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Probiotics are now recognized for several health benefits and they have been recommended as a complementary therapeutic agent
for metabolic disorders. Obesity is an altered health condition, which is a resultant of irregular energy intake and energy balance,
changes in gut microbiota, and improper diet with the influence of genetic makeup and environmental factors. Several studies
revealed the influence of probiotic supplementation on obesity-associated consequences in vitro, in vivo, and in human clinical
studies. The current manuscript discussed the factors influencing the occurrence of obesity, the interplay between microbiome
and obesity, the effect of the probiotic intervention on the health status of obese people, and possible mechanism of antiobesity
activity of probiotics. The literature survey revealed that the antiobese activity of probiotics might be associated with their ability
to alter the intestinal microbiota, remodeling of energy metabolism, alter the expression of genes related to thermogenesis, glucose
metabolism, and lipid metabolism, and change the parasympathetic nerve activity. Further intense research is necessary to figure
out the best probiotic or synbiotic mixture and optimum dosage and duration of the intervention to reduce obesity and prevent the
recurring of obese condition.

1. Introduction

Food habits and lifestyle greatly influence the quality of the
life and health status of humans. The improper diet and
lifestyle are associated with several metabolic disorders and
are the greatest global health issues [1]. The environmental
factors, maternal health, and host genetic makeup are also
involved in the development of metabolic disorders and
diseases. The composition of gut microbiota (GM) and its
function is altered due to the consumption of improper
diet, which affects the health status of the host, specifically
associated with the development of obesity. GM is involved
in the energy balancing, intestinal integrity, and immunity
against invading pathogens; thereby GM controls the overall
health status of the host [2–4].

GM can be positively altered by the supplementation of
probiotics, a group of beneficial microbes that confers health
benefits when consumed in an adequate amount [5]. Probi-
otic intervention has been recognized for the treatment or
betterment of several ill-health conditions such as diarrhea,
allergy, gastrointestinal disorders, and metabolic syndromes
[6–11]. The probiotic supplementation also slows down the
aging-associated health issues by positive regulation of GM
[12, 13].

Obesity is an altered health condition, which is a resultant
of irregular energy intake and energy balance, changes inGM,
and improper diet with the influence of genetic makeup and
environmental factors. Obesity is defined as an accumulation
of excessive fat that impairs health status [14]. The obesity
rate is drastically increased over the last decades [15], and
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it has been estimated that about 1.9 billion adults were
overweight and, among them, 650 million adults are obese
in 2016 [16]. The overweight with some ill-health conditions
such as diabetes, hypertension, and cardiovascular diseases is
considered as morbid obesity [14, 17].

GM is one of the influencing environmental factors
involved in the initiation of obesity mainly by disturbing
the food intake and energy balance. Though some of the
in vivo studies demonstrated the role of GM in the onset
of obesity, the exact etiology of obesity has not yet been
explained [2, 14, 18, 19]. As mentioned earlier, probiotic is
a feasible way to regulate and improve the GM. In recent
decades, several studies have focused on the influence of
probiotic supplementation on the health improvement of
obese people, and the results were found to be controver-
sial. The current manuscript summarizes and discusses the
outcome of clinical trials conducted to evaluate the probiotic
based supplementation on the health status of obese people.
The published scientific documents have been searched and
retrieved from Scopus, Web of Science, PubMed, and Google
Scholar using the search terms “Probiotic” and “obesity.” The
relevant scientific documents in English have been selected
without any chronological restrictions for the preparation of
the current manuscript.

2. Obesity: Influencing Factors and
Consequences

Several factors are associatedwith the development of obesity.
Use of high-calorie fast-foods, high consumption rate, less
physical powered occupations, lack of physical activities,
insufficient sleep, side effects from the medicines like topira-
mate, olanzapine, and pioglitazone, and other environmental,
genetic, and socioeconomic factors are closely related to the
onset of obesity [20–23].

Energy imbalance, environmental factors, and genetic
makeup are significantly connected to a network that reg-
ulates several physiological functions. The neuronal system
regulates the energy expenditure through the stimulants from
the gastrointestinal tract in the form of neurotransmitters
and other neuropeptides produced by GM. The regulatory
molecules released by the microbiota influence the brain
regions, which is responsible for cognitive functions, emo-
tions, and food consumption. The negative energy balance
(due to increased physical activity or reduced food consump-
tion or both) plays a vital role in obesity in association with
energy expenditure, physical and metabolic activities, and
orexigenic signals [55–59].

Pigeyre et al. [59] reviewed the genes associated with
monogenic obesity in humans. The mutation in leptin
(leptin is an adipocyte-specific secreted protein associ-
ated with energy expenditure and appetite), leptin recep-
tor, melanocortin 4 receptor (a G-protein-coupled receptor
implicated in energy homeostasis), and prohormone con-
vertase 1 (involved in managing prohormones), defects in
proopiomelanocortin precursor (precursor of adrenocorti-
cotrophin, melanocyte-stimulating hormones, and opioid-
receptor ligand beta-endorphin), tyrosine receptor kinase

B (neurotrophic receptor expressed in neuronal and non-
neuronal tissues and associated with several physiological
regulations and processes such as synaptic plasticity and
hyperphagia), brain-derived neurotrophic factor (involved
in neuronal plasticity and cognitive function and acting
as modulator of neurotransmitter), kinase suppressor of
Ras 2 (molecular scaffold expressing majorly in brain), and
tubby bipartite transcription factor were associated with
obesity [60–65] (Figure 1). The mutations or alterations in
the genes associated with obesity were linked to several
clinical consequences such as the defective immune system,
low blood pressure, cognitive deficiency, hypopigmentation,
insulin resistance, and metabolic dysfunction [65].

