UTRs (Fig 5A;

S6 and S7 Tables). To highlight several example classes: genes encoding receptors, such as the

Retinoid X Receptor Alpha (RXRA), Notch receptor 1 (NOTCH1) and Smoothened, frizzled

class receptor (SMO), signaling kinases, such as Mitogen-activated protein kinase kinase 7

(MAP2K7), E3 ubiquitin ligases, such as Murine Double-Minute 2 (MDM2), anti-apoptotics,

such as B cell Lymphoma 2 (BCL2), isomerases, such as Topoisomerase 2 alpha (TOP2A),

cyclins, such as Cyclin D3 (CCND3), and transcription factors, such as Signal Transducer and

Activator of Transcription 3 (STAT3), SRY-box transcription factor 9 (SOX9) and T-

box transcription factor 3 (TBX3), all showed conserved structures (Fig 7). It is noteworthy

that these highlighted examples, represent just a fraction of the structures identified. Table 2

lists several features that overlap these structure regions, including eCLIP-identified binding

proteins, TargetScan-predicted miRNA binding, the presence of COSMIC or ClinVar muta-

tions and methylation of adenosine.

The potential implications of the structures and their associated features are many. The

data generated in this study represents a deep reservoir of information to drive hypotheses

generation. To highlight how the data can be used, we chose a variety of predicted 30UTR

structures to test in luciferase reporter assays due to the simplicity of the functional readouts–

brown, whereas those circled in orange have reported synonymous mutations. Arrows point from nucleotides to

reported mutations (red) that resulted in destabilizing changes in ED of four or greater after analysis with RNA2Dmut

[27] (S1 Fig). Bases are colored according to the per nucleotide z-score mean as before. Values of the structure z-score

(not the average of per nucleotide windows) and the Zcm are provided under the structure names, respectively.

https://doi.org/10.1371/journal.pone.0264025.g004
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protein activity and transcript quantitation. We selected targets from a range of different genes

where we intentionally picked putative oncogenes with varying levels of covariation support

(Fig 8A). MDM2_75, POU2F2_44 (POU Class 2 Homeobox 2 transcription factor) and

MAPK1_41 (Mitogen Activated Protein Kinase 1) lacked any evidence of covariation.

MDM2_75 is found in the longest transcripts that code for the TP53 antagonist within a region

just upstream (9 nt) from a putative HNRNPC binding site and is modeled to form a long tet-

raloop hairpin structure. MAPK1 encodes the serine/threonine kinase ERK2, a major compo-

nent of MAP kinase signaling downstream of RAS [39]. MAPK1_41 is located toward the 30-

Fig 5. Location of structure analysis and coding structure examples. (A) Graph of UTR and coding region percentages across all identified structures (left)

and the subset of structures that had at least one covarying base pair (right). (B) Schematic of MYC transcript showing the location of three conserved

structures in exon 2. Secondary structures are shown below with covarying base pairs denoted in green boxes (R-scape). Base coloring indicates per nucleotide

z-score mean. Values of the structure z-score (not the average of per nucleotide windows) and the Zcm are provided under the structure names, respectively.

https://doi.org/10.1371/journal.pone.0264025.g005
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Fig 6. Examples of 50UTR structures. Covarying base pairs are denoted using green bars (R-scape). (A) Schematic showing structured regions of the

androgen receptor (AR) that had at least 5 covarying base pairs. Below the transcript schematic is structure 6; the upstream open reading frame (uORF)

inducing mutation that can cause Complete Androgen Insensitivity Syndrome is shown in red. (B) Forkhead box Q1 (FOXQ1) 50UTR schematic showing

two adjacent structures (2 and 3) and the proteins determined to bind in these structured regions (blue) by eCLIP. C. Secondary structure of Cell division

cycle 27 structure 1 extended to show the distance to the start codon. Reported COSMIC mutations are shown in red and the eCLIP binding region of
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most end of the 30UTR, is a potential binding site for FAM120A, and has a multibranch struc-

ture. POU2F2_44 represented another multibranched model structure. Originally identified as

a B-cell specific transcription factor, POU2F2 has also been implicated in several other cancer

cell lineages as well [40–42]. POU2F2[29]_44 was the middle sized of the chosen POU2F2
structural motifs and closest to the coding region (1461 nt away). None of these have known

RNA binding proteins. The shortest sequence tested (45 nt) was the pentaloop hairpin struc-

ture POU2F2_92, which contained a single covarying base pair and was the only structure rep-

resented where each nucleotide in it had a z-score average of> -2. The largest sequence region

tested encompassed predicted motifs 6 to 11 from the Inhibitor of DNA binding/differentia-

tion 3 (ID3_6–11; 196 nt). Like POU2F2, the transcription factor ID3 is involved in both cell

proliferation and differentiation [43]. ID3_6–11 contained two covarying base pairs in two of

the five predicted hairpins that all had either terminal tri- or tetra loops. Toward the end of a

short (515 nt) 30UTR, this structure encompasses a region with many eCLIP discovered bind-

ing proteins (DDX6, DDX55, LARP4, PABPC4, PUM2, TIA1, UPF1) and three predicted

miRNA binding sites. With three covarying base pairs, two of the three modeled Interleukin 6

Cytokine Family Signal Transducer structure 60 (IL6ST_60) helices are strongly supported.

