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Mucosa-associated invariant T (MAIT) cells are unconventional, innate-like T lymphocytes

that recognize vitamin B metabolites of microbial origin among other antigens displayed

by the monomorphic molecule MHC class I-related protein 1 (MR1). Abundant in human

tissues, reactive to local inflammatory cues, and endowed with immunomodulatory and

cytolytic functions, MAIT cells are likely to play key roles in human malignancies. They

accumulate in various tumor microenvironments (TMEs) where they often lose some

of their functional capacities. However, the potential roles of MAIT cells in anticancer

immunity or cancer progression and their significance in shaping clinical outcomes

remain largely unknown. In this study, we analyzed publicly available bulk and single-cell

tumor transcriptomic datasets to investigate the tissue distribution, phenotype, and

prognostic significance of MAIT cells across several human cancers. We found that

expanded MAIT cell clonotypes were often shared between the blood, tumor tissue

and adjacent healthy tissue of patients with colorectal, hepatocellular, and non-small cell

lung carcinomas. Gene expression comparisons between tumor-infiltrating and healthy

tissue MAIT cells revealed the presence of activation and/or exhaustion programs within

the TMEs of primary hepatocellular and colorectal carcinomas. Interestingly, in basal

and squamous cell carcinomas of the skin, programmed cell death-1 (PD-1) blockade

upregulated the expression of several effector genes in tumor-infiltrating MAIT cells. We

derived a signature comprising stable and specific MAIT cell gene markers across several

tissue compartments and cancer types. By applying this signature to estimate MAIT

cell abundance in pan-cancer gene expression data, we demonstrate that a heavier

intratumoral MAIT cell presence is positively correlated with a favorable prognosis in

esophageal carcinoma but predicts poor overall survival in colorectal and squamous cell

lung carcinomas. Finally, in colorectal carcinoma and four other cancer types, we found

a positive correlation between MR1 expression and estimated MAIT cell abundance.
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Collectively, our findings indicate that MAIT cells serve important but diverse roles in

human cancers. Our work provides useful models and resources that employ gene

expression data platforms to enable future studies in the realm of MAIT cell biology.
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INTRODUCTION

The composition and the activity of immune cells within
tumor microenvironments (TMEs) are important determinants
of cancer progression or anticancer immunity and ultimately of
clinical outcomes (1, 2). T cells in particular play key roles in
host responses to cancer, and their ability to infiltrate tumors
is usually associated with a favorable prognosis in various
malignancies (3, 4). Conventional CD8+ T cells are capable
of recognizing and killing tumor cells that display peptide
antigens in the context of major histocompatibility complex
(MHC) class I molecules. Many cancer immunotherapies in
development or in clinical use aim to harness the antitumor
functions of neoantigen-specific T cells. Although such and
similar strategies have yielded remarkable responses at least
in some patients, their broad applicability is curtailed by the
polymorphic (i.e., patient-restricted) nature of MHC molecules
and by the scarcity of tumor-reactive naïve T cells present in one’s
T cell repertoire (5–8).

A growing body of evidence has implicated unconventional T
cells, including γδT cells (9–11), invariant natural killer T (iNKT)
cells (12–15), and more recently mucosa-associated invariant
T (MAIT) cells (16–26), in human malignancies. MAIT cells
are evolutionarily conserved, innate-like T cells that recognize
riboflavin precursor derivatives of microbial origin presented
by MHC class I-related protein 1 (MR1) (27–29). The T cell
receptor (TCR) of human MAIT cells is composed of a semi-
invariant TCRα chain (TRAV1-2–TRAJ33/12/20) that pairs with
members of a biased TCRβ repertoire (predominantly TRBV6
and TRBV20) (30–32). Several features of MAIT cells make
them likely participants in either protective or pathogenic host
responses to cancer and attractive targets in immunotherapeutic
strategies. First is their localization at common sites of
oncogenesis, tumor growth and metastasis. MAIT cells are
abundant in humans, comprising ∼1–10% of all T cells in the
peripheral blood, ∼5–30% in the liver, and also residing in the
gut, lungs, kidneys, skin, breasts, and the female genital tract
(33–41). Second, MAIT cell activation is readily triggered by
inflammatory cytokines such as interleukin (IL)-12 and IL-18
independently of TCR signaling, and can be further tuned by IL-
7, IL-15, IL-23, and type I interferons (IFNs) (42–45). Activated
MAIT cells can produce a wide array of immunomodulatory
cytokines, including IFN-γ, tumor necrosis factor (TNF)-α, and
IL-17A, with varying secretion profiles depending on the tissue
contexts and the means and modes of MAIT cell stimulation (30,
33, 34). Each of these cytokines can potentially influence cancer
progression or antitumor defense mechanisms (46, 47). Lastly,
upon encounter with MR1+ target cells, MAIT cells degranulate
to release perforin and granzymes (48, 49). MAIT cell-mediated
oncolysis has yet to be demonstrated in vivo. However, MAIT

cells were shown to destroy myeloma cell lines pulsed with MR1
ligands in vitro (22).

Several clinical studies have demonstrated MAIT cell
infiltration into kidney and brain tumors (24), colorectal
carcinoma (CRC) and their liver metastases (16–18, 25, 26),
multiple myeloma (22), hepatocellular carcinoma (HCC) (19,
20), and esophageal adenocarcinoma (EAC) (21). Declines in
circulating MAIT cell frequencies are observed in patients with
gastric, lung, liver and colorectal cancers, potentially reflecting
MAIT cell recruitment to tumor sites (16, 25). The extent of
intratumoral MAIT cell accumulation appears to vary by cancer
type. For example, they are enriched in CRC and EAC tumors
relative to surrounding normal tissues. In contrast, they can
be scarce within HCC tumors and colorectal liver metastases
(16–20, 26). Upon ex vivo stimulation, MAIT cells isolated
from tumors often exhibit impaired T helper-type 1 (TH1)
functionality, and in certain cancers shift toward a TH17 cytokine
profile (16, 18, 20–22, 26). A negative correlation between tumor
infiltration by MAIT cells and patient survival was reported
in CRC, while studies on HCC have yielded contradictory
prognostic associations (17, 19, 20). A recent study by Yan
et al. addressed the in vivo significance of MAIT cells in cancer
immunity (50). These investigators found MAIT cells to be
immunosuppressive and to promote tumor progression inmouse
models of lung metastasis and fibrosarcoma. Of note, mouse and

humanMAIT cells differ in certain characteristics, for instance in
terms of their bias toward a TH17 program (51).

The rational design of treatments that target MAIT cells

in cancer will first require thorough characterization of their

effector mechanisms and roles across various malignancies.
MAIT cell-based therapies may offer unique therapeutic

advantages over those focusing on conventional T cells. Since
MAIT cell ligands are presented in the context of the same

antigen-presenting molecule (i.e., MR1) uniformly expressed
in all individuals, cognate MAIT cell activation strategies

will not be restricted by inter-patient differences dictated by

MHC polymorphism (27). Moreover, the high expression level

of multi-drug resistance protein 1 (MDR1) by MAIT cells
enables them to excrete intracellular toxins, which in turn

confers upon them resistance to certain chemotherapies (33).

Therefore, combination therapies with MR1-restricted ligands
and chemotherapeutic agents should be possible.

Recent advances in sequencing technologies have enabled the

generation of large-scale transcriptomic datasets that represent

global profiles of TMEs (52–55). A number of methods have been

developed to infer from these datasets the relative abundances
of different cell populations within tumor samples (56–58).

