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Abstract 

Background:  Magnetic resonance data were collected from a diverse population of gravid women to objectively 
compare the quality of 1.5-tesla (1.5 T) versus 3-T magnetic resonance imaging of the developing human brain. 
MaZda and B11 computational-visual cognition tools were used to process 2D images. We proposed a wavelet-based 
parameter and two novel histogram-based parameters for Fisher texture analysis in three-dimensional space.

Results:  Wavenhl, focus index, and dispersion index revealed better quality for 3 T. Though both 1.5 and 3 T images 
were 16-bit DICOM encoded, nearly 16 and 12 usable bits were measured in 3 and 1.5 T images, respectively. The four-
bit padding observed in 1.5 T K-space encoding mimics noise by adding illusionistic details, which are not really part 
of the image. In contrast, zero-bit padding in 3 T provides space for storing more details and increases the likelihood 
of noise but as well as edges, which in turn are very crucial for differentiation of closely related anatomical structures.

Conclusions:  Both encoding modes are possible with both units, but higher 3 T resolution is the main difference. 
It contributes to higher perceived and available dynamic range. Apart from surprisingly larger Fisher coefficient, no 
significant difference was observed when testing was conducted with down-converted 8-bit BMP images.

Keywords:  Histogram, Wavelets, Computer-assisted radiology, Hugues Gentillon, Teleradiology, Prenatal 
development, Fetal brain, Mazda, b11, Medical cybernetics, Artificial intelligence, Computational visual cognition
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Background
Computer is a non-biological copy of the human brain. 
As its use increases day-by-day in medicine, various 
transdisciplinary approaches emerge. Among them is 
texture analysis, the evolving cybernetics of radiology. 
This experiment is a translational study seeking to objec-
tively compare the quality of 1.5-tesla (1.5 T) versus 3-T 
magnetic resonance imaging (MRI) of the developing 
human brain (Fig. 1), in order to determine whether the 
extra administrative cost is worthy for the patient and 
the healthcare system. First there was a need to develop 
an objective methodology to collect and process the data 
and subsequently justify its necessity and dispel distrust 
of financial burden.

MRI replacing USG during pregnancy examination
In terms of safety, ultrasonography (USG) remains the 
gold standard for prenatal central nervous system (CNS) 
imaging [1]. It is used for prevention and diagnosis of 
congenital malformation [2, 3]. Nevertheless, there are 
cases which benefit from alternative imaging techniques 
like 1.5 or 3  T MRI [4–9]. Besides spotting maternal 
abnormalities, supplemental information from magnetic 
resonance imaging is also crucial for identification of 
fetal anatomy and pathology [10, 11]. MRI is also being 
increasingly used as correlative imaging modality in 
pregnancy—because it uses no ionizing radiation, has 
no known teratogenic effects, provides excellent soft-tis-
sue contrast, and has multiple planes for reconstruction 
and large field of view, allowing better depiction of neu-
roanatomy in fetuses with large or complex anomalies 
[12–15]. Compared to magnetic resonance imaging, USG 
is more affordable and widely used in many countries, 
as a radiologic tool in routine examination of pregnant 
women, especially in the detection of fetal anomalies, at 
about 20th week of gestation [2, 3]. On the other hand, 
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1.5 and 3 T MRI scanners produce superior CNS images 
(Fig. 2) but are not cost-effectively built. These units are 
massive and expensive [16–20]. They are mostly availa-
ble in big-budget hospitals and wealthy medical research 
centers. Because of such disadvantages, carrying research 
with MRI is more likely to be impeded. As a result, lit-
tle information is known about its relevance to potential 
beneficiaries. MRI is bureaucratically recommended only 
if it is essential in some health care systems administrated 
by a central office (e.g. Sweden) [21]. Physicians are even 
liable for part of MRI examination cost in some territo-
ries (e.g. Poland) [22, 23]. Thus relevance to beneficiaries 
is likely to be affected in such health care systems.

What is texture analysis?
Texture analysis is an artificial process involving quanti-
fication of image quality by means of parametric features 
to characterize regions of interest (ROI) [24–26]. While 
texture analysis is still far from replacing the clinician 
eye, some of its features warrant further consideration 

for integration into medical practice. To this date, texture 
analysis is used in pre-diagnosis of the globally pandemic 
disease of tuberculosis [27–29]. In Bangladesh, for exam-
ple, radiologists and radio-technicians quickly screen 
patients displaying tuberculosis (TB) signs with CAD4TB 
texture analysis software [30–33]. This medical applica-
tion of texture analysis is sponsored by The World Health 
Organization, at a mere cost of $3 per CAD4TB test. 
Only patients pre-diagnosed TB-positive by CAD4TB 
software receive the more expensive molecular examina-
tion known as GeneXpert TB Diagnosis and Resistance 
Test [30–33]. In the aforementioned example, an increase 
in the rate of early- detection of TB has been reported in 
clinics where texture analysis is used as a pre-diagnostic 
tool [30–33]. Apart from image encoding statistics, other 
factors also affect how clinicians perceive medical image 
appearance: e.g. acutance or subjective quality factor, 
human eye’s contrast sensitivity function, modulation 
transfer function or spatial frequency response, image 
displayed height, viewing distance, positioning of the 
subjects (stand, seat), radiology LCD (liquid crystal dis-
play) screen characteristics (anti-glare, glossy, size, reso-
lution, calibration), etc [34–36].