Heymsfield and Wadden [65] have reviewed the patho-
physiological consequences of obesity in detail. The lethal
obese condition accelerates the incidence of type 2 diabetes
(T2D) via increased adipokine, proinflammatory cytokines
synthesis, and impaired insulin signaling and increased
insulin resistance. The increased lipid production in obese
condition releases free fatty acids, which cause lipotoxicity
and chronic diseases like T2D [66] and other disease condi-
tions such as cirrhosis, fatty liver, steatohepatitis, stroke, and
heart failure [67]. Also, the accelerated sympathetic nervous
system and renin-angiotensin-aldosterone system cause sys-
temic hypertension, which ends up with several chronic and
heart diseases [68]. Due to the overweight, internal organs
of obese people become damaged by mechanical stress that
causes overload on joints, and increased intra-abdominal
tension leads to the development of osteoarthritis and gas-
troesophageal reflux disease [69, 70]. Obesity also leads to
obstructive sleep apnea, which is due to the obstructions of
the upper airway during sleep [71] (Figure 2).

3. Microbiome

GM represents densely populated microorganism such as
bacteria, fungi, Archaea, protozoa, and viruses, which col-
onizes the human gastrointestinal tract. Approximately 100
trillion microbes colonize the human gut, which exhibits a
symbiotic relationship with the host [72]. Each individual has
unique GM composition influenced by several endogenous
and exogenous factors such as gestational age, mode of
delivery, breastfeeding, antibiotic exposure, diet, and lifestyle
[73]. The colonization of GM is not uniform throughout
the gastrointestinal tract with limited distribution in stom-
ach and small intestine followed by a dense and diverse
population in the colon due to the absence of digestive
secretion, slow peristalsis, and rich nutrient supply [74].
These microbes play a significant role in maintaining host
body homeostasis by participating in the digestive process
and energy production, hampering pathogen colonization,
and modulating the immune system.

Gut microbiome influences the individual’s metabolic
ability such as caloric extraction from indigestible dietary
substance and its storage in adipose tissue, which predisposes
an individual to obesity. Studies in germ-free and conven-
tional mice showed alteration in kidney, liver, and intestinal
homeostasis in germ-free mice depicting the fact that gut
microbiome influences the whole body metabolism [75–77].
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Figure 1: The factors influencing the incidence and development of obesity.
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Figure 2: The major consequences of obesity.

GM has received much attention related to human health
and disease status in the recent decade. Conventionally,
the interrelation between genetic and environmental factors
such as high-calorie diet and lack of physical activity was
considered as main contributor to obesity. However, recent
scientific investigations have shown that GM has emerged as
a prime endogenous factor influencing obesity [78, 79].

3.1. Development andComposition of GutMicrobiota. Emerg-
ing studies showed that prenatal gut microbiome represents
the maternal microbes transmitted to the fetus through pla-
cental circulation and its composition acts as a determining
factor for offspring microbial composition. Maternal obesity
during pregnancy together with GM dysbiosis reflects in
offspringmicrobiota leading to offspringmetabolic disorders.
GMof the newborn is also influenced by the factors likemode
of birth, antibiotic treatment, feeding type, and sanitation
[80]. In the first year of child life, the microbial composition
varies according to developmental changes, host genotype,
and food intake, which stabilizes similar to adult microbiota
by the age of 3 years.The adult human gut is colonized by 1014
bacteria with billions of genes exceeding the human genome
content. These microbial factories contribute to biochemical

and metabolic function in the human body, which cannot
be performed in its absence. In healthy adult individuals,
the microbiota of the gut is in a symbiotic relationship with
the host, which depends on host lifestyle, diet, and antibi-
otics, while in elderly people the composition of microbiota
changes depending upon the alteration in digestive physiol-
ogy and diet [81]. GM belongs to the phyla Bacteroidetes,
Firmicutes, Actinobacteria, Proteobacteria, and Verrucomi-
crobia among which, Bacteroidetes and Firmicutes account
for 90% of the total bacterial species [82]. Type and density
of the bacterial population in gastrointestinal (GI) tract
depend on environmental variation such as pH, oxygen
level, and nutrient availability. Recent findings in animal and
human models revealed that the GM plays a key role in
nutrient acquirement, energy harvest, and host metabolic
pathways, which are interrelated and are responsible for
the development of obesity [83, 84]. Healthy human GM is
characterized by a high ratio of Bacteroidetes to Firmicutes,
while in obese individuals inverse ratio is observed with a
high prevalence of Firmicutes [85]. In addition, the elevated
level of Lactobacillus species with a relatively low level of
Bacteroides vulgatus was observed in obese individuals [86].
Metagenomic analysis and clinical studies on GM of lean
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and obese individuals exhibited diminished proportion of
Bacteroidetes and increased level of Actinobacteria with no
significant difference in Firmicutes revealing the fact that
ratio of Firmicutes to Bacteroidetes acts as a biomarker of
obesity susceptibility [87, 88]. These data strongly link that
certain bacterial phyla/class/species colonized in the gut acts
as a driving force leading to the onset of obesity.