Application of these techniques to The Cancer Genome Atlas

(TCGA), a consortium that provides open access to molecular
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and clinical data across a wide range of cancer types, has
facilitated pan-cancer analyses of tumor-infiltrating immune
cell subsets (59, 60). Interestingly, one such study identified
KLRB1, which encodes CD161, a cell surface protein that
is highly expressed on MAIT cells, as the most favorable
prognostic gene across 39 human malignancies (61). MAIT cells,
however, have yet to be studied through this lens. Therefore,
in this study, we leveraged available single-cell and bulk tumor
transcriptomic datasets to characterize the abundance, clonality
and transcriptional profiles of tumor-infiltrating MAIT cells.
These analyses also provided us with a unique opportunity to
test the impact of immunotherapy with anti-programmed cell
death-1 (PD-1) in skin cancer-infiltrating MAIT cells. Moreover,
we defined a general MAIT cell gene signature whose association
with clinical outcomes we explored in a wide range of human
cancers. We validate and extend some of the previous findings
on MAIT cell activation and exhaustion within tumors. Our
findings uncover several associations, both poor and favorable,
between the MAIT cell signature and patient survival. Our work
also supplies evidence in support of MAIT cells’ participation in
host responses to cancer and highlights potential links between
MAIT cells and the progression of certain tumors, which warrant
further investigation.

MATERIALS AND METHODS

Analysis of Single-Cell RNA Sequencing
(scRNA-seq) Datasets Generated by Zheng
et al. (19), Zhang et al. (62), and Guo et al.
(63)
Pre-processed data from three scRNA-seq studies on human
HCC (19), CRC (62), and non-small cell lung cancer (NSCLC)
(63), were downloaded from the Gene Expression Omnibus
(GEO accessions GSE98638, GSE108989, and GSE99254,
respectively) (Supplementary Table 1). Each of these datasets
contains gene expression profiles and assembled TCR sequences
of single T cells isolated from the peripheral blood, tumor
masses, and tumor-adjacent normal tissues of cancer patients.
Transcriptomic data from these projects were made available
in the form of raw read counts, transcripts per million (TPM),
and normalized-centered expression. Different forms of data
were used as input depending on the mode of analysis. We
analyzed only cells in which at least one productive TCRα-β pair
was identified according to the results of the original articles.
T cell clonotypes were defined as harboring unique TCRα-β
pairs, and cells were considered clonal if they contained the
same clonotype. MAIT cells were subsequently defined as those
bearing the canonical TRAV1-2-TRAJ33/12/20 semi-invariant
TCRα chain. For the remaining cells, annotated identities were
retrieved from the original articles and re-classified into more
broadly defined and less microenvironment-specific subsets
[i.e., CD8+ T cells, CD4+ T cells, and regulatory T (Treg) cells].
The relative tissue preference of MAIT cells was quantified
as RO/E, the ratio of observed to expected cell number from
chi-square tests.

Raw read count data were used as input to generate
t-distributed stochastic neighbor embedding (t-SNE) plots with
the Seurat pipeline (64). Matrices were transformed by the
LogNormalize function, and highly variable features were
detected by the “vst” method of FindVariableFeatures (0.0125
< mean < 8, dispersion >0.5). After applying these steps
to the dataset for each cancer, data were combined using
the FindIntegrationAnchor and IntegrateData functions (default
value of 30 dimensions). Scaled data from the integrated
matrix were used for principal component analysis (PCA),
from which the top 15 principal components were used
for t-SNE.

Normalized expression data were used as input for identifying
differentially expressed genes (DEGs) and MAIT cell marker
genes. The limma-trend procedure was used to identify DEGs
between MAIT cells within different tissue compartments. Given
the power constraint imparted by the relatively low number
of normal tissue MAIT cells sampled in CRC and NSCLC,
a hierarchical approach was taken wherein the limma-trend
F-statistic was used to first prioritize genes showing signals of
differential expression among groups (Benjamini-Hochberg
adjusted p < 0.2) before conducting pairwise comparisons
between compartments (65). Cut-offs for significant DEGs
were two-sided unpaired Benjamini-Hochberg adjusted p <

0.05 and fold-change ≥1.5. Results from this analysis can
be found in Supplementary Table 2. Pathway enrichment
analysis was conducted using the GSVA package (66) with
the “Gene Ontology (GO) biological process” collection of
gene sets from the Molecular Signatures Database (MSigDB)
(67). Differentially enriched gene sets in MAIT cells from
different tissue compartments were identified with limma-trend
following a similar hierarchical approach. For activation and
exhaustion scores, log2 (TPM+1) of the constituent genes was
computed, z-score-transformed, averaged, and then plotted
across all cells. The genes utilized to generate the activation
scores were CD69, CD38, HLA-DRA, IL2RA, TNFRSF9,
TNF, GNLY, IFNG, GZMB, GZMA, and GZMH. The genes
included in the exhaustion scores were PDCD1, CTLA4, TIGIT,
CXCL13, ENTPD1, LAG3, ITGAE, and LAYN. In addition,
we tested the 28-gene activation-independent exhaustion
program derived by Tirosh et al. (68) as validation for our
exhaustion signature.

A consensus-based method was employed to define MAIT
signature genes that were stable across tissue compartments as
well as cancer types. For each compartment of each cancer
dataset, genes exhibiting higher expression in MAIT cells relative
to each of the other subsets were identified by limma-trend (two-
sided unpaired Benjamini-Hochberg adjusted p < 0.1 and fold-
change ≥1.5). The intersection of these nine sets of DEGs (three
tissues × three cancers), listed in Supplementary Table 3, were
designated as MAIT signature genes for downstream analyses.
Given the low number of normal tissue MAIT cells (n = 15)
sampled in the CRC dataset, these were jointly analyzed with
intratumoral MAIT cells in the DEG identification step. MAIT
signature scores were computed on a per-cell basis in a similar
fashion as activation and exhaustion scores [i.e., z-scoring before
averaging log2 (TPM+1) values].
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Analysis of Datasets Generated by
Gutierrez-Arcelus et al. (69)
Gene expression data of innate-like T cells from the peripheral
blood of healthy donors were obtained from GSE124731 (69).
For bulk RNA sequencing of sorted lymphocyte populations,
normalized log2 (TPM+1) values were used in downstream
analyses. To compare the expression of MAIT signature genes
between cell subsets, we averaged data from technical replicates
and used the resulting matrix as input for limma-trend, including
donor as a covariate. Reported p values from this step were left
unadjusted as we were testing for specific gene-wise, rather than
genome-wide, differential expression. The MAIT signature was
scored in each sample by averaging log2 (TPM+1) values of
the eleven genes, and then compared between cell types by the
Wilcoxon signed-rank test. For the scRNA-seq dataset, we used
the normalized and log-transformed unique molecular identifier
(UMI) count matrix. Gene expression was scaled as z-scores and
visualized in a heatmap. MAIT signature scores were computed
and compared in the same manner as for the bulk RNA-seq data.

Analysis of Datasets Generated by Ma
et al. (70)
Single-cell transcriptomic results of primary liver tumors were
obtained from GSE125449 (70). We jointly analyzed data from
HCC patients in both discovery and validation cohorts, excluding
those with intrahepatic cholangiocarcinoma. In addition to the
quality control measure implemented in the original publication
(i.e., excluding cells in which fewer than 500 genes were
detected), we filtered out cells with<700 or>25,000UMI counts,
>4,000 genes, or >20% mitochondrial counts. Datasets from
the two cohorts were harmonized according to the standard
Seurat v3 integration workflow (71). The LogNormalize and
FindVariableFeatures (top 2,000 genes by the “vst” method)
functions were independently applied to each matrix before
FindIntegrationAnchors and IntegrateData (30 dimensions)
were called to combine the matrices. During this step, MAIT
signature genes as well as cell lineage-specificmarkers reported in
the paper were appended to the list of features to integrate, thus
facilitating downstream comparisons. After scaling the combined
matrix and performing PCA, the top 20 principal components
were used for t-SNE. Cell type identities were assigned as those
listed in the accompanying metadata files, and unclassified cells
were excluded from the t-SNE projection. The AddModuleScore
function (100 control features, 20 bins) was used to score each
cell for the MAIT signature. A correlation matrix of MAIT
signature genes and pan-T cell markers (CD3D, CD3E and
CD3G) was generated using log-normalized expression values
by computing pairwise Kendall’s τ coefficients, followed by
hierarchical clustering by centroid linkage to order the genes.