Wavelets‑based texture analysis
Wavelets are texture analysis parameters which classify 
intrinsic properties of an image into matrix layers, and 
therefore they are very powerful tools for differentiating 
and matching patterns in regions of interest. Wavelets are 
used, for example, in forensic investigation to match fin-
gerprints [37], in diagnostic radiology to detect suspected 
diseases [38], and in many other applications where digi-
tal imaging is needed [37].

Histogram‑based texture analysis
To fully grasp the concept behind the methodology used 
in this experiment, it is important to first comprehend or 
at least have a minimum knowledge about the purpose, 

Fig. 1  “Do you see what I see?”. Fetal brain. a Left 1.5 T. b Right 3 T. This 
figure was incorporated and so-titled in this manuscript to illustrate 
that magnetic resonance (MR) images can be used for evaluation 
of achromatic vision and sensitivity to change in grayscale quality 
between different subjects. For fair comparison, this exercise should 
be blinded. It is recommended to have at least two radiologists, 
if not available, medically-trained practitioners or any volunteers 
(blinded) and one examiner (also blinded) to look at the images 
side-by-side, on two medical-diagnostic monitors, engineered for 
16-bit display (same brand/model in natively flat display mode: i.e. 
without any added enhancements). All in-computer/in-monitor RT 
(real-time) editing features must be turned off (incl. hardware/soft‑
ware rendering): n.b. 16-bit of true data has more room for “contrast 
booster”—which is essentially an illusion, as a result of post-editing 
artifacts, not really part of the image. In this investigation, volunteers 
were asked to identify the images unlabeled (, of course). It was 
observed that both images were equally sharp (in pass-through 
mode), for a normal, naked human eye. There flows the explanation 
for the research goal to mathematically determine which MR modal‑
ity actually produces images with more captured details. Both images 
were 16-bit encoded, and the difference could not be measured via 
“perceived dynamic range” (visible details). With computer vision 
software, 1.5/3 T images can be numerically decoded to accurately 
assess “available dynamic range” (visible/invisible details)

Fig. 2  Ultrasonography (USG) vs. magnetic resonance imaging (MRI). 
Fetal MRI was used as a complimentary modality to USG. a USG. b 
MRI
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functionality, and usefulness of histogram in digital imag-
ing. Just as the aforementioned brain images in Fig. 1, the 
quality and texture of every shape in Fig.  3 may not be 
interpreted in the same way by different pairs of human 
eyes.

Histogram parameters are digital imaging tools which 
analyze textural characteristics of a picture by measuring 
their quality [39, 40]. Such parameters can differentiate 
texture by quantifying, for example, resolution, sharp-
ness, noise, actual edge details and artifacts, negative 
and positive exposures, as well as aliasing and moiré—
i.e. superimposed patterns in MR images [41–44]; moiré 
effect is most commonly observed in uncontrolled 
TV interviews recorded with older cameras—and the 
interviewees were wearing pinstriped clothing [45, 46]. 
In some software, histogram is customized for 8-bit 
graphical visualization to fit the display of conven-
tional RGB monitors, with luminance value of 0–255 (8 

bits = 28 = 256). In other words, a 16-bit image would be 
down-sample in order to display its geometric represen-
tation on such computational histograms (Figs. 4, 5, 6). A 
Histogram display in MaZda, on the other hand, does not 
graphically display pixel values larger than 255. However, 
it is able to quantify 16-bit DICOM (Digital Imaging and 
Communications in Medicine), evaluate quality of differ-
ent MR modalities, and differentiate ROIs. Is this limit a 
histogramatic error? No, it is not. A radiology monitor of, 
probably, the size of a theatre screen is needed to visually 
display a linear representation of every value in a 16-bit 
image (216 − 1 = 65,535). In spite of the graphical limita-
tions, histogram-based texture analysis is more efficient 
than edge detection for pixel segmentation and identi-
fication of region boundaries [47, 48]. Some histogram 
parameters (e.g. mean, variance, kurtosis, skewness) can 
be used to differentiate noise and related artifacts from 
very sharp details such as edges (region boundaries).