3.2. Host-Gut Microbiota Metabolite Interaction. Mounting
evidence revealed thatmetabolites derived by fermentation of
food byGMplay a vital role in regulating the hostmetabolism
with perspective to obesity. Clostridium and Eubacterium
belonging to GM convert bile acid in the intestine to its sec-
ondary forms such as deoxycholic acid and lithocholic acid
which binds to TGR5 receptor (G-protein-coupled receptor)
and stimulates the secretion of incretin hormone GLP-1 and
insulin, thereby promoting the energy expenditure [89]. Long
chain fatty acid such as linoleic acid derived by the GM
modulates the lipid profile leading to adiposity [90]. Another
important by-product of gut microbial fermentation is short
chain fatty acids (SCFs) formed by the gut microbial diges-
tion of indigestible poly- and oligosaccharides that escape
from the digestion and absorption in the proximal jejunum
[91]. SCFs primarily acetate and propionate produced by
Bacteroidetes and butyrate contributed by Firmicutes reg-
ulate the host metabolism by influencing energy harvest,
fat accumulation, and appetite [92]. SCF in the GI tract
reduces the luminal pH enhancing the nutrient absorption
and also acts as a carbon source for GM [93]. Butyrate, the
prime energy source for colonocytes, promotes proliferation
and maturation of colonocytes maintaining colon healthy.
In addition, butyrate protects the colon by enhancing the
expression of mucin 2 and modulating immune response
[94]. Acetate and propionate cross the epithelium to the
liver, where the propionate gets metabolized, while acetate
alone remains in the peripheral circulation [95]. SCF plays a
significant role in maintaining the epithelial barrier integrity
by regulating the tight junction protein (claudin-1, occludin,
and Zonula Occludens-1), while downregulation of these
proteins leads to translocation of bacteria and LPS triggering
an inflammatory response [96]. So apart from the energy
source, SCF modulates host biological response such as
inflammation, oxidative stress, and immune response to fight
against intestinal diseases such as Crohn’s disease, ulcerative
colitis, and colorectal cancer [97, 98].

SCFs influence the host metabolism either by direct acti-
vation of G-coupled receptors such as free fatty acid receptors
2 and 3 (FFAR2/GPR41 and FFAR3/GPR41) expressed pri-
marily in the gut epithelial cells or by inhibiting nuclear class I
histone deacetylases (HDACs) within the epithelial cells [97].
Acetate binds to FFAR2 while butyrate and propionate bind
to FFAR3 receptor regulating the level of satiety hormones
ghrelin (orexigenic peptide), peptide-1 (GLP-1), and peptide
YY (PYY) (anorexigenic peptide) [99]. Ghrelin is secreted
before a meal, while GLP-1 and PYY are released into
circulation after meals, which stimulates insulin secretion
by pancreatic 𝛽 cells, reduces food intake, and normalizes
weight loss and energy intake. Increased production of SCFs
increases the gut peptide PYY and GLP-1 together with a

decrease in ghrelin leading to increased satiety and reduced
food intake [100]. Butyrate and propionate also reduce the
appetite by

(i) inducing the expression of leptin in adipocytes and
regulating body weight and energy homeostasis by
reducing food intake and increasing energy expendi-
ture [101]

(ii) inducing the expression of intestinal gluconeogenesis
gene promoting gluconeogenesis [102]

(iii) inhibiting histone acetyltransferase and deacetylases
exhibiting anti-inflammatory phenotype, epigeneti-
cally inducing the immune cell proliferation and dif-
ferentiation, and upregulating adiponectin mediated
AMPK pathway promoting mitochondrial biogenesis
and fatty acid oxidation [103]

SCF derived from GM regulates host metabolism by inter-
action with complex metabolic pathways intertwined with
the nervous, endocrine, and immune system. In healthy
individuals SCF modulates the gut integrity, gut hormone
production, and immune function, while in diseased state
SCF exhibits a protective effect against diabetes, ulcerative
colitis, colorectal cancer, and neurodegenerative disorders
[94, 104]. Understanding the mechanism of interaction of
SCFs with its receptor will help in exploring the therapeutic
way for the treatment of obesity and health-related disorders.

3.3. Gut Microbiota and Obesity. The interrelation between
GM and host obesity was first reported by Wostmann et al.
[105] based on their studies in germ-free (GF) rodents, i.e.,
animals devoid of bacteria and conventional ones. However,
the mechanism behind the report was elucidated by Jeffery
Gordon and his colleagues [2] who observed an increase
in total body and gonadal fat in conventional mice when
compared to GFmice consuming more food. Colonization of
GF mice with cecum-derived microbiota showed an increase
in body fat mass together with insulin resistance, adipocyte
hypertrophy, and enhanced level of circulating leptin and
glucose level. The possible mechanism involved might be (1)
degradation of indigestible polysaccharide by GM increasing
hepatic lipogenesis in the host and (2) suppressing intestinal
expression of angiopoietin-like 4 (ANGPTL4), the inhibitor
of lipoprotein lipase (LPL) thereby blocking the fatty acid
metabolism leading to increased cellular uptake of fatty acids
and adipocyte triglycerides accumulation [2, 106, 107]. GF
mice fed with high fat and sugar diet exhibited lean pheno-
type while conventional mice fed with the same diet were
observed to be obese. GF mice showed enhanced sensitivity
to insulin improving glucose tolerance and exhibited altered
cholesterol metabolism reducing the storage and enhancing
fecal excretion of cholesterol.

GM leads to host obesity through various routes such as
by altering the intestinal permeability leading to endotox-
emia, enhanced calorie provision, and endocannabinoid sys-
tem (eCB) stimulation and by regulating the lipidmetabolism
by enhancing lipoprotein lipase activity and lipogenesis.

Experimental studies in animals and human volunteers
revealed that increased production of SCFs by GM provides



BioMed Research International 5

additional calories to host leading weight gain [108]. Binding
of these SCFs to GPR induces the secretion of peptide
hormone PYY, which reduces the intestinal transit time
increasing the nutrient absorption in the intestinal lumen
leading to weight gain [109]. Feces of obese individuals
showed an increased level of SCF when compared to lean
individuals. However, Ibrügger et al. [110] illustrated that
consumption of food rich in dietary fibers increases the
SCF production, thereby significantly reducing the weight in
contradiction to the previous hypothesis, which makes the
role of SCF in obesity a puzzle.

Microbiota influences the LPL activity by altering the
expression of fasting-induced adipose factor (FIAF), the
inhibitor of LPL activity causing accumulation of triglyc-
erides (TG) in adipocytes [2]. Increased level of TG in adipose
tissue causes hypertrophy leading to chronic inflammation,
preventing further deposition of TG in adipose tissue and
thereby promoting ectopic accumulation of TG in other
organs developing insulin resistance [111].