Analysis of Datasets Generated by Yost
et al. (72)
scRNA-seq datasets profiling T cells from site-matched basal
and squamous cell carcinoma (BCC and SCC) samples, before
and after treatment with PD-1-based checkpoint inhibitors, were
retrieved from GSE123814 (72). In addition to UMI count

matrices, cell-level metadata and TCR sequences, we obtained
from the authors additional information pertaining to V, D
and J gene segment usage. As with the other cancer scRNA-
seq datasets, we re-classified T cell subsets into CD8+, CD4+,
Treg, and MAIT cells, with the latter being defined based on
their expression of TRAV1-2 and TRAJ33/12/20. T cells were
marked as clonal if they shared at least one productive TCRα

and β nucleotide sequence each. To ensure consistency in our
analyses, we re-processed the UMI count data using a workflow
similar to the ones we applied to HCC, CRC, andNSCLC datasets
(19, 62, 63). However, certain parameters were modified given
the difference in sequencing platforms (i.e., 10X droplet-based
vs. Smart-seq2 full-length protocol). For quality control, cells
were excluded if they had <1,200 or >25,000 UMI molecules,
<600 or >4,000 unique detected genes, or >10% mitochondrial
counts. Genes were filtered if their average count across all cells
was <0.01. Hierarchical clustering of cells based on Spearman’s
rank correlation was performed with the quickCluster function of
the scran package, and size factors were deconvolved within each
cluster using the pooling-based computeSumFactors method
(73), and gene expression was accordingly log-normalized.
Finally, the expression of each gene in each patient was scaled
such that the mean was equal to 0. The resulting normalized-
centered matrix was used for differential expression analysis
using limma-trend, with the fold-change cut-off for significant
DEGs set at 1.25.

t-SNE plots were generated with the Seurat package using
raw UMI counts as the input. For both BCC and SCC, we
followed the standard integration workflow to harmonize data
from different patients, as cells otherwise clustered by donor,
indicative of batch effects. We split the dataset for each cancer
by patient, log-normalized and identified highly variable genes
(top 2,000 by “vst” method) in these matrices separately, and
subsequently called FindIntegrationAnchors and IntegrateData
(30 dimensions) to re-join the data. In line with the original
article, TCR and immunoglobulin V gene segments were
excluded from variable features. A second round of integration
enabled us to combine the two cancer datasets, after which
CellCycleScoring was used to compute S and G2/M phase scores
in each cell using published gene sets (68), and AddModuleScore
was used to measure the heat shock response based on the gene
ontology term “response to heat.” Gene expression was then
scaled and regressed by the number of UMI molecules as well as
the S, G2/M, and heat shock scores. Finally, PCA was performed,
and RunTSNE was called using the top 20 principal components.
Cells without known TCR sequences were excluded from the
t-SNE projection since they cannot be definitively identified as
MAIT or non-MAIT cells.

Pseudo-Bulk Sample Simulation
Single-cell gene expression data from Yost et al. (72) were used
to generate pseudo-bulk RNA-seq samples for validation of the
MAIT signature among T cells infiltrating BCC and SCC tumors.
We first scored the MAIT signature in each cell by z-scoring the
normalized expression of the constituent genes and taking their
mean. Certain MAIT signature genes were pre-filtered from the
normalized expression matrices owing to their low expression
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(ME1, COLQ, ZBTB16, and TLE1 for BCC; SLC4A10, ME1,
IL23R, COLQ, and ZBTB16 for SCC). This step ensured that the
MAIT signature was enriched in MAIT cells from both BCC and
SCC tumors before and after anti-PD-1 therapy.

To generate pseudo-bulk samples, we randomly sampled n
cells from the single-cell dataset without replacement and then
summed up the raw UMI counts for each gene across the n
cells. Since we knew the cell type identities of the sampled
cells, we could determine the frequency of MAIT cells in every
pseudo-bulk sample as a ground-truth measure. In each artificial
sample, we divided the count of every gene by the library size
(i.e., total number of UMI counts), multiplied by 106, added
one, then took the log2 value to produce an expression measure
analogous to log2 (TPM+1). Next, we averaged the normalized
expression of the 11 signature genes to derive the MAIT score.
To evaluate the performance of the signature, we calculated
Pearson’s correlation coefficient and associated p values to assess
the association between MAIT scores and MAIT cell frequencies
across all simulated samples. Outlier MAIT scores, defined as
those falling outside three median absolute deviations, were
removed before evaluating the correlation. In the first round of
simulations, we set n as a random integer between 200 and 5,000
and generated 500 samples from the BCC dataset, containing
both pre- and post-treatment samples. In the second round, we
set n to 3,000 and generated 300 samples from each of the BCC
and SCC datasets, once for pre-treatment samples and once for
post-treatment samples.

TCGA Analysis
Bulk transcriptomic data from the TCGA Pan-Cancer
dataset (TOIL RSEM tpm) were downloaded from UCSC
Xena (http://xena.ucsc.edu/) and re-computed as log2
(TPM+1) (74). Matching clinical data for 20 TCGA cancers
(Supplementary Table 1) were retrieved from cBioPortal
(https://www.cbioportal.org/) (59).

In order to validate the MAIT signature derived from scRNA-
seq data, a gene expression correlation matrix was generated
for each cancer to evaluate the strength of association between
MAIT cell (SLC4A10, KLRB1, IL23R, NCR3, TMIGD2, LST1,
COLQ, ME1, ZBTB16, RORC, TLE1), pan-T cell (CD3D, CD3E,
CD3G) and NK cell (XCL2, PRF1, KLRF1, KLRD1, IL2RB,
CD244, CD160) gene markers. The non-parametric and tie-
robust Kendall’s rank correlation coefficient (Kendall’s τ ) was
used to determine association.

For each cancer, the set of genes comprising the finalized
MAIT signature was separately defined according to the
following ad hoc rules. Of the eleven genes in the full signature,
we retained only those that (1) could be significantly correlated
with SLC4A10, which is consistently the most specific MAIT
cell-expressed gene across transcriptomic datasets (19, 62, 63,
75, 76), (2) were correlated with all other genes or all but one
gene comprising the finalized MAIT signature, and (3) were
correlated with at least two pan-T cell markers. This step was
implemented to specifically discard MAIT signature genes whose
expression appeared uncoupled with other MAIT and T cell
markers, possibly owing to their expression by non-T cells, and
which could thus otherwise confound the estimation of MAIT

cell abundance if retained. After applying these conditions, only
cancers in which at least five genes remained in the MAIT cell
signature were analyzed downstream.

In each tumor sample, the MAIT cell score was computed
by z-score-transforming and averaging the log2(TPM+1) of all
constituent genes in the respective MAIT signature for that
cancer type. The T cell score in each sample was similarly
calculated by using CD3D, CD3E and CD3G. Before conducting
survival analyses, MAIT cell scores were normalized by
performing regression on T cell scores and keeping the residuals.

Survival Analysis
Across 16 cancers in the TCGA, univariate cox proportional
hazard models were tested with the MAIT signature score as
a predictor for either overall survival (OS) or progression-free
survival (PFS). Patients were stratified by MAIT scores at 33rd
and 67th percentiles. Significant associations identified in these
models were visualized by generating Kaplan-Meier curves.

Software
Analyses and most visualizations were performed using R
(v3.6.1). The packages limma, Seurat, scran, biomaRt, survival,
dplyr, and tidyverse were used to manipulate, format and analyze
transcriptomic and clinical data. The packages ggplot2, ggsci,
ggExtra, ggfortify, ggcorrplot, RColorBrewer, gridExtra, and
survminer were used for visualization. The web tool Intervene
(https://asntech.shinyapps.io/intervene/) was used to generate
UpSet plots that visualized in each cancer scRNA-seq dataset
the intersection of MAIT cell markers between blood, normal
tissue and tumors. For validation of MAIT signature genes in
the Human Blood Atlas, images were obtained directly from
the web interface https://www.proteinatlas.org/humanproteome/
blood (77).