Fig. 3  Varying shades of grey. a Arrange from lighter to darker? b Answers to Puzzle as per measurements from computer vision software. Again, 
test subjects should be blinded

Fig. 4  Histogram representation of fetal brain. a MRI of fetal brain. b Histogram of the whole image
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Methods
This multidisciplinary research was approved by a rele-
vant bioethics committee, consisting of emeritus profes-
sors and senior researchers from the Medical University 

of Lodz (MUL), Barlicki University Hospitals (BUH), 
Polish Mother’s Memorial Hospital Research Institute 
(ICZMP) et  al. Written informed consent was obtained 
from all subjects, and the methods were carried out in 

Fig. 5  Regions of interest. a ROI 1 ventricles; 2 thalamus; 3 grey matter; 4 white matter. b Histogram parameters from texture analysis with MaZda

Fig. 6  ROI analysis. a ROI 1 Ventricles; b ROI 2 Thalamic nuclei; c ROI 3 Grey matter; d ROI 4 White matter. There exist several techniques and methods 
of texture analysis. Non-parametric graphs (e.g. histogram, box plot) would be indeed a simple alternative to conduct this study. As shown in 
the figures, MaZda does display histogram of 8-bit but not for 16-bit DICOM image. Also, there are issues with drawing conclusions straight from 
histograms and boxplots. They are pictorial representations and thus are indirect methods. Furthermore non-parametric interpretation may not be 
as precise and accurate as parametric quantification. Therefore, parametric quantification was used to assess image quality rather than conventional 
appearance. 3D, non-parametric graphs are also possible with collateral usage of MaZda (version 5) and B11 (version 3.3) in training mode. The 
problem with training methods is that errors might occur as a result of overtraining the network. Hence, raw analysis was performed
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accordance with the approved guidelines (see end of the 
manuscript for registration number). The experiment 
was divided into three parts.

Research tools
Firstly, some quality-control checks were performed 
before designing this research. Images (Fig.  1) were 
imported and uncompressed in Photoshop CS6 64-bit 
Extended. The software was set to HDR (high-bit-depth 
resolution) mode (i.e. floating-point numeric representa-
tion: up to 32 bits × 3 channels). RAW-formatted images 
were simultaneously examined with radiology computer 
systems (i.e. high-end hardware/accessories, monitors 
capable to render 16-bit grayscale natively; memory-
intensive controller/graphic card, Phillips DICOM 
Viewer R3.0 SP3, and LCD calibration software). With 
proper-matching adjustments, difference between the 
two images were imperceptibly unnoticeable. That was a 
conundrum which proved the need to carry out quality-
assessment research with MaZda and B11.

Trials
BUH (1.5 T unit) and ICZMP (3 T unit) radiology depart-
ments prescribed MRI to patients for further differential-
diagnostic investigation—rather than just a concomitant 
adjunct to ultrasound. 288 MR images of normal fetal 
brain were used in the main assessment and 72 MR 
images of normal fetal brain in the supplementary trials 
(see Table 1 for further description).

MR images came from MRI studies of different patients 
who had fetal MRI as a complimentary modality to ultra-
sonography and echocardiography, to further assess and 
confirm the diagnosis of suspected anomalies affect-
ing the fetuses as well as the pregnant patients. Most 
participants were seeking remedies for conditions not 
related to fetal brain. Research hospitals in Poland are 
among the forefront pioneers in prenatal diagnosis of 
congenital malformation, in utero surgery, cardiology 
and minimally-invasive cardio-surgery [49]. In spite of 
its stigmatic plight, modern cardiology arguably began in 
Lodz, Poland, with advances in medical electronics about 

70 years ago [50]. This background history explained why 
patients travelled there to seek second opinion rather 
than just for the known association of cost-effective 
treatment in Poland. The selected samples were diverse—
i.e. subjects were not closely related (not monozygotic 
twins, not dizygotic twins, not consanguineous twins, 
etc). Gestational ages were between 20 and 40  weeks. 
Patients underwent either 1.5 T scan at BUH or 3 T scan 
at ICZMP—but not both. It was deemed irrelevant in 
terms of assessment of image quality as well as for good 
patient care and fetal rights (i.e. moral and legal rights 
of human fetuses) [51]. In recent years, physical appear-
ances of subjects (such as eye shapes) have been docu-
mented to cause some photography cameras to capture 
deceptive images in auto-mode—a dysfunction due to 
faulty-engineering and bug compatibility [52–54]. To our 
knowledge, such phenomena have not been reported in 
radiological imaging. Furthermore it is the responsibil-
ity of manufacturers to ensure that MR units are capable 
to capture good quality sequences, regardless of mother 
and/or fetus phenotypes. In this investigation, the arti-
facts observed in excluded samples were consequences 
of fetal movement and inadequate settings by radiog-
raphers, not due to phenotypic characteristics. Beside 
consent-and-publication agreement, the objective of this 
research did not rationally necessitate broadcasting fur-
ther descriptions about patients’ background/identities 
(incl. phenotypes and anamneses) [51]. Therefore, such 
details were omitted in this manuscript as well as in the 
datasets [51].