Lipopolysaccharides (LPS), the cell membrane compo-
nent of Gram-negative bacteria, act as triggering factors
leading to low-grade chronic inflammation followed by the
development of insulin resistance (IR). LPS formed in the
gastrointestinal tract reach the circulation via direct diffusion
by enhancing the intestinal permeability or through absorp-
tion and incorporation with chylomicron [112]. Enhanced
level of LPS in circulation is called endotoxemia where diet
plays a key role. High fat intake inhibits the expression of
tight junction proteins zonulin and occludin, thereby increas-
ing intestinal permeability of LPS, the causative factor for
endotoxemia. LPS interact with toll-like receptors TLR-4 in
immune cells and target organs like liver and adipose tissue.
LPS interaction with TLR-4 induces conformational change
promoting the recruitment of adapter molecules like MyD88
protein, IRAK, TRAF6, and NIK to intracellular domain,
thereby stimulating the phosphorylation and degradation
of IKKB, the NF-𝜅B inhibitors. Translocation of active NF-
𝜅B to the nucleus activates the expression of inflammatory
proteins and also triggers signaling pathways like JNK, p38
MAPK, and ERK which induces insulin resistance leading
to obesity (Figure 3). Administration of Bifidobacterium
infantis in mice reduced colonic permeability attenuating
inflammation revealing that gut microbial composition also
plays a role together with diet in altering the intestinal
permeability. Excess dietary lipid intake not only increases
systemic exposure to potentially proinflammatory free fatty
acids and their derivatives but more specifically facilitates the
absorption of endotoxins, leading to higher plasma LPS level
termed as “metabolic endotoxemia” [113, 114].

eCB modulates the food intake by regulating the expres-
sion of anorexigenic and orexigenic mediators such as
endocannabinoids (endogenous lipids like N-arachidonyl
ethanolamine (AEA) and glycerol 2-arachidonoyl (2-AG) and
cannabinoid receptor (CB1 and CB2) coupled with G2 pro-
tein). AEAand 2-AGwere synthesized using phospholipaseD
enzyme (NAPE-PLD) and sn-1-diacylglycerol lipase selective
(DAG lipase) dependent on phospholipids and are metabo-
lized into inactive compounds by fatty acid amide hydrolase
(FAAH) and monoacylglycerol lipase (MGL). Interaction of

endogenous lipid with cannabinoid receptor (CB1 and CB2)
activates adenylate cyclase and also stimulates secondary
messenger involved in MAPK, ERK, and NF-𝜅B pathway,
promoting inflammation and insulin resistance, ultimately
leading to obesity [115]. Experimental studies showed an
increased concentration of AEA, NAPE-PLD, and CB1 and
low expression of FAAH in the adipose tissue, while the
reverse was observed in prebiotic treated animals revealing
the fact that eCB activation leads to obesity and intervention
of eCB upregulation is beneficial [114, 116]. Overall the studies
reveal that GM activates the eCB system, which increases
intestinal permeability promoting LPSmigration into the cir-
culatory system causing endotoxemia. Increased LPS, in turn,
alters the tight junction integrity of the intestinal membrane
enhancing increased release of LPS into circulation creating
virtuous circle promoting adipogenesis.

Although research on human GM has succeeded loga-
rithmically, still this field remains a puzzle and is emerging
which needs to be explored.The gutmicrobiome is a complex
microbial world having both beneficial and harmfulmicrobes
and manipulation of these microbes for the therapeutic
purpose is possible only if the precise role of each and every
individualmicrobe is known.GM, itsmetabolite, and host are
interplaying systems; therefore integration of this system will
give us a comprehensive idea of the function of each building
block of this system [117, 118].

4. Influence of Probiotic Supplementation on
Health Status of Obese People

Intervention of calorie restricted diet (1500 kcal per day)
supplemented with cheese (50 g per day) containing probi-
otic (Lactobacillus plantarum TENSIA; 8.7 log CFU per g)
for three weeks significantly reduced the body mass index
(BMI) in patients with obese and hypertension compared
to the control group (patients fed calorie restricted diet
supplemented with control cheese). The reduced morning
systolic blood pressure was also observed in the patients
of both groups treated with calorie restricted diet along
with the aid of antihypertension drugs irrespective of the
cheese (probiotic cheese or control cheese) consumption. The
urinary putrescine content and BMI changes were associated
with the lactobacilli load in the intervention group.The study
suggested that supplementation of probiotic cheese with a
calorie restriction diet reduces the BMI and hypertension in
study subjects [24].

Overweight or obese adults were supplemented with
L. gasseri BNR17 (1010 CFU per capsule; 6 capsules per
day) (a probiotic strain isolated from human breast milk)
for 12 weeks and the changes in body mass, body fat,
behavior, and biochemical parameters were assessed at four
different intervals (0, 4, 8, and 12th week of intervention).
The results suggested that the supplementation of BNR17
reduced body weight, hip, and waist circumferences com-
pared to the placebo group. Other tested parameters such as
gastrointestinal, genital, endocrine, respiratory, and diabetic
associated parameters were not found to be changed during
the study among the study subjects. The supplementation
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of BNR17 has not influenced the behavior pattern of the
subjects, and no adverse effects were observed. The study
suggested that the intervention of single strain probiotic
reduced the body weight in obese people, and further in-
depth extended research is necessary to explain the health
benefits of the strain [25]. A recent study revealed that the
supplementation of BNR17 (1010 CFU per day) significantly
reduced the visceral adipose tissue and waist circumferences
in obese adults [26].

Visceral adiposity of the healthy volunteers (with the
large visceral fat area) has been significantly reduced after
12-week supplementation of fermented milk containing L.
gasseri SBT2055 (200 g per day; 106 or 107 or 108 CFU per
g of milk) compared to control group. Also, the notable
reduction was observed in body weight, BMI, and waist
and hip circumferences of people who had the probiotic
intervention [27, 28]. The intervention associated positive
changes were diminished after 4 weeks of cessation of
probiotic supplementation, which indicates that continuous
ingestion of L. gasseri SBT2055, even at the low dose (106

CFU per g), is necessary to reduce the obesity-associated
consequences [28].