RESULTS

Tissue Distribution of MAIT Cell
Clonotypes in Cancer
The application of scRNA-seq in cancer immunology has
enabled deep, comprehensive and unbiased profiling of immune
cell populations within TMEs. We performed a secondary
analysis of published scRNA-seq datasets across three human
cancers, namely HCC, CRC and NSCLC (19, 62, 63), with
a focus on the abundance and the transcriptional profiles
of MAIT cells from sampled tissues (Supplementary Table 1).
The studies conducted by Zhang’s group generated full-length
TCR sequencing data for single T cells isolated from the
peripheral blood, tumor and paired adjacent normal tissues of
cancer patients. MAIT cells, defined based on the expression
of their semi-invariant TCRα chain (TRAV1-2-TRAJ33/12/20),
were detectable in all three cancer types and formed a distinct
cluster when visualized on a t-SNE projection (Figures 1A,B).
In CRC, there was a trend toward MAIT cell enrichment in
blood compared with the normal colonic tissue (p = 0.069), but
not compared with the tumor tissue (Figure 1C). In contrast,
we found MAIT cells to be more abundant in the normal liver
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FIGURE 1 | Tissue distribution and clonotype sharing of MAIT cells in cancer. (A) t-distributed stochastic neighbor embedding (t-SNE) projection of 19,435 T cells

from integrated non-small cell lung cancer (NSCLC) (n = 8,092), colorectal cancer (CRC) (n = 7,903) and hepatocellular carcinoma (HCC) (n = 3,440) single-cell

transcriptomic datasets. Dots depict individual cells, which are colored according either to the T cell subset they are assigned to (top panel) or to their site of origin

(bottom panel). (B) T cells from each of the three cancer types in (A) are plotted separately, with MAIT cells highlighted in blue. (C) Relative abundance of MAIT cells

across tissue compartments. Tissue preference is quantified as RO/E, the ratio of observed to expected cell frequency in a chi-squared test. Each dot represents a

patient (n = 14 for NSCLC, n = 12 for CRC, n = 5 for HCC), and error bars represent standard error of the mean (SEM). ***p<0.001; two-sided unpaired student’s

t-test. (D) t-SNE plots visualizing T cells in the peripheral blood (n = 1,063), normal liver tissue (n = 819) and tumor tissue (n = 1,558) of HCC patients, with the six

most abundant MAIT cell clonotypes highlighted in different colors. The complementarity determining region (CDR)3α and CDR3β amino acid sequences are listed for

each depicted clonotype. (E) Sharing of MAIT cell clonotypes between tissue compartments. The number of unique clonotypes is shown for non-clonal MAIT cells,

and so are the tissue combinations of clonal MAIT cell distribution across the three cancer types. Dot sizes indicate the mean number of cells per clonotype group. B,

N and T stand for blood, normal tissue and tumor, respectively.

tissue than in the tumors or blood circulation of HCC patients
(Figure 1C).

Clonal MAIT cells — that is MAIT cells bearing identical
TCRα-β pairs — could be detected in all three cancers, and some
clonotypes were found in multiple compartments. Of the six

most abundant MAIT cell clonotypes in HCC, five were shared
between blood, healthy liver and tumor tissues (Figure 1D).
Across the three cancer types, the most frequent MAIT
clonotypes tended to be shared across all tissue compartments,
while the majority of MAIT cells were non-clonal (Figure 1E).
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These findings are consistent with the notion that MAIT cells
may be recruited from the circulation or surrounding tissues into
inflamed TMEs.

Within all the three tissue compartments examined for each
of the three cancer types, TRAJ33 was the most commonly
used Jα segment whereas TRAJ12 and TRAJ20 were detectable
only in a minority of MAIT cells (Figure 2A). The Vβ usage
of peripheral blood MAIT cells in cancer patients was heavily
biased toward TRBV6 and TRBV20 (Figure 2B), consistent
with previous reports on blood and hepatic MAIT cells in
the absence of cancer (32). In addition, TRBV19 and TRBV4-
2 were consistently detected across most tissue compartments
(Figure 2B). Unexpectedly, we found TRBV19 to be the most
frequently expressed Vβ segment among the peripheral blood
MAIT cells of patients with HCC (Figure 2B). TRBV19 usage
by blood MAIT cells has been previously reported but is not
known to be common within MAIT cell TCR repertoires (78).
Closer inspection of these data revealed a highly expandedMAIT
cell clonotype (TRAV1-2-TRAJ33/TRBV19-TRBJ2-6) present in
18% of all MAIT cells (30/166) sampled from a solitary patient.
This clone was also present in the patient’s normal liver and
tumor tissues, and likely accounts for the overall prevalence of
TRBV19 usage observed in the HCC dataset. The predominance
of TRBV6 and TRBV20 was also evident in MAIT cells from the
normal and tumor tissues of the indicated cancers (Figure 2B)
with the exception of the healthy colonic tissues of CRC patients,
in which the usage of TRBV11-2, TRBV27, TRBV4-2, and TRBV9
was comparable to or more apparent than that of TRBV6 and
TRBV20, respectively (Figure 2B). Given the low number of total
cells sampled from this compartment, this finding needs to be
validated in future studies.

Intratumoral MAIT Cells Display
Transcriptional Signatures of Activation
and/or Exhaustion
To characterize changes in MAIT cell gene expression in
different TMEs, we identified in each of the three cancer types
DEGs between tumor-infiltrating and normal tissue MAIT cells
(Figure 3A). In all three datasets, the T cell activation marker
HLA-DRA and the exhaustion marker CXCL13 (19, 68, 79)
were upregulated in intratumoral MAIT cells (Figures 3A,B).
The cytotoxic effector gene GZMB and the immune checkpoint
gene HAVCR2 also exhibited higher expression in MAIT
cells isolated from CRC and HCC tumors (Figures 3B,C).
In HCC, we observed increased expression of several more
activation- (IFNG, CD38, IL2RA, TNFRSF9) and exhaustion-
related (TIGIT,CTLA4, PDCD1, ENTPD1) genes in tumorMAIT
cells (Figures 3A–C). Conversely, the expression of cytokine
receptor-encoding genes IL7R, IFNGR1, IL18R1, and potentially
IL23R (p= 0.065), was downregulated in HCC tumor-infiltrating
MAIT cells (Figure 3A, Supplementary Table 2).

Next, we performed gene set variation analysis to identify
differentially regulated pathways between tumor-infiltrating
MAIT cells and those from adjacent unaffected tissues. In HCC,
tumor-infiltrating MAIT cells were enriched for the GO terms

“response to type I IFN” (p = 3.7e−8, Benjamini-Hochberg-
adjusted limma-moderated t-test), “defense response to virus”
(p = 8.8e−6), and “negative regulation of viral life cycle” (p =

4.0e−6). Consistent with the findings of our differential gene
expression analysis, intratumoral MAIT cells in CRC had higher
enrichment scores for “granzyme-mediated apoptotic signaling”
(p = 0.045) and “chronic inflammatory response” (p = 0.045).
MAIT cells within NSCLC tumors were enriched for “negative
regulation of response to IFN-γ” (p = 0.0089) and “negative
regulation of TCR signaling pathway” (p = 0.024), possibly
reflecting the immunosuppressive effects of the NSCLC TME.