IL6ST encodes GP130 which binds the IL6 and IL6 receptor complex, among other cytokine

and receptor combinations, to facilitate downstream intracellular signaling for protective

immunity and development [44]. Overactive IL6 is a characteristic of B cell neoplasms and

conditions such as Multicentric Castleman’s disease [45]. Finally, POU2F2_73 contained three

times the number of covarying bases as IL6ST_60 (nine). This branched structure modeled

with two terminal pentaloops and is found devoid of known miRNA or RNA binding protein

interactions.

Irrespective of the level of covariation support, each ScanFold predicted region showed

activity when inserted downstream of luciferase. Under our conditions, sequences from

POU2F2 (all), MAPK1 and IL6ST stabilized the firefly luciferase mRNA leading to increases in

luciferase activity (Fig 8B) compared to the control. The level of enzyme activity in the pres-

ence of the POU2F2_44 300UTR sequence did not, however, match the increase in mRNA,

resulting in a decreased translational efficiency (Fig 8C). Modest but statistically significant

reductions in translational efficiency were also observed for sequences from MDM2 and ID3
despite the lack of difference at the mRNA or reporter activity levels. These results demon-

strate how using ScanFold can help identify sequences that have functional outcomes in a

reporter assay.

Discussion

We have predicted structured regions in cancer-related mRNAs and have determined whether

these regions are evolutionarily significant through covariation. The strength of our predicted

data is supported by the small, diverse (e.g., gene function, sequence, and modeled structure)

panel of 30UTR structures tested in reporter assays. To date, these are the only predicted struc-

tures we have tested from this study. We demonstrate that all of these various sequences with

predicted structures have a functional impact on the stability of mRNA or on translational effi-

ciency. Importantly, these data support the ability of ScanFold to predict functional sequence

regions even in the absence of covarying base pairs.

nuclear cap binding protein 2 (NCBP2) is shown in blue. The average z-score of all the shown nucleotides in the structure is shown directly below the name

of the structure with the Zcm below that. Base coloring indicates per nucleotide z-score mean as indicated by the scale. Values of the structure z-score (not

the average of per nucleotide windows) and the Zcm are provided under the structure names, respectively.

https://doi.org/10.1371/journal.pone.0264025.g006
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Fig 7. Examples of 30UTR structures. Covarying base pairs are denoted in green (R-scape). The gene symbol and structure number are shown next to the

secondary structure diagram. Zscore average per structure indicated below the name with the Zcm below that. Scale indicates per nucleotide average z-score

for all calculated windows. The structure z-score (not the average of per nucleotide windows) and the Zcm are provided under the structure names,

respectively.

https://doi.org/10.1371/journal.pone.0264025.g007

Table 2. Fig 7 structures with overlapping sequence features as indicated.

eCLIP miRNA mutations # methyl-adenosine

BCL2_10 2 COSMIC SNPs

CCND3_12 DHX30 FAM120A miR_1306-5p

HNRNPK PABPC4

PCBP1 SF3B1

SUPV3L1 UPF1

UTP3 ZC3H11A

MAP2K7_19� AKAP1 AKAP8L 3

CDC40 CSTF2T

DDX24 DDX6

DHX30 DROSHA

EWSR1 FAM120A

FUS GRSF1

GTF2F1 PABPC4

PABPN1 PRPF4

PUM2 RBFOX2

SDAD SUB1

UPF1 XRN2

(Continued)
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The strength of our ScanFold-based approach is to identify regions that are most likely to

have functional structures. The example modeled structures highlighted here represent just a

fraction of the total number we identified– 7000 with covariation support alone. Determining

the exact structure and function will require other methods, such as structure probing (to help

place them in wider structural context of their respective transcripts), high resolution methods

(to deduce their tertiary structures) and CRISPR-based approaches to understand their func-

tional impacts under different cellular environments/contexts/conditions. Nevertheless, these

data are an important resource and springboard for hypotheses generation and testing, provid-

ing a starting point toward understanding whether targeting conserved functional structures

of RNA may yet prove to be an Achilles’ heel to cancer.