The healthy overweight people were randomly divided
into different groups and were supplemented with VSL#3 (a
probiotic formulation containing three strains of Bifidobac-
terium and four strains of Lactobacillus; 112.5 × 109 CFU
per capsule; one capsule per day) or omega 3 fatty acids
(180mg EPA and 120mg DHA per day) or both VSL#3
and omega 3 fatty acids for 6 weeks. After 6 weeks of
supplementation, total cholesterol, low-density lipids (LDL),
very-low-density lipids (VLDL), TG, and high-sensitivity C-
reactive protein (hsCRP) were observed to be significantly
reduced in VSL#3 supplemented group. Additionally, VSL#3
supplementation improved the high-density lipids (HDL)
level and insulin sensitivity. The positive regulation of GM
was also observed in probiotic-supplemented groups. Omega
3 fatty acids supplementation also showed improved insulin
sensitivity, a slight reduction in LDL and hsCRP levels, and
no effect on the composition of the GM. The combination
of VSL#3 and omega 3 fatty acids showed more pronounced
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effects. The high hsCRP levels and low HDL level were
correlatedwith the high concentration of Bacteroides and low
Bifidobacterium and Lactobacillus content in study subjects
[29].

The obese pregnant women were supplemented with a
single probiotic strain of L. salivarius UCC118 (109 CFU
per capsule; one capsule per day) for four weeks from the
24th week of gestation. The results suggested that UCC118
supplementation reduced the BMI of obese pregnant women
compared to placebo control, but no changes were observed
in impaired glycemia incidences, metabolic profile, and preg-
nancy outcomes [30]. In another study, the obese pregnant
women were supplemented with Vivomixx� (a mixture of
Bifidobacterium longum DSM 24736, B. breve DSM 24732, B.
infantis DSM 24737, Streptococcus thermophilus DSM 24731,
L. delbrueckii subsp. bulgaricus DSM 24734, L. acidophilus
DSM 24735, L. paracasei DSM 24733, and L. plantarum
DSM 24730; 4.5 × 1010 CFU in total) from 14-20 weeks of
gestation until the delivery of the baby. After the detailed
analysis of blood, urine, fecal samples, and diet profile and
weight gain, it has been proved that the supplementation of
Vivomixx� significantly reduced the weight gain during the
pregnancy period and reduced the pregnancy complications
via positive alteration of GM of obese pregnant women
[31].

The supplementation of L. paracasei F19 (9.4 × 1010 CFU
per day) for six weeks had no effect on the GM and metabolic
profile of obese postmenopausal women. However, the inter-
vention of flaxseed mucilage (10 g per day) for six weeks
reduced the serum C-peptide, increased the insulin sensi-
tivity, and altered the abundance of about 33 metagenomic
species in obese postmenopausal women. The improved
insulin sensitivity is not associated with altered microbiome
[32]. Likewise, the supplementation of low (2.5 × 109 CFU
per day) and high dose (1× 1010 CFU per day) of multistrain
probiotic preparation Ecologic� (B. bifidum W23, L. salivar-
ius W24, L. acidophilus W37, B. lactis W51, B. lactis W52, L.
caseiW56, L. brevisW63, Lactococcus lactisW19, and L. lactis
W58) for 12 weeks showed a health improvement in obese
postmenopausal women. Intake of a high dose of probiotic
reduced the lipopolysaccharide, fat mass, glucose, HOMA-IR
index, LDL, subcutaneous fat, total cholesterol, TG, insulin,
uric acid, andwaist circumference in the studied subjects.The
results claimed that supplementation of multistrain probiotic
preparations improved the cardiometabolic parameters and
intestinal permeability in obese postmenopausal women
[33].

The overweight adults were supplemented with B. breve
B-3 (5 × 1010 CFU per day) for 12 weeks and the metabolic
parameters and adiposity level were measured. The results
indicated that B-3 supplementation reduced the fat mass in
subjects and also improved the blood parameters associated
with liver function and inflammatory system in the studied
overweight adults [34].

The influence of VSL#3 on a high-fat diet (HFD) induced
obesity has been assessed. The healthy nonobese adults were
supplemented with HFD (diet containing 55, 30, and 15% of

fat, carbohydrate, and protein, respectively, and it provides
extra ∼1000 kcal per day) and VSL#3 (4.5× 1010 CFU per day)
for four weeks and the changes in body mass and fat content
weremeasured.The results revealed that the supplementation
of VSL#3 significantly prevents the development of excess
body and fat mass in the subjects compared to the placebo
control group [35].

The supplementation of B. animalis ssp. lactis 420 (B420)
(1010 CFU per day) with or without fiber (Litesse�Ultra poly-
dextrose; 12 g per day) for six months significantly reduced
the fat mass in overweight and obese adults. The fat mass in
the abdominal region and waist circumference was reduced
predominantly after B420 supplementation. The intervention
of fiber alone showed no positive changes in the subjects. The
reduction of blood hsCRP and zonulin level was related to
the changes in trunk fat mass. The study results revealed that
supplementation of B420 alone was enough to reduce the fat
mass in studied subjects [36].

The influence of supplementation of probiotic yogurt
(PY) and regular low-fat yogurt (LFY) on weight loss pro-
gram has been studied in obese and overweight women.
The consumption of PY (containing B. lactis BB12 and L.
acidophilus LA5; 107 CFU per day) for 12 weeks significantly
reduced the total cholesterol, LDL, and insulin resistance
whereas no notable changes were observed in body mass,
HDL, fasting plasma glucose, and TG level. The results
suggested that the consumption of PY along with regular diet
had not greatly influenced weight reduction, but it improves
the lipid profile and insulin sensitivity in the obese and
overweight women [37].