MaZda software package 5 (B11 included) was used for 
quantification of MR images. A wavelet-based parameter 
(wavenhl) was combined with two novel histogram-based 
parameters (focus index, dispersion index) to perform 
Fisher-texture analysis in three-dimensional space. It was 
hypothesized that Wavenhl could fingerprint (match) 
regions of interest—i.e. as per human anatomy, the build-
ing blocks of normal thalamus, for example, is the same 
regardless of subjects and MR modalities. Two param-
eters which were not sensitive to minute variations in 
phenotypes were favored in this research. Hence, focus 
index and dispersion index were utilized for assessing 
image quality in terms of resolution, sharpness, aliasing 
and moiré, noise, actual edge details and artifacts. Mic-
roDicom was used to extract images from teleradiology 
network systems and storage media containing raw data 
of 3 and 1.5 T MRI studies. One DICOM and one BMP 
(also known as Bitmap: Microsoft Windows Device-
Independent Bitmap file) were generated from each MR 
sequence to create four batches of images: 3 T DICOM, 
1.5  T DICOM, 3  T BMP, and 1.5  T BMP. All files were 
extracted in their native size and resolution. Both 3 
and 1.5  T sequences were processed as Little-Endian, 

Table 1  Sample description

A. Main trials 288 MR images, categorized by magnetic field strength of scanner 
(144 × 1.5 and 144 × 3 T). B. Supplementary trials 72 MR images (36 × 1.5 and 
36 × 3 T). Samples used in the supplementary trials were further divided into 
two categories, by gestational age: group 1 20–28 weeks; group 2 29–40 weeks

1.5 T 3 T Total

A. Main trials 144 144 288

B. Supplementary trials 36 36 72

 Group 1 20 20 40

 Group 2 16 16 32
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Implicit and 16-bit uncompressed DICOM (RAW). All 
BMP images were encoded with no down- sampling of 
resolution. Both 3/1.5 T sequences were simultaneously 
exported as 16-bit DICOM, down-converted to 8-bit 
BMP (color space: RGB-24: 8 bits  ×  3 channels), and 
batch-processed. Note that MicroDicom applied equal, 
least-significant-bit (LSB) degradation to both 3/1.5  T 
BMP images. The quality and the information loss in 
both 3/1.5 T images were assessed with MaZda, a texture 
analysis software which measures image statistics in vari-
ous file formats [4, 5, 55]. Histogram is the only feature 
in MaZda version 5, to numerically measure available 
dynamic range in 16-bit images. Histogram parameters 
were then used to calculate focus index values (skew-
ness-to-mean kurtosis ratio) and dispersion index val-
ues (variance-to-mean ratio), which in turn serve as 
tools to evaluate the retention of stored, tonal details in 
BMP ROIs—compared to the same ROIs in the original 
DICOM file (Figs. 4, 5, 6, 7, 8; Additional file 1: Dataset 
1). MaZda measured nearly 16 and 12 usable bits in 3 and 
1.5-T DICOM images, respectively (Fig.  8; Additional 
file 1: Dataset 1). No significant difference was observed 
when testing was conducted with degraded BMP images 
(max. 8 bits in both) (Fig. 8; Additional file 1: Dataset 1).

Usable bit (stored bit) was used as a parametric factor 
rather than allocated or high bit, as the primary research 

interest was a quest to assess quality in terms of actual, cap-
tured details—free from illusionistic embellishments. In 
other words, a DICOM file may appear as or show proper-
ties display of a 16-bit image on a computer; when in reality 
it only holds 12 bits of the real thing. Many of the measured 
16-bit DICOM images contain much less than 65,536 tonal 
patterns per pixel. It is due to the fact that not all allocated 
bits contain real captured details but bogus data. Reported 
usable bit can be simply obtained with any software which 
has a DICOM header viewer or editor. In this experiment, 
reported usable bits (in the DICOM headers) were first 
checked with MicroDicom. Then these metadata were 
double-checked and subsequently measured with MaZda 
to determine actual stored bit in every image. Measured 
usable bit does not always correspond to reported usable 
bit. Such discrepancies resulted from rounding errors in 
MR units. Thus the choice to go with measured usable bit 
was factually validated (Fig.  8; Additional file  1: Dataset 
1). Images with 4–5 mm thickness and highest measured 
usable bits were selected. For texture segmentation, coro-
nal plane was ideal because more images could be obtained 
from sequences with all four visible ROIs (i.e. thalamus, 
ventricles, grey matter and white matter). Furthermore it 
is worth mentioning that histogram and wavelets meas-
urements depend on MRI signal types: e.g. “spin–lattice” 
relaxation time (T1 or T1 weighted image); “spin–spin” 
relaxation time (T2 or T2 weighted image); proton den-
sity (PD) (see Additional file 2: Dataset 2, Additional file 3: 
Dataset 3 for additional details).