Though long considered an untenable option, recent efforts have seen the development of

small molecule drugs that target and inhibit RNA structured regions [17, 46]. Though many

effective cancer therapeutics target cancer-related proteins, unfortunately such a targeting

strategy is plagued by the outgrowth of cells that have undergone mutational selection to ren-

der a drug-resistant, relapsed cancer. As the understanding of RNA structure and function

increases, the ability to tailor treatments toward mRNA will increase, including targeting of

cancer-associated RNA [47]. Targeting RNA has potential to provide a path to mitigate drug

resistance, perhaps through simultaneous treatment that targets both the protein and its

mRNA–protein-targeting may compensate for mRNA-targeting that is less than 100% effec-

tive, and vice versa.

In summary, this study is the first to provide modeled RNA structure covariation data on

800 genes of interest to cancer biology. The data herein are all publicly available and should

serve as a valuable resource for the community.

Table 2. (Continued)

eCLIP miRNA mutations # methyl-adenosine

ZC3H11A

MDM2_70 1 COSMIC SNP

NOTCH1_42 DDX6 TIA1 2

RXRA_12 AKAP1

SMO_13

SOX9_17 DDX6 UPF1 ClinVar indel—Camptomelic dysplasia

2 COSMIC SNPs

STAT3_21 AKAP1 FAM120A miR-17-5p ClinVar SNP -Hyper-IgE recurrent infection syndrome 1, autosomal dominant

SUB1 UPF1 miR-93-5p

miR-106-5p

miR-519-3p

miR-130-3p

miR-301-3p

miR-454-3p

miR-655 (x2)

TBX3_39 AKAP1 DDX6 DDX55 UPF1 3 ClinVar SNPs -ulnar mammary syndrome

TOP2A_39 DDX55 DDX6 3

IGF2BP1 IGF2BP2

IGF2BP3 SUB1

TARDBP

� all on the 50 half except for UPF1 and FAM120A that ALSO have binding regions on the 30 half.

https://doi.org/10.1371/journal.pone.0264025.t002
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Supporting information

S1 Table. Initial cancer driver gene list, study in which it was identified, matched annota-

tion between NCBI and Ensembl (MANE) identifiers (Ensembl transcript ID), UTR

Fig 8. Reporter assay showing effects of 30UTR structures on translation. (A) Secondary structures of the seven sequences cloned and tested in a dual

luciferase assay. Covarying base pairs are denoted in green (R-scape). Structure average z-scores and Zcm numerics indicated below the name. Colored bases

indicate the z-score average per nucleotide for all calculated windows. (B) Graph showing the results of both the dual luciferase assay (yellow; RRR; n = 5 or 6)

and corresponding ratio of firefly to renilla mRNA expression (red, n = 3). (C) Graph of the translational efficiency (RRR/mRNA) using data from B. Asterisks

denote a p< 0.05 by t-test to control. The structure z-score (not the average of per nucleotide windows) and the Zcm are provided under the structure names,

respectively.

https://doi.org/10.1371/journal.pone.0264025.g008
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coordinates, and other information.

(XLSX)

S2 Table. List of transcripts scanned using ScanFold.

(XLSX)

S3 Table. ClinVars mapped to z-score� -1 cancer driver sequences.

(TXT)

S4 Table. COSMIC non-coding variants mapped to z-score� -1 cancer driver sequences.

(TXT)

S5 Table. Z-score� -1 predicted structures identified for all Ensembl cancer driver tran-

scripts.

(TXT)

S6 Table. Z-score� -1 predicted structures for all MANE cancer driver transcripts.

(TXT)

S7 Table. Z-score� -1 predicted structures that overlap either start or stop codons for the

indicated transcript.

(TXT)

S8 Table. Z-score� -1 predicted structures after CMbuilder analysis with numbers of

expected (± standard deviation) and observed covarying base pairs and associated Zcm

score.

(TXT)

S1 File. Reporter assay raw data.

(XLSX)

S2 File. Phylogenetic tree-depth of selected predicted structure sequences.

(TXT)

S3 File. CDC27 structure 1 RNA2Dmut mutational analysis.

(XLSX)

S1 Fig. ScanFold extracted structures mapped back to the genome prior to mapping vari-

ants from the COSMIC non-coding database and ClinVar. (A) 25 most frequently repre-

sented mutated genes (by number of structures per gene) from each of COSMIC and ClinVar

are shown. (B) RNA2Dmut outputs for MSH6_10 (Musashi homolog 6 structure 10), repre-

sented because it contains the lowest Zcm of the most represented structures that have at least

one covarying base pair (green boxes; Rscape). Nucleotides circled in orange have reported

synonymous mutations. Bases are colored according to the change in ensemble diversity (ED).

The Min (blue scale) represents a reduction in ED or potentially stabilizing effect on the struc-

ture. The Max (red scale represents an increase in ED or potentially destabilizing effect on the

structure. Values of the structure z-score and the Zcm are given under the structure name,

respectively.
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