To visualize transcriptional T cell activation and exhaustion
modules, we devised two cell-level signatures, one including
genes that pertain to T cell activation (CD69, CD38, HLA-DRA,
IL2RA, TNFRSF9) and function (IFNG, TNF, GZMA, GZMB,
GZMH, GNLY) and the other consisting of immune checkpoint
and dysfunction-relatedmarkers (PDCD1,CTLA4,TIGIT, LAG3,
CXCL13, ENTPD1, ITGAE, LAYN). By scoring and plotting
the two signatures across individual cells, we observed distinct
tumor-specific populations of activated/exhausted MAIT cells
in HCC and CRC tumors (Figure 3D). Accordingly, tumor-
infiltrating MAIT cells in these cancers had significantly higher
activation (p = 3.6e−5 and p = 0.01 for HCC and CRC,
respectively, by Wilcoxon signed-rank test) and exhaustion
scores (p= 0.0085 and p= 0.047 for HCC and CRC, respectively)
when compared with adjacent normal tissue MAIT cells. There
was a trend toward a higher activation score for NSCLC tumor-
infiltrating MAIT cells (p = 0.055) while exhaustion scores
for healthy tissue and intratumoral MAIT cells were similar
(p = 0.71). As expected, in all cancer types, conventional
CD8+ T cells had the most pronounced increase in activation
and exhaustion scores within tumors relative to unaffected
tissues (Supplementary Figure 1). Interestingly, activation and
exhaustion scores were significantly correlated in intratumoral
MAIT cells from each of the three cancer types (p = 6.9e−7
for HCC, p = 0.0065 for CRC, p = 9.3e−5 for NSCLC; Pearson
correlation), indicating a high degree of overlap between the
two signatures. When the activation-independent exhaustion
program defined by Tirosh et al. (68) was assessed instead, only
intratumoral MAIT cells in HCC had higher exhaustion scores
than those from adjacent normal tissue (p = 3.0e−5 for HCC,
p = 0.52 for CRC, p = 0.15 for NSCLC; Wilcoxon signed-rank
test). Together, the above findings suggest that TMEs in different
types of cancer perturb the transcriptional state of MAIT cells in
divergent manners and to varying degrees. In HCC, intratumoral
MAIT cells appear to be shifted toward an activated/exhausted
phenotype whereas in CRC and NSCLC, a bias toward activation
may prevail.

PD-1 Blockade Enhances the Expression
of Cytotoxic Effector Genes in
Tumor-Infiltrating MAIT Cells
Having shown that MAIT cells may become activated within
certain TMEs, we next explored how their transcriptional
state may be influenced by immunotherapy with checkpoint
inhibitors. To address this question, we took advantage of the
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FIGURE 2 | Distribution of MAIT TCR Jα and Vβ usage in cancer. Single-cell transcriptomic data were obtained for T cells from the blood, tumor, and normal tissues of

patients with non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and hepatocellular carcinoma (HCC). TRAJ and TRVB segment usage in MAIT cells was

summarized based on assembled full-length TCR sequences. (A,B) MAIT cell usage of TRAJ (A) and TRVB (B) segments in indicated compartments and cancer

types.
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FIGURE 3 | Tumor-infiltrating MAIT cells exhibit gene expression patterns consistent with activated and exhausted states. Transcriptional differences among MAIT

cells of different tissue origins were analyzed in single-cell transcriptomic datasets comprising T cells from non-small cell lung cancer (NSCLC), colorectal cancer

(CRC), and hepatocellular carcinoma (HCC) patients. (A) Volcano plots showing differentially expressed genes between MAIT cells isolated from tumors and paired

unaffected tissues across indicated cancer types. Significance thresholds are p < 0.05 and fold-change ≥1.5. Dots are colored red if significant, light red if 0.05 ≤ p <

0.10, and gray if non-significant. (B,C) Violin plots comparing normalized expression of T cell activation/function- (B) and exhaustion-related genes (C) in tumor vs.

normal tissue MAIT cells in indicated cancers. NS, non-significant. *p < 0.05, **p < 0.005, ***p < 0.001. In (B,C), p values are calculated using

Benjamini-Hochberg-adjusted limma-moderated t-tests. (D) Activation and exhaustion scores, computed by scaling followed by averaging the expression of genes in

the respective lists (see Methods), are plotted for normal and tumor tissue MAIT cells. Density curves at the plot margins depict the distribution of the two scores. Dots

are sized according to IFNG expression. TPM, transcripts per million.
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scRNA-seq dataset from Yost et al. profiling T cells within
paired BCC and SCC tumor samples pre- and post-anti-PD-1
therapy (72). MAIT cells formed distinct t-SNE clusters in both
BCC and SCC although a few cells fell outside such clusters
(Figure 4A). PD-1 blockade did not enrich or deplete MAIT
cells within tumors of either cancer type (Figure 4B). We then
characterized the clonal dynamics of these intratumoral MAIT
cells, restricting our analysis to patients in whom at least 10
MAIT cells were detectable pre- and post-treatment to mitigate
the potential effects of sampling errors. In two out of three
BCC patients (B-04 and B-06), the majority of tumor-infiltrating
MAIT cell clones after anti-PD-1 therapy were novel – that is
they were not detected in pre-treatment samples. In contrast,
in one BCC patient (B-08) and in both SCC patients, most
post-treatment MAIT cell clones were already present before
therapy (Figure 4C). Visualizing the fate of individual clones,
we found in BCC patient B-08 that two MAIT clonotypes were
significantly expanded following therapy (Figure 4D). In each of
the SCC tumors, one dominant clonotype comprised themajority
of intratumoral MAIT cells both before and after treatment
(Figure 4D).

Differential expression analysis of pre- and post-treatment
tumor-infiltrating MAIT cells revealed upregulation of the
activation marker HLA-DRB1, the cytotoxic effector GZMH, and
the chemokines CCL4 and CCL5 following anti-PD-1 therapy
in both types of cancer (Figures 4E,F). In BCC, post-treatment
MAIT cells also exhibited higher expression of IFNG and GNLY,
both of which mediate T cell effector functions (Figures 4E,F).
In SCC, several genes encoding granzymes, namely GZMK,
GZMA and GZMM, exhibited significantly higher expression in
intratumoral MAIT cells after PD-1 blockade (Figures 4E,F).
Interestingly, in patient B-08, the two expandedMAIT cell clones
had higher expression of HLA-DRB1 and GZMH than the other
clones at baseline, which did not further increase following
PD-1 blockade (Figure 4G). In contrast, these two genes were
upregulated post-treatment in non-expanded MAIT cell clones
from the same patient (Figure 4G). Taken together, these results
suggest that anti-PD-1 therapy promotes the expression of
effector genes by MAIT cells within certain TMEs.

Deriving a Stable and Specific MAIT Cell
Gene Signature
Using the HCC, CRC and NSCLC scRNA-seq datasets, we
next sought to define a set of marker genes that consistently
distinguish MAIT cells from other T cell populations across
various tissue compartments and cancer types. To this end, we
identified genes with significantly higher expression in MAIT
cells than in non-MAIT T cells (divided into CD8, CD4,
and Treg subsets) (Figure 5A, Supplementary Table 3). Within
all three cancer types, a set of genes could be defined that
remained stably overexpressed in MAIT cells regardless of their
tissue/site origin (Supplementary Figure 2). The intersection
of these three cancer-specific gene sets, comprising eleven
genes (SLC4A10, KLRB1, ME1, TMIGD2, IL23R, NCR3, LST1,
COLQ, RORC, ZBTB16, TLE1) that represent the most robust
MAIT cell markers, was used for downstream analyses in bulk

tumor transcriptomic datasets (Figure 5B). We then collapsed
the expression of these marker genes into a single index, the
“MAIT cell signature,” and demonstrated the specific enrichment
of this signature in MAIT cells relative to non-MAIT T cell
subsets (Figure 5C). Crucially, our consensus-based approach
for deriving a MAIT cell signature selects for generalizability of
markers across tissue contexts.