Index of focus
Focus index or index of focus (abbreviated: I-focus) is 
neither an integral parameter in MaZda nor in B11. 
It has been scarcely used before to measure perceived 
quality and realness of wood images [56], an embellish-
ing technique for enhancing appearance of floor murals, 
backdrops and wall decorations used in low-cost con-
struction. Focus index is calculated by dividing skewness 
by kurtosis. Skewness is a parameter which measures 
surface symmetry or lack of symmetry, imperfections, 
scanner misalignment. It indicates the even portion of a 
surface and the direction of distortion in the uneven por-
tions (negatively and positively skewed). On the other 
hand, kurtosis is a measurement of the peakedness and 
flatness of fine details and edges where textural varia-
tions occur. When an image is in focus, edge elements 
or objects are sharp. Focus index combines these two 
parameters to thus assess quality by measuring focal or 
perspective distortion and sharpness. An image may be 
sharp but distorted and vice versa. In magnetic resonance 
imaging, focus index varies from one perspective plane to 
another (i.e. axial, coronal, sagittal). Ideal focus index is 
zero or close to zero [56, 57]. Sharpness quality for focus 

Fig. 7  a 1.5 T MR image of a fetal brain: 12-bit DICOM format, coronal 
section. b 3 T MR image of a different subject: 16-bit DICOM, coronal 
plane. c Same image shown in “a” after conversion to BMP. d Same 
image shown in “b” after conversion to BMP
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index values outside the range of [−1, +1] can be eas-
ily perceived by the naked, normal human eye. It is also 
important to note that focus index alone does not deter-
mine image quality. The common pitfall of the skewness 
and kurtosis is their sensitivity to artifacts like noise, 
grain, post-editing sharpening and Gaussian blur [56, 57].

Index of dispersion
Index of dispersion [also known as variance-to-mean 
ratio (VMR)] is a measurement used to determine the 
clustering or dispersion of a luminance. In this research, 
VMR was utilized to quantify the volatility (difference) 
of each individual ROI (ventricle, thalamus, grey matter, 
white matter). The larger the difference between the coef-
ficients of dispersion (dispersion index values) the greater 
the variability between the ROIs. Variance is the VMR 
component which measures contrast and boundaries 
(edges) in a surface. Like kurtosis and skewness, variance 
is also affected by noise [58]. Variance is the difference in 
luminance and/or color that makes an object or its rep-
resentation in an image or a ROI to display distinguish-
able. In other words, variance is a histogram parameter 
which can be used to determine contrast volatility in an 
image. Finally, mean is a reflection of the average gray-
scale luminance in MR images. It is directly proportional 
to the stored bits of an image.

Resolution
3  T scanner is by default constructed to capture more 
details than 1.5  T. Its higher magnetic strength, when 
used properly, can also overcome problems with signal-
to-noise ratio (SNR). Therefore, 3  T units can condi-
tionally produce image with more information and less 
distortion. This superiority is technically due to denser 
sampling of K-space for the same size of field of view 
(FOV), resulting in increased resolution. Nonetheless, 

several other factors affect the visual interpretation of 
the MR image which reaches the radiologist via medical-
diagnostic LCD (e.g. acutance, physical and technical 
unit settings, SNR, FOV, extended knowledge of elements 
affecting perceived appearance, realness, sharpness, etc) 
[59]. “Sharper” does not always signify “more details” and 
“more details” does not always signify “sharper.” Quality 
depends on more factors than just “more details”. A MR 
image can have “higher resolution” and “more details” 
and be not sharp or be degraded by artifacts and thus of 
poor quality. Unless its quality can be restored with com-
puter vision and/or editing tools, such an image would be 
useless for live medical application. In clinical practice, 
MR units have been used to detect anatomical, functional 
and molecular anomalies. MR imaging modalities and 
the quality of their products are crucial because physi-
cians not only rely on them to reach a firmly conclusive 
diagnosis but also to make final interpretation to admin-
ister therapeutic care; which if wrong can lead to mal-
practice litigation.

Fisher coefficient
One of the most promising application of texture analy-
sis in medicine is early detection of tumorous signs and 
prophylaxis of cancer. A methodology of interest to this 
research was Fisher texture analysis. It has been used 
before in medical research to discriminate healthy from 
benign or malignant tissue. In this experiment, it was nec-
essary to develop a modified calculation of Fisher coeffi-
cient—coined as “feature-selection coefficient” (Eq. 1). It 
was derived from an amalgamation of Fisher coefficient 
and statistical principles of analysis of variance (ANOVA).
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Fig. 8  Measured usable bits (pixel values). 3/1.5 T BMP ≈ 256; 1.5 T DICOM ≈ 4096; 3 T DICOM ≈ 65,536
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In Eq.  1, feature-selection coefficient is derived from 
Fisher coefficient and ANOVA, where D is between-class 
variance, V within-class variance, Pk probability of fea-
ture k, Vk variance value of feature k in given class and 
μk mean value of feature k in given class (see MaZda user 
manual, http://www.eletel.p.lodz.pl/mazda/download/
mazda_manual.pdf for further details).