The supplementation of probiotic mix (L. rhamnosus
DSMZ 21690 (2 × 109 CFU), L. acidophilus ATCCB3208
(3 × 109 CFU), B. bifidum ATCC SD6576 (2 × 109 CFU),
and B. lactis DSMZ 32269 (6 × 109 CFU) per day) for 12
weeks improved the liver profile in obese children and adults
with nonalcoholic fatty liver disease. After the probiotic
supplementation, the level of alanine aminotransferase and
aspartate aminotransferase was decreased significantly in
the probiotic group. The cholesterol, LDL, TG, and waist
circumference were also reduced with notable level while
body weight, BMI, and fat mass were not changed. And
based on the sonography results, the study suggested that the
supplementation of probiotic improved the liver conditions
in the subjects [38].

The supplementation of the probiotic mix (Danisco�; B.
lactis, B. bifidum, L. casei, L. acidophilus, and Lactococcus
lactis; 2× 1010 CFUper day) and/or controlled diet for 8weeks
significantly reduced the polyunsaturated fatty acids level,
conicity index, waist-height ratio, and waist circumference
and increased the glutathione peroxidase activity in obese
or overweight women. The results suggested that the sup-
plementation of probiotic mix and controlled diet improved
the antioxidant system of the subjects and effectively reduced
the obesity-associated consequences compared to that of the
intervention of controlled diet (without a probiotic mix) in
the placebo group [39].

The overweight people were supplemented with probiotic
preparation containing L. plantarum KY1032 and L. curvatus
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HY7601 at the concentration of each 2.5 × 109 CFU per day
for twelve weeks.The level of dodecenoylcarnitine, decanoyl-
carnitine, tetradecenoylcarnitine, and octanoylcarnitine was
found to be increased, while the body weight and fat mass
were reduced in the probiotic-supplemented group.The study
claimed that the positive effect of probiotic intervention was
attributed to the increase in medium-chain acylcarnitines in
the studied overweight individuals [40].

The supplementation of a mixture of probiotic strains (B.
bifidum, B. longum, B. infantis, L. acidophilus, L. casei, and L.
lactis; 3 ×1010 CFU per day) for four weeks had no significant
improvement in the waist circumference, body mass, blood
glucose level, and fecal short-chain fatty acid in the studied
overweight people. But the reduction in energy intake was
clearly noted in the probiotic-supplemented group compared
to baseline value.The study suggested that probiotic prepara-
tion can be used in diet management for weight loss program
as an adjuvant [41].

A twelve-week supplementation of synbiotic preparation
(L. rhamnosus CGMCC1.3724 (3.24 ×108 CFU, 90 g inulin,
and 210 g oligofructose per day)) effectively induced weight
loss in obese women. The disinhibition and hunger scores,
Beck Depression Inventory score, and food craving were
reduced, while the satiety efficiency and Body Esteem Scale
were increased in the studied obese women. The male
subjects also displayed positive effects like fasting fullness and
cognitive restraint. The study suggested that the supplemen-
tation of synbiotics controls appetite and associated behavior
in obese people during weight management [42].

The probiotic oral suspension (psychobiotics) was sup-
plemented to normal weight lean (BMI <25 kg/m2 and total
body fat % < 30), normal weight obese (BMI <25 kg/m2
and total body fat % ≥ 30), and preobese-obese (BMI ≥
25 kg/m2 and total body fat % ≥ 30) women for three weeks.
The probiotic formula consists of 1.5 ×1010 CFU per strain
of B. bifidum SGB02, B. animalis subsp. lactis SGB06, S.
thermophilus SGSt01, S. thermophiles, L. plantarum SGL07, L.
delbrueckii spp. bulgaricus DSM 20081, L. reuteri SGL01, L.
acidophilus SGL11, andLactococcus lactis subsp. lactis SGLc01.
The supplementation significantly reduced the BMI, total
fat mass, psychopathological scores, bacterial overgrowth
syndrome, and body uneasiness test and global severity index
scale while it improved the free fat mass, meteorism, and
defecation frequency in preobese and normal weight obese
subjects compared to baseline [43].

The morbid obese patients who underwent Anastomosis
Gastric Bypass-Mini Gastric Bypass (OAGB-MGB) surgery
were supplemented with probiotic preparation, starting from
4 weeks before the surgery to 12 weeks after surgery. The
probiotic formula Familact� contains L. casei (3.5 × 109
CFU), L. rhamnosus (7.5 × 108 CFU), L. bulgaricus (108

CFU), L. acidophilus (109 CFU), B. breve (1010 CFU), B.
longum (3.5 × 109 CFU), and S. thermophilus (108 CFU) and
fructooligosaccharide (38.5mg) in one serving sachet. After
16weeks of supplementation of one sachet per day, the weight
loss efficiency, anthropometric quantities, vitamin D status,

and inflammatory system significantly improved in OAGB-
MGB patients without affecting the folate, vitamin B12, and
homocysteine levels. Further studies are required to confirm
the efficiency of the probiotic supplementation in detail [44].

Healthy preobese people (BMI ≥ 25 kg/m2 but BMI <
30 kg/m2) were supplemented with B. breve B-3 (2 × 1010
CFU per day) for 12 weeks, and the changes in the baby fat
mass, body weight, and blood parameters were measured. B.
breve B-3 supplementation effectively reduced the body fat
mass and TG and improved the HDL level in preobese people
compared to baseline. The study suggested that the regular
supplementation of B. breve B-3 helps to reduce the body fat
mass [45].