Validating the MAIT Signature in Additional
Transcriptomic Datasets
To further validate the specificity and stability of the MAIT
cell signature, we tested its performance in several independent
gene expression datasets. A recent study by Gutierrez et al.
generated bulk and single-cell transcriptomic data of innate-
like T cells isolated from the peripheral blood, including MAIT,
iNKT, Vδ1, and Vδ2 T cells (69). The authors also profiled
conventional CD4+ and CD8+ T cells as well as NK cells
for comparison purposes. We first examined bulk RNA-seq
data from the purified lymphocyte populations. We found the
expression of most MAIT signature genes to be highly specific to
MAIT cells even in comparison with other innate-like subsets like
iNKT cells, which are known to share a similar transcriptional
profile (Supplementary Figure 3A) (51, 76). Out of 66 pairwise
comparisons (11 genes × 6 cell types), all but 8 pointed to
significantly elevated levels in MAIT cells (p < 0.05, limma-
moderated t-tests). Four genes were expressed at comparable
levels in iNKT cells (KLRB1, COLQ, ZBTB16, TLE1), three in
NK cells (TMIGD2, COLQ, ZBTB16), and one in Vδ2 cells
(TLE1) (Supplementary Figure 3A). As expected, the aggregate
MAIT signature score was significantly enriched in MAIT cells
relative to every other lymphocyte population (p<0.0001, by
Wilcoxon signed-rank test) (Supplementary Figure 3B). Results
from the scRNA-seq dataset were concordant, with all MAIT
signature genes being highly expressed in MAIT cells, and a
few expressed at similar levels by iNKT, Vδ2, and NK cells
(Supplementary Figure 3C). The performance of the MAIT
signature was also verified on a per-cell basis (largest p =

1.3e−13, compared to iNKT cells) (Supplementary Figure 3D).
Since we derived the MAIT signature from transcriptomic

profiles of tumor-infiltrating T cells, its constituent genes
were selected based on their discriminatory capacity relative
to other T cell subsets, but not necessarily non-T cell
populations. Therefore, we next evaluated this signature in
more complex, unpurified cell mixtures better representing the
crude immune compartment of TMEs. To this end, we re-
processed and analyzed scRNA-seq data from primary tumors
of HCC patients, generated by Ma et al. (70), which contained
diverse malignant, stromal and immune cell populations
(Supplementary Figures 4A,B). While there was no paired
scTCR-seq data with which to identify MAIT cells in this
case, we could still ask whether each MAIT signature gene
tended to be expressed specifically among T cells, or more
promiscuously across other cell types. Of the 11 genes comprising
the MAIT signature, five were expressed primarily by T cells
(SLC4A10, KLRB1, TMIGD2, IL23R, NCR3), five had higher
expression among non-T cell types (ME1, LST1, RORC, ZBTB16,
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FIGURE 4 | Effect of PD-1 blockade on intratumoral MAIT cell phenotype. (A) t-distributed stochastic neighbor embedding (t-SNE) plot of tumor-infiltrating T cells

from integrated basal cell carcinoma (BCC) (n = 20,027) and squamous cell carcinoma (SCC) (n = 18,088) single-cell RNA sequencing datasets. Dots are colored

according either to the T cell subset they are assigned to or to the treatment (Tx) status (first and second panels from left to right). Cells are also separately plotted for

(Continued)
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FIGURE 4 | BCC and SCC (third and fourth panels from left to right), with MAIT cells shown in blue. Zoomed-in views highlight the main MAIT cell cluster. (B) Relative

abundance of intratumoral MAIT cells before and after PD-1 blockade therapy. MAIT cell frequencies were transformed to RO/E, or the ratio of observed to expected

cell number using a chi-squared test. Each dot depicts a patient (n = 11 for BCC, n = 4 for SCC), and error bars represent SEM. NS, not significant; two-sided

unpaired student’s t-test. (C) Clonal history of MAIT cells present in the BCC and SCC tumor microenvironments following treatment with anti-PD-1. Novel clones refer

to those absent in matched pre-treatment samples, whereas shared clones are those detected both before and after PD-1 blockade. (D) Clonal dynamics of

tumor-infiltrating MAIT cells pre- and post-treatment with anti-PD-1. Dots represent individual clones, colored according to indicated fates. Clones found exclusively in

either pre- or post-treatment samples were denoted as pre- or post-only, respectively. Expanded and depleted clones were defined based on significant proportional

changes by Fisher’s exact test. The remaining clones were considered stable. Dot shapes correspond to different patients, assigned arbitrarily. In (C,D), analysis was

restricted to patients with at least 10 MAIT cells sampled from both pre- and post-treatment samples. (E) Volcano plots showing differentially expressed genes

between MAIT cells isolated from tumors before and after PD-1 blockade. Significance thresholds are p <0.05 and fold-change ≥1.25. Dots are colored red if

significant, light red if 0.05 ≤ p ≤ 0.10, and gray if not significant. (F) Violin plots comparing the expression of T cell activation and effector function genes in pre- and

post-treatment tumor-infiltrating MAIT cells. P values were calculated by Benjamini-Hochberg-adjusted limma-moderated t-tests. (G) Split-violin plots comparing gene

expression in expanded and non-expanded intratumoral MAIT cell clones in a BCC patient. Open circles, colored according to their fate, represent mean values. The

top pair of p values denote comparisons between pre- and post-treatment samples, whereas the bottom pair compare expanded and non-expanded MAIT cell

clones within the same sample. *p < 0.05, **p < 0.005, ***p < 0.001; NS, not significant; Wilcoxon signed-rank test.

TLE1), and one (COLQ) was nearly undetectable across all
cells (Supplementary Figure 4C). Removing the five genes with
high expression in non-T cell types from the MAIT signature
improved its specific enrichment among T cells, although we
cannot ascertain whether T cells with highMAIT signature scores
represent bona fide MAIT cells (Supplementary Figure 4D).
Hierarchical clustering of the MAIT signature genes alongside
pan-T cell markers (CD3D, CD3E, CD3G) divided these into two
groups, one consisting of the genes whose expression tended
to be positively associated with the CD3 genes and with each
other (NCR3, KLRB1, TMIGD2, IL23R, LST1, SLC4A10, COLQ),
and the other comprising the genes whose expression was
generally anticorrelated with the CD3 genes (ZBTB16, TLE1,
ME1, RORC) (Supplementary Figure 4E). Notably, the latter
group largely overlapped with the genes whose expression was
found to be nonspecific to T cells. While the degree of specificity
for each MAIT cell signature gene will likely vary between
tissue compartments, disease states, individuals, and methods of
measurement, these results suggest that the MAIT signature may
be amenable to refinement in-context based on expected patterns
of correlated gene expression.

Using the datasets from Yost et al., the MAIT
signature performed well in BCC and SCC tumors
both before and after anti-PD-1 therapy, suggesting that
it is reasonably robust to changes in biological state
(Supplementary Figures 5A,B). Interestingly, MAIT cells
in BCC tumors post-treatment had significantly decreased
MAIT signature scores (p < 0.0001, by Wilcoxon signed-rank
test) (Supplementary Figure 5A), while the same was not true
for SCC tumors (Supplementary Figure 5B). This finding lends

further support to the notion that PD-1 blockade can alter the
transcriptional profile of intratumoral MAIT cells, a finding that
needs to be validated in larger cohorts and linked to markers of

response to therapy. Despite this effect, the signature was still
specifically enhanced in MAIT cells compared to all other T

cell subsets in post-treatment BCC samples (largest p < 0.005,
compared to CD4+ T cells).

To investigate whether our MAIT signature may be useful

in estimating MAIT cell frequencies in bulk RNA-seq data, we
generated simulated pseudo-bulk samples from these scRNA-
seq profiles. In the BCC dataset, we found the MAIT signature

score to strongly correlate with the frequency of MAIT cells,
but not that of conventional CD8+ T cells, CD4+ T cells, or
Tregs (Supplementary Figure 5C). Moreover, this correlation
was reproducible, regardless of pre- or post-treatment sampling,
for both BCC and SCC (Supplementary Figures 5D,E). In
line with the observed perturbation of the MAIT signature
by PD-1 blockade in BCC, the correlation between the
MAIT signature score and MAIT cell frequency was weaker
when restricting simulations to anti-PD-1-treated tumors
(Supplementary Figure 5D). These results, supplemented by our
other means of validation, demonstrate the value of the MAIT
signature in estimating MAIT cell frequencies within bulk gene
expression datasets.