Resolution already indicated that 3  T captured more 
details than 1.5  T. However, it was still crucial to test 
the differential capability of each modality in their own 
defined three-dimensional (3D) space (with disper-
sion index, focus index, wavenhl) and the effects of 
image compression on individual parameters. Features 
extracted from MaZda histogram were plotted on B11 
XYZ space along with two controls [3T: Cmin (0, −1, 
0), Cmax (5500, 1, 120,000); 1.5  T: Cmin (0, −1, 0), Cmax 
(307, 1, 120,000)]. Note that only the x-axis is different. 
This comparative method ensured that 1.5 and 3  T are 
fairly measured within the resolution limit of the tested 
samples. The B11 program computed F from ANOVA 
derived parameters (F  =  D2/V2, where D  =  between-
class variance and V  =  within-class variance). Then it 
placed ventricles, thalamus, grey matter, and white mat-
ter within a 3D space. By themselves, Cmin and Cmax 
yielded a maximum F of 10E  +  6 and a misclassified 
data error (MDE) of 0% for both 1.5 and 3 T. The effect 
of sample-mismatching on F and the software mechan-
ics were closely studied with control parameters and 3D 
graphs. It was observed that changing one Cmax to [0, −1, 
60,000] while others remain constant caused a 25% MDE 
and F value dropped to 18.

Results
Wavenhl, focus index (skewness-to-kurtosis ratio) and 
dispersion index (variance-to-mean ratio) reveal better 
quality for 3 T (Fig. 9). Though both 1.5-T and 3-T images 
were 16-bit DICOM encoded, nearly 16 and 12 usable 
bits were measured in 3-T and 1.5-T images, respectively. 
Four bits in all 1.5 T images were padded. Such K-space 
encoding methods appeared to reduce noise, by add-
ing illusionistic details which are not really part of the 
image. In contrast, all 3 T images were zero-bit padded. 
This encoding technique provides space for storing more 
details and increases the likelihood of noise but as well 
as edges—which in turn are very crucial for differentia-
tion of closely related anatomical structures. Both encod-
ing modes are possible with both units, but higher 3  T 
resolution is the main difference. Apart from surprisingly 
larger Fisher coefficient (Fig.  9), no significant paramet-
ric difference was observed (p > 0.05) when DICOM files 
with 12 and 16 stored bits were degraded to 8-bit BMP 
(Additional file 2: Dataset 2). MaZda measured an equal 
detrimental loss of quality in both 1.5-T and 3-T BMP 

images (Additional file 1: Dataset 1); but ROI discrimina-
tion was still better in 3 T. In both pre- and post- com-
pression, F was larger for 3 T. Unexpectedly, F was even 
better in the degraded images.

Supplemental trial runs
A preliminary trial was carried out as per recommenda-
tions in MaZda and B11 user manuals/tutorial guides 
(Fisher coefficient computation). The manufacturer’s rec-
ommended method was tested with two different frames 
(images), extracted from a single 3 T sequence and two 
different frames from a single 1.5 T sequence. Then two 
overlapping ROIs were selected and grouped—per ana-
tomical structures in each image (i.e. 2 ROIs of thalamus, 
2 ROIs of ventricles, and so on). The outcome is delin-
eated later in this section herein. It is also important to 
note that some aspects of this research were out of the 
researchers’ control—meaning that radio-technicians 
performed MRI examinations that attending physi-
cians and hospitals deemed necessary and safe for their 
patients. Thus the images collected were limited to the 
setting modes delineated in the MRI prescriptions and 
hospital-approved imaging protocols—which in turn is 
contingent upon routine checkups, suspected patholo-
gies and gestational age—as well as regional-clinical 
practice. The latter varies from one location to another. 
In the USA, for example, Food and Drug Administration 
(FDA) does not approve MRI with intravenous gadolin-
ium-based contrast agents for use during pregnancy—
although nobody has yet discovered any hazards to fetus. 
A slice thickness of 3 mm is commonly used for routine 
fetal brain examinations, while 4-mm is used for other 
organs. In all collected samples, magnetic resonance 
imaging was performed as an adjunct to ultrasound for 
clarification of conditions mostly not related to brain 
anomalies. Throughout this research, the selection con-
sisted of 1.5 and 3  T sequences which were within the 
acceptable specifications: no apparent brain defects; 
slice thickness: 3–5 mm; repetition time: 800–2100; echo 
time: 1–95; imaging frequency: 60–130; pixel bandwidth: 
400–1200. Final sorting step necessitates pixel-by-pixel 
processing of 16-bit grayscale and then identification of 
parameters with lowest standard deviation. What does 
this sorting algorithm entails. It means that all MaZda 
parameters limited to 8-bit and 12-bit feature extrac-
tion were excluded. From the parameter list matching 
the criteria, three (skewness, kurtosis, and mean) were 
chosen for the B11 tests because the measurements were 
fixed every time the process was repeated and had low-
est standard deviations between frames. Furthermore 
skewness, kurtosis, and mean parameters had measure-
ments that were very close to the average values. These 
extracted features were then analyzed in 3D space with 