The supplementation of fortified yogurt (prepared with
S. thermophiles and L. bulgaricus as starter culture and
enriched with 107 CFU of B. lactis Bb-12 per gram, inulin,
whey protein, vitamin D3, and calcium) to obese individ-
uals significantly improved the body composition (reduced
the waist circumference, body fat percentage, body fat,
TG level, and Homoeostasis Model of Assessment-Insulin
Resistance (HOMA-IR) value and increased the HDL, 25-
hydroxyvitamin D level, and Quantitative Insulin Sensitivity
Check Index (QUICKI)) and metabolic profile. The level of
free fat mass was not reduced significantly in the fortified
yogurt supplemented group compared to the low-fat plain
yogurt (prepared with S. thermophiles and L. bulgaricus
as starter culture) group. The positive effects of fortified
yogurtwere associatedwith calorie restricted diet plan during
the intervention period. The study suggested that regular
consumption of probiotic-enriched fortified yogurt along
with a strict diet plan helps to reduce the body weight and
to improve the metabolic status in obese people [46].

The influence of supplementation of live and heat-killed
B. animalis subsp. lactis CECT 8145 on the health status of
obese people has been reported by Valls group. The study
revealed that the consumption of 1010 CFU of live cells of
the studied probiotic per day significantly reduced the BMI,
visceral fat, conicity index, waist circumference, and waist
circumference/height ratio and increased the population
of Akkermansia spp. in the GM of the obese adults. The
consumption of heat-killed cells reduced the blood pressure
and HOMA index. The predominant probiotics effects were
observed in women subjects, and changes were significant
compared to baseline value and placebo control. Further
studies are needed to reveal the correlation between change
in Akkermansia spp. abundance in GM and altered body
composition during theCECT8145 supplementation in obese
subjects [47].

The supplementation of B. pseudocatenulatum CECT
7765 (109-10 CFU per day for 13 weeks) significantly reduced
the BMI, hsCRP, and monocyte chemoattractant protein-
1 and increased the omentin-1 and HDL level in insulin-
resistant obese children. The microbiome analysis revealed
that the supplementation of CECT 7765 increased the Alis-
tipes spp. in GM of the studied subjects. The study claimed
that the positive effects of CECT 7765 were attributed to the
increase inRikenellaceae family members, known to associate
with the lean phenotype [48] (Table 1).
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5. In Vivo Studies Using
Laboratory Animal Models

The influence of supplementation of probiotic strain L.
rhamnosus PB01 (DSM 14870) on sperm kinetics in diet-
induced obese mice has been reported by Dardmeh group.
The study suggested that the supplementation of DSM 14870
(1 × 109 CFU per day for 4 weeks) effectively improved
the levels of serum testosterone, follicle-stimulating hor-
mone, and luteinizing hormone. The concentration of highly
active motile sperm was increased and a significant level of
reduction in nonmotile sperm count was observed in both
obese and lean (normal weight) mice models. The sperm
kinetic measurements revealed that DSM 14870 intervention
remarkably increased the sperm kinetics in obese mice
model compared to baseline values. The study suggested
that the supplementation of DSM 14870 improved the sperm
motility, reproductive hormones levels, and weight loss in
diet-induced obese mice model [49].

The combination of probiotic supplementation (L. rham-
nosus; 1 × 108 CFU per day) and ultrasound treatment
(at acoustic pressure of 2 W/cm2 for 30 sec) for 8 weeks
significantly reduced the body mass, total body fat mass,
and thickness of the subcutaneous fat layer and improved
the plasma lipid profile in diet-induced obese mice model
compared to baseline and single treatment groups (either
probiotic supplementation or ultrasound treatment) [50].

The supplementation of L. reuteri 263 (2.1 × 109 or 1.05
×1010CFUper day for 8weeks) altered the energymetabolism
inwhite adipose tissue of high-energy-diet-fed ratmodel.The
expression of genes associated with thermogenesis, glucose,
and lipid metabolism has been altered significantly after the
intervention of L. reuteri 263. The level of proinflammatory
markers and antioxidant systemof the host has beenmodified
and confers the protection against the high-energy-diet-
induced consequences. The study revealed that the antiobe-
sity activity of L. reuteri 263 was attributed to the ability of
remodeling of energy metabolism in white adipose tissue of
high-energy-diet-fed rat model [51].

The supplementation of Lactobacillus strain (L. plan-
tarum and/or L. fermentum; 1 × 108 CFU per day for 8
weeks) improved the systemic immune status of the HFD
fed rat model. Fat vehicle sizes, liver steatosis, endotoxin,
and IL-6 level were significantly reduced in the probiotic-
supplemented group compared to control. The microbiota
analysis revealed that the supplementation of probiotics
notably improved Lactobacillus and Bifidobacterium content
in an experimental model.The study claimed that the combi-
nation of multiple strains of probiotics confers better health
benefits in obese experimental models via modulating the
intestinal microbiota and immune system when compared to
single strain intervention [52]. The supplementation of soy-
based probiotic product (containing B. longum ATCC 15707
and Enterococcus faecium CRL 183) altered the intestinal
microbiota and immune profile in a positive way in HFD-
induced obese (HFDO) mice model [53]. Similarly, the
supplementation of a multistrain probiotic preparation (L.
rhamnosus LR5, L. acidophilus LA1, S. thermophilus ST3, B.

longumBG7,B. lactisBL3, andB. bifidumBF3) for 8weeks sig-
nificantly reduced the body weight and improved the serum
level metabolic profile in the HFDO rat. The microbiota
analysis showed that probiotic intervention increased the
amount of Lactobacillus, Bacteroidetes, and Bifidobacterium
while it reduced the Firmicutes load in experimental animals
[54] (Table 2).

6. Conclusion and Future Perspectives

The detailed literature survey showed that the benefi-
cial impact of probiotic supplementation in obese peo-
ple has been associated with several factors such as
nature of the probiotic strain, composition of the probi-
otic formula (single or multistrain; with or without prebi-
otics), duration of the intervention, dose, and other aided
activities like calorie/dietary restrictions and weight loss
medications.