Refining the MAIT Signature Using Bulk
Tumor Transcriptomic Data
TCGA provides matched clinical and bulk tumor RNA-
seq data across many human cancers, which enabled us
to evaluate the prognostic significance of the above-defined
MAIT signature. We obtained data from 20 TCGA cancers,
focusing mainly on solid tumors with relatively large sample
sizes (Supplementary Table 1). As an additional quality control
step before testing for associations with clinical outcomes, we
evaluated the performance of our MAIT signature using gene
expression data from these 20 cancers.

Most genes included in the MAIT signature showed
significant positive correlations with the expression of the pan-
T cell genes CD3D, CD3E and CD3G, which was expected
given that MAIT cell abundance within tumors, estimated
in absolute terms by our signature and its constituent
genes, likely scales broadly with the extent of overall T cell
infiltration (Supplementary Figure 6).We also observed positive
correlations between the expression of MAIT signature genes
and seven curated NK cell markers (80, 81), which may reflect
the promiscuous expression of MAIT marker genes by NK
cells, of NK marker genes by T cells (thus returning to the
previous point), or both (Supplementary Figure 6). Of note,
in every cancer type, there were MAIT signature genes whose
expression did not correlate with that of pan-T cell markers
or other MAIT signature genes. As shown when evaluating the
MAIT signature in scRNA-seq data profiling the whole HCC
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FIGURE 5 | Identification of MAIT cell signature genes. Three single-cell transcriptomic datasets comprising T cells from the blood, tumor, and adjacent healthy tissue

of patients with non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and hepatocellular carcinoma (HCC) were analyzed. Within each compartment of each

cancer type, genes with significantly higher expression in MAIT cells than in other T cell subsets (conventional CD4+, conventional CD8+, and regulatory T cells) were

identified using limma-trend (Benjamini-Hochberg-adjusted t-test yielding p < 0.1). (A) Heatmap showing the mean normalized expression of MAIT cell markers

across T cell subsets in each cancer. (B) Venn diagram of overlapping MAIT cell marker genes between cancer types. Listed genes comprise the eleven-gene MAIT

cell signature that remained stable across cancer contexts. (C) Validation of the MAIT cell signature. Expression of the genes listed in (B) was scaled, averaged, and

then plotted for each cell. Boxes extend between quartiles, and whiskers extend to ±1.5× interquartile range.

TME, this “missing” correlation for certainMAIT signature genes
in bulk transcriptomic data may be due to their expression in
non-T cell populations within TMEs, which then confounds and
overpowers the underlying correlation in abundance between the
transcripts of MAIT origin. Indeed, RNA-seq data in purified
leukocyte populations from the Human Blood Atlas revealed that
TLE1 and LST1 are highly expressed in other immune cell subsets
such as monocytes and basophils (Supplementary Figure 7).
Similar reasoning also holds for tumor and stromal cells.

Therefore, we devised rules to define “blocks” of correlation
(see Methods for details), whereby the gene set comprising
the MAIT signature for each cancer is independently trimmed
until only genes that exhibit significant positive correlations,
where expected, remain. Using this approach, we found that
four cancers, namely urothelial carcinoma, cervical squamous
cell carcinoma, low-grade glioma and glioblastoma, did not
display a robust transcriptional signal of MAIT cell infiltration,
as fewer than five of the eleven original MAIT signature genes
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were kept (Supplementary Figure 6B). These cancers were thus
excluded from downstream analyses. We then scored the degree
of MAIT cell infiltration in each tumor sample by normalizing
and averaging the expression of the MAIT cell signature genes
selected for each cancer type. A final adjustment was made to
the MAIT cell score by regressing out the T cell score, similarly
computed based on the expression of CD3D, CD3E and CD3G,
thereby normalizing the MAIT cell abundance estimate in each
sample against the degree of total T cell infiltration.

Association of the MAIT Signature With
Clinical Outcomes Across Human Cancers
To explore potential links between intratumoral MAIT cell
abundance and patient survival across human cancers, we
tested a series of Cox proportional hazard models using the
MAIT cell score to stratify patients into MAIT-high and MAIT-
low groups for each cancer type. We found that a high
MAIT score was associated with improved overall survival
(OS) in EAC, but poorer OS in CRC and lung squamous
cell carcinoma (Figures 6A,C). When considering progression-
free survival (PFS), a high MAIT score was associated with
favorable prognoses in breast invasive carcinoma, prostate
adenocarcinoma, papillary renal cell carcinoma and EAC, while
it portended earlier progression in stomach adenocarcinoma
(Figures 6B,D). Notably, in HCC, where intratumoral MAIT
cell abundance has been linked to improved or poor survival in
seemingly contradictory reports (19, 20), we did not find any
prognostic associations between the MAIT score and either OS
or PFS [Figures 6A,B; shown using the TCGA abbreviation for
liver hepatocellular carcinoma (LIHC)]. Overall, these results
indicate that the prognostic value of MAIT cell infiltration
into tumors varies by cancer type and endpoint definition,
reinforcing the need for future studies that independently and
systematically test for such associations across a wide spectrum
of human malignancies.

One potential determinant of MAIT cell abundance in TMEs
is the expression of MR1, the gene encoding the antigen-
presenting molecule involved in cognate MAIT cell activation.
We found positive correlations between MR1 expression and
MAIT scores in CRC (p= 0.0081, Pearson correlation), stomach
adenocarcinoma (p = 0.0015), prostate adenocarcinoma (p =

1.29e−10), lung adenocarcinoma (p = 0.00088), and clear cell
renal cell carcinoma (p = 0.013). The expression of MR1 was
not significantly associated with OS or PFS in any of the above
cancers but showed trending p values for worse OS in CRC (p =
0.078 by log-rank test), worse PFS in stomach adenocarcinoma (p
= 0.081), and better PFS in prostate adenocarcinoma (p = 0.10).
These trends are in the same directions as the prognostic links
identified for MAIT scores, which warrants further investigation.

DISCUSSION

In this study, we present the first in silico cross-cancer analysis
of MAIT cells using available bulk and single-cell transcriptomic
datasets. Our analyses reproduced several established findings
about MAIT cells in the context of human malignancies. In

the HCC scRNA-seq dataset, we found that MAIT cells were
reduced within tumors compared to the adjacent normal tissue
and enriched in the healthy liver compared to peripheral blood,
consistent with previous studies (19, 20, 42). We did not,
however, replicate the finding that MAIT cells are significantly
enriched in CRC tumors compared to their surrounding
unaffected tissue, which has been reported in a number of
independent studies (16, 17, 26). The CRC dataset included
9,878 T cells from 11 patients in total, which might have made
our analysis underpowered.

Our examination of the TCR repertoire of MAIT cells
validated their preferential usage of TRAJ33 in the blood, normal
tissues and tumors across the three cancer types. In contrast, the
Vβ bias we observed was more flexible and context-dependent.
Previous studies in individuals without cancer have established
the preferential usage of TRBV6 and TRBV20 by peripheral blood
and hepatic MAIT cells (32), which is generally consistent with
our present findings across the tissue compartments examined.
Surprisingly, however, MAIT cells sampled from the healthy
colonic tissue of CRC patients expressed TRBV11-2, TRBV27,
TRBV4-2, TRBV9, and TRBV6 at similar frequencies. While
this observation was based on a relatively small sample, there
is reason to speculate that malignancy and the tissue context
might reshape the TCR repertoire of MAIT cells. The TCRβ

chain expressed by MAIT cells has been shown to influence
their MR1-dependent responses to microbial antigens (78, 82).
It is therefore possible that tissue-resident commensal bacteria in
the gut, for instance, may cause differential expansion of MAIT
cell clones depending on the TCRβ chain utilized, which may
confer varying avidities for cognate stimuli. Moreover, given the
complex interplay between cancer and tissue dysbiosis (83, 84),
the TCR composition of MAIT cells in cancer patients may
exhibit different biases than that in healthy individuals. Further
studies are needed to compare and contrast the TCR repertoire
of tissue-resident or even passenger MAIT cells in normal and
pathological states.