http://www.eletel.p.lodz.pl/mazda/download/mazda_manual.pdf
http://www.eletel.p.lodz.pl/mazda/download/mazda_manual.pdf
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B11. For images extracted from the same 1.5 and 3  T 
sequences, RAW analysis yielded a maximum Fisher 
coefficient of E  +  5 and perfect 0% misclassification 
error for both imaging modalities. B11 plugin was used 
to generate and examine the result on a graph (Fig. 10). 
Though the graph appears as texture analysis of a single 
image, each number is actually from two different frames 
overlapping in three-dimensional space. The software 
guidelines as well as its engineers were consulted regard-
ing B11 limitation. It turned out that B11’s Fisher Coef-
ficient (F) is internally computed from modified ANOVA 
statistics—by customizedly dividing a nominator (dif-
ference between regions) over a denominator (differ-
ence within regions). We did not investigate further and 
neither modify the computation mechanics of Fisher 
Coefficient, as the software license did not authorize us 
to do so. Larger F was construed to mean that there is 
more difference between ROIs. For the purpose of this 
research, straight-forward comparative test with Fisher 
coefficient method was inconclusive, as F was the same 
for comparison between 3 and 1.5 T ROIs (see Additional 
file 3: Dataset 3—appendix 1, appendix 2, appendix 3 for 
further details).

The software maker recommended to use different 
frames from different MR sequences and/or studies. 

Different sequences from different patients were scored 
(Fig.  11). Fisher coefficient was 897.4 for 3  T and 144.1 
for 1.5 T. It is important to note that proton density (PD) 
sequence is very different from T2. The trial was re-run 
with two 1.5 T T2 HASTE (half-Fourier acquisition sin-
gle-shot turbo spin-echo) sequences from two different 
patients; and F was 448.6. The software maker did not 
have an immediate solution for the B11 limitation and 
thus recommended to use the software when compara-
tively testing many images from different sequences.

In technically controlled settings, the software maker 
suggestions are feasible. However, in medical practice, it 
is not a viable process. It would be detrimental to get so 
many MR studies from a single patient for ROI analysis.

Grayscale quantification with histogram‑based parameters
There are misconceptions about the usefulness of gray-
scale quantification and its applications in medicine. 
While this area of diagnostic radiology is still emerging 
and under-documented—grayscale texture analysis with 
histogram-based parameters is already proven to be very 
useful for differentiation of benign from malignant thy-
roid cancer, for example. Such parameters can be used 
to detect micro-calcifications inside nodules—which is 
an early sign of thyroid malignancies. In this research, 

Fig. 9  Graph showing difference between ROIs. Raw-data analysis was performed to compute F with 1-nearest-neighbor (NN) classification and 
no feature standardization. Same samples and ROIs were used in both pre- and post- image compression. a 1.5 T uncompressed DICOM; Fisher 
coefficient computation with controls: Cmin = (0, −1, 0); Cmax = (307, 1, 120,000); F = 426.0; MDE = 0%. b Same 1.5 T samples: zoomed in, mostly 
on the y-axis. c same 1.5 T after compression to 8 bits; Fisher coefficient computation with controls: Cmin = (0, −1, 0) Cmax = (30, 1, 120,000); 
F = 776.0; MDE = 5.56%. d 3 T uncompressed DICOM: F = 1787.0; MDE = 0%. e Same 1.5 T samples: zoomed in, mostly on the y-axis. f Same 3 T 
after compression to 8 bits. 3 T: F = 2344.3; MDE = 0%
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histogram parameters was used to calculate focus index 
ratios (skewness-to-mean kurtosis ratio) and dispersion 
index values (variance-to-mean ration). What is the logi-
cal meaning of using such parameters in magnetic reso-
nance imaging? Histogram-based parameters don’t just 
generically measure intensity of grayscale and signal-to-
noise ratio (SNR). Such parameters can also be used for 
morphometric measurements, texture segmentation and 
discrimination. The functionality of focus index can be 
simply understood from its numerator and denominator. 
In computational- visual cognition and imaging statistics, 
skewness is a numerical measurement of symmetry and 
dissymmetry in an image. Kurtosis, on the other hand, is 
a histogram parameter that is sensitive to Gaussian blur 
and out-of-focus blurs (indirect sharpness), noise and 

grain (simulated sharpness), peakedness and flatness of 
fine details and edges (due to image resolution), chro-
matic aberration blur (optical distortion) and other arti-
facts. Focus index would probably sounds novel to most 
or perhaps all readers of this article. Yet, it is sparsely used 
in reality-rendering imaginary to measure realness (natu-
ralness) of surface perception—and thus the phenome-
non that human eye does not always sees what it thinks it 
does. Applications of focus index include photo-realistic 
rending, optical/visual illusion, methatetic continuum 
(change in stimulus quality) and indiscernible visual per-
ception between natural materials and replicas (e.g. out-
door backdrops, floors and murals) used in filmmaking 
and architectural construction. A pitfall with focus index 
is its susceptibility to digital and mechanical artifacts 