A meta-analysis study reported that the probiotic supple-
mentation was not associated with weight loss in obese peo-
ple, which may be due to the less number of articles (studies
with clinical trials) chosen for the analysis based on the selec-
tion criteria (randomized controlled trials; supplementation
of probiotic; control (placebo or no probiotic supplementa-
tion); results of body weight and BMI) of the study [119].
Nevertheless, the subsequent report based on ameta-analysis
of 25 clinical trials with 1931 obese subjects revealed that
the probiotic supplementation effectively reduced the body
weight. The study also disclosed that a minimum of 8 weeks
ofmultistrain probiotic intervention reduced the bodyweight
in obese subjects compared to single strain intervention and
fewer intervention periods [120]. A recent systemic review
andmeta-analysis of fifteen clinical trial studies with 957 sub-
jects revealed that the intervention of probiotic supplementa-
tion for 3 to 12 weeks significantly reduced the body weight
and fat mass in obese subjects compared to placebo group
[121].

The antiobese activity of probiotic supplementation
may be associated with the ability to remodel the energy
metabolism, alter the expression of genes related to ther-
mogenesis, glucose, and lipid metabolism genes, enhance
the intestinal permeability, reduce the release of endotox-
ins, reduce the inflammation, and change the parasympa-
thetic nerve activity. Most importantly probiotic interven-
tion greatly modified the composition of intestinal micro-
biota (increased the load of Bifidobacterium, Lactobacillus,
Proteobacteria, Bacteroidetes, and Peptococcaceae members
and reduced the amount of Firmicutes, Clostridium, and
Actinobacteria), which accelerates the weight loss in obese
people [122] (Figure 4).

Interrelationship between the dietary supplement and
GM envisages the fact that “we are what we eat and what
our gut microbiome is.” In the near future, several gut-
microbiome based clinic will become prevalent where the
individual’s GM will be used for diagnosis, prophylaxis, and
therapy of human health problems. In addition, analysis
of the infant’s gut microbial composition will help us to
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Probiotic supplementation

Remodeling of energy 
metabolism 

Increased the O2 consumption 
in adipose tissue

Alters the parasympathetic, and 
autonomic nerve activity

Transcriptional regulation of 
thermogenesis, glucose and 

lipid metabolism

Improved the intestinal 
permeability

Reduced the endotoxin release 

Reduced the inflammation

Alters the intestinal microbiota

Reduced the obesity and related consequences

Figure 4: The possible mechanism behind the antiobesity property of probiotics.

predispose the future ailments based on which the individual
diet can be designed for better and disease-free health and
well-being. To conclude, as GM plays a key role in host
metabolism, modulation of its composition represents a
promising strategy for the treatment of obesity. The results of
recent studies revealed that the supplementation of probiotic
formulations improved the health status of obese people,
and the regular consumption of probiotic is advisable to
retain the health benefits. Further studies are necessary to
evaluate the best combination of probiotic strains or synbiotic
preparation to extend the health benefits of probiotics in
obese individuals.
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consumption of the probiotic Bifidobacterium animalis subsp.
lactis CECT 8145 on anthropometric adiposity biomarkers in
abdominally obese subjects: a randomized controlled trial,”
International Journal of Obesity, 2018.
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Grüters, “Severe early-onset obesity, adrenal insufficiency and
red hair pigmentation caused by POMCmutations in humans,”
Nature Genetics, vol. 19, no. 2, pp. 155–157, 1998.

[63] K. Clément, C. Vaisse, N. Lahlou et al., “A mutation in
the human leptin receptor gene causes obesity and pituitary
dysfunction,” Nature, vol. 392, no. 6674, pp. 398–401, 1998.

[64] V. K.Gupta, Y. You,V. B.Gupta, A. Klistorner, and S. L. Graham,
“TrkB receptor signalling: implications in neurodegenerative,
psychiatric and proliferative disorders,” International Journal of
Molecular Sciences, vol. 14, no. 5, pp. 10122–10142, 2013.

[65] S. B. Heymsfield and T. A. Wadden, “Mechanisms, pathophysi-
ology, and management of obesity,”�e New England Journal of
Medicine, vol. 376, no. 3, pp. 254–266, 2017.

[66] T. Tchkonia, T. Thomou, Y. Zhu et al., “Mechanisms and
metabolic implications of regional differences among fat
depots,” Cell Metabolism, vol. 17, no. 5, pp. 644–656, 2013.



BioMed Research International 19

[67] A. J. McCullough, “The clinical features, diagnosis and natural
history of nonalcoholic fatty liver disease,” Clinics in Liver
Disease, vol. 8, no. 3, pp. 521–533, 2004.

[68] J. E. Hall, A. A. da Silva, J. M. do Carmo et al., “Obesity-induced
hypertension: role of sympathetic nervous system, leptin, and
melanocortins,”�e Journal of Biological Chemistry, vol. 285, no.
23, pp. 17271–17276, 2010.

[69] H. Hampel, N. S. Abraham, and H. B. El-Serag, “Meta-analysis:
obesity and the risk for gastroesophageal reflux disease and its
complications,” Annals of Internal Medicine, vol. 143, no. 3, pp.
199–211, 2005.

[70] M. B. Goldring andM. Otero, “Inflammation in osteoarthritis,”
Current Opinion in Rheumatology, vol. 23, no. 5, pp. 471–478,
2011.

[71] H. Ashrafian, T. Toma, S. P. Rowland et al., “Bariatric surgery
or non-surgical weight loss for obstructive sleep apnoea? a
systematic review and comparison of meta-analyses,” Obesity
Surgery, vol. 25, no. 7, pp. 1239–1250, 2015.

[72] J.Qin, R. Li, J. Raes et al., “Ahumangutmicrobial gene catalogue
established by metagenomic sequencing,” Nature, vol. 464, no.
7285, pp. 59–65, 2010.

[73] M. C. Collado, M. Cernada, J. Neu, G. Pérez-Mart́ınez, M.
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