In agreement with previous work, we show that MAIT
cells in HCC tumors express higher levels of T cell activation
(CD38, HLA-DRA) and exhaustion markers (PDCD1, CTLA4,
HAVCR2), but lower levels of the effector function-associated
genes CD160 and KLRG1 (Figure 3A) (20). We extended this
finding by demonstrating that intratumoral MAIT cells in HCC
also exhibit higher expression of the effector genes GZMB
and IFNG, even though studies of HCC and colorectal liver
metastases have shown that MAIT cells isolated from tumor
masses are suppressed in terms of TH1 cytokine secretion and
granzyme B production when stimulated ex vivo (18, 20). This
hypofunctional state may be explained in part by downregulation
of cytokine receptors (IL7R, IL18R1, IFNGR1, IL23R) that
mediate MAIT cell activation and modulate their downstream
effector programs (Figure 3A, Supplementary Table 2) (42, 44,
45). Functional impairments in CRC have also been reported
(26), and our present work indicates the upregulation of several T
cell activation- and exhaustion-related genes in CRC-infiltrating
MAIT cells (Figure 3D). The elevated expression of GZMB in
MAIT cells from HCC and CRC tumors raises the possibility
that the cytotoxic activity of these cells may have been bolstered

Frontiers in Immunology | www.frontiersin.org 14 July 2020 | Volume 11 | Article 1691

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yao et al. Transcriptomic Analysis of MAIT Cells in Cancer

FIGURE 6 | Prognostic value of MAIT cell signature in human cancers. Matched tumor transcriptomic and clinical data for 16 cancers in The Cancer Genome Atlas

(TCGA) were accessed and analyzed. For each sample, a MAIT cell score was computed, which estimates the abundance of MAIT cells within the tumor, normalized

for overall T cell infiltration (see Methods). Univariate cox proportional hazard models were tested for each cancer using the MAIT score as a predictor variable

(Continued)
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FIGURE 6 | (patients stratified at 33rd and 67th percentiles) and either overall or progression-free survival as the endpoint. (A,B) Forest plots of hazard ratios for

overall (A) and progression-free survival (B) across TCGA cancers. Cancer types with significant survival associations are bolded and shown in red if a MAIT score is

negatively prognostic, or blue if it is positively prognostic. Lines span 95% confidence intervals. *p < 0.05, **p < 0.01. (C,D) Kaplan-Meier curves visualizing significant

associations between MAIT scores and overall (C) and progression-free (D) survival. Log-rank tests were employed to compare curves. Cancer type abbreviations are

expanded in Supplementary Table 1.

by the respective TMEs. In support of this notion, Sundström
et al. showed that colon tumor-infiltrating MAIT cells and
their healthy tissue counterparts retain a comparable cytotoxic
potential when activated ex vivo (85).

Our group has previously described the simultaneous
expression of activation and exhaustion programs in MAIT
cells in conjunction with heavy-handed cytokine responses to
bacterial superantigens (86). Stimulation of MAIT cells with
staphylococcal enterotoxin B, a potent superantigen, causes
their hyperactivation together with upregulation of the co-
inhibitory markers LAG-3 and TIM-3 (HAVCR2) and anergy as
characterized by impaired cytokine production upon secondary
challenge with bacterial lysates, which could be reversed by
blocking LAG-3 with a monoclonal antibody (86). Taken
together, these observations further the rationale for attempting
to restore the pro-inflammatory and cytotoxic functionality
of tumor-infiltrating MAIT cells with immune checkpoint
inhibitors. While a skewed MAIT cell response toward IL-17
production has been proposed to potentially promote tumor
progression (21, 87, 88), IL17A transcripts were undetectable in
most MAIT cells within the datasets analyzed, possibly reflecting
their relatively low baseline abundance. More work is needed
to directly characterize the effector functions of intratumoral
MAIT cells in situ, which is likely dictated, in conjunction with
their transcriptional state, by the coordinated action of local
stimulatory and inhibitory cues.

Our survival analyses independently replicated the
observation that MAIT cell infiltration into CRC tumors is
a negative prognostic factor for OS (17). Although we showed a
high MAIT cell score to be associated with both improved OS
and PFS in EAC, a previous study on this cancer did not detect
a correlation between the intratumoral MAIT cell frequency and
overall patient survival (21). Interestingly, however, they did find
that MAIT cells were more abundant in EAC tumors without
nodal involvement, which have a more favorable prognosis
(21). The associations we identified in other cancer types
between the MAIT score and patient survival may help guide the
prioritization of MAIT cell studies in human malignancies but
will need to be validated in additional cohorts using traditional
immunological methods to measure MAIT cell abundance
within tumors. Seemingly contradictory results arising from
two independent studies on the prognostic significance of
HCC-infiltrating MAIT cells may have stemmed, at least in
part, from the technical approaches employed (19, 20). Zheng
et al. utilized the TCGA gene expression data (19) whereas
Duan et al. resorted to flow cytometry, quantitative polymerase
chain reaction and immunohistochemistry (20) to reach their
respective conclusions. Another difference between these two

studies is the rate of hepatitis B virus (HBV) infection among
HCC patients, which was low in the TCGA cohort (89) and
highly prevalent in the cohorts studied by Duan et al. (20).
Chronic HBV infection is the most common risk factor for HCC
(90), and has recently been associated with peripheral blood
MAIT cell activation and exhaustion although its impact on
hepatic MAIT cells is less clear (91–93). Our pathway enrichment
analysis in the HCC scRNA-seq dataset generated by Zheng et al.,
in which all patients were HBV-positive unlike in the TCGA
cohort, revealed the upregulation of antiviral gene modules
in tumor-infiltrating MAIT cells. Therefore, the phenotypic
and functional attributes of intratumoral MAIT cells may be
influenced by comorbid viral infections. These considerations
reinforce the need to test and re-test exploratory hypotheses in
primary cohorts with comprehensive clinical records. In our
survival analyses, we did not detect any associations between our
MAIT signature and either OS or PFS in HCC (Figures 6A,B).

As the three cancer scRNA-seq datasets we analyzed were
generated to profile the entire T cell compartment rather than
MAIT cells specifically, some of our approaches were likely
not fully powered to discern subtle effects and differences.
In order to more finely characterize the clonal dynamics and
tissue-mediated transcriptional changes of MAIT cells in cancer,
future studies will need to prioritize cell sampling and data
collection strategies accordingly. In particular, approaches to
identify distinct MAIT cell subsets or to infer the developmental
trajectory of such clusters will likely require datasets focused
exclusively on this population.

The MAIT signature and constituent markers that we derived
herein can be applied to extract additional information from
existing and future transcriptomic datasets. The availability of
reconstructed TCR sequences in the datasets we analyzed enabled
us to define MAIT cells by their invariant TCRα chain. However,
the gene signature we defined in this work should help detect
MAIT cells when single-cell TCR sequencing data are not
available. This approach may need to be further optimized or
validated using additional biological measures and sequencing
platforms. Other than this gene signature, MAIT cell abundance
can be estimated in bulk gene expression data using algorithms
that extract TCR transcripts from RNA-seq reads (94, 95). This
approach has a much higher specificity, though likely at the
cost of sensitivity, and would allow the validation of survival
associations identified in this study.

In summary, by analyzing public transcriptomic datasets,
we demonstrate that MAIT cells bear some shared clonotypes
in the blood, normal tissues and tumors of cancer patients.
MAIT cells show evidence of both activation and exhaustion
within some but not all TMEs. Importantly, the intratumoral
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abundance of MAIT cells is associated with patient outcomes
in several human malignancies. Based on our analyses, we
suggest that MAIT cells play important roles within TMEs where
they engage in cross-talk with other players, resulting in their
activation and/or exhaustion. Finally, we provide a resource for
MAIT cell-focused in silico analyses of high-dimensional cancer
omics data.
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