Fig. 10  a Difference between ROIs for 3 T with two images from same T2 sequence (same patient). 1 ventricle; 3 thalamus; 2 grey matter; 4 white 
matter. b Difference between ROIs for 1.5 T with two images from same T2 sequence (same patient). 1 ventricle; 3 thalamus; 2 grey matter; 4 white 
matter

Fig. 11  a Difference between ROIs for 3 T with two images from different T2 TSE [Turbo spin echo sequences (different patients)]. 1 ventricle; 3 
thalamus; 2 grey matter; 4 white matter. b Difference between ROIs for 1.5 T with one image from PD and one from T2 HASTE sequence (different 
patient). 1 ventricle; 3 thalamus; 2 grey matter; 4 white matter
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recorded by imaging equipment but not really part of the 
image. How was the problem solved? Perceived quality of 
photo-realistic prints was previously documented to be 
optimally construed as real—when focus index is zero or 
nearly zero but within −1 and +1 interval. Furthermore 
focus index and dispersion index were concomitantly 
used to rule out noise (artifacts) from true signal (actual 
anatomy). The definition of dispersion index can be tech-
nically interpreted in the difference between its dividend 
and divisor as well as the resulting quotient. Variance is a 
numerical measurement of contrast and captured details 
in an image; and thus it is affected by resolution. Mean 
is the average luminance derived from stored bit value 
in an image (ROI in this case). Mean may be misunder-
stood as a mere measurement of pixel values, but herein 
it also served as a reference value for the variance. Stored 
bit is not to be confused with allocated bit and high bit. 
The stored bit value reported in the DICOM tag did not 
always correspond to that measured with MaZda. A large 
gap between the variance and the mean could be an indi-
cation of fine details or edges (e.g. anatomical bounda-
ries or pattern changes within anatomical structures); 
or it could also be due to randomly occurring noise and/
or unwanted artifacts. Both 1.5 and 3  T images were 
encoded in 16-bit DICOM container. Why don’t they 
have the same quality? Not all bit slots necessarily con-
tain true details (actual anatomy). In our test, converting 
(uncompressing) 16-bit Lossless JPEG DICOM to 16-bit 
RAW DICOM did not improve quantification of bit slots 
which actually contain anatomical details—though the 
RAW file was larger. If stored bit was initially 12, it was 
still 12 after uncompression. MR scanner settings are 
also known to digitally and mechanically affect quality. 
Therefore, 3 and 1.5  T images were closely matched by 
matrix size, field-of-view (FOV), slice thickness, phase 
and frequency encodings. Besides magnetic strength and 
speed, the quality of captured details also depends on 
the voxel size and thus the resolution of 1.5 and 3 T (in 
the collected samples, 256 × 256 and 446 × 446 respec-
tively). Separating noise and discretization artifacts from 
true signals is a time-consuming editing process. A more 
efficient solution was to get rid out of heavily noisy sam-
ples. So doing does not necessarily imply that we think 
that noise is always bad. Despite its degradative nature, 
noise can also improve visual appearance of an image. 
Dither, for instance, is in-machine (real-time) or post-
editing added noise to filter some unwanted artifacts 
(e.g. off-resonance bandings, posterization)—in order to 
improve acutance (sharpness) and therefore visual per-
ception. By narrowing the reference range of the focus 
index quotient to [−1, +1], a large number of noisy sam-
ples were excluded, as a result of displaying character-
istics of random quantum mottle (grainy appearance). 

Hence the larger variance observed in 3  T parametric 
measurements are likely due to sharply captured ana-
tomical details with fine edges—rather than digitally and 
mechanically generated noisy artifacts.

Computation of difference between ROIs
It would be subjective to just judge the quality by simply 
comparing 1.5 and 3 T images on histogram graphs. As 
a remedy, other comparative tests were developed and 
carried out. In Fischer coefficient, the numerator (differ-
ence between the ROIs) was the quantification wanted. 
Hence analysis of variance was subsequently performed 
to quantify the difference between 3 and 1.5  T ROIs. 
The parameters were then imported into STATISTICA 
version 10 for further statistical processing and analy-
sis. All the results were exported to excel, and a dataset 
was generated (Additional file 4: Dataset 4). 3 T images 
(~E +  15) had much higher ROI variations than 1.5  T 
images (~E  +  10). In terms of parametric quantifica-
tion, the increased variability between ROIs revealed that 
3  T is a better discriminative tools than 1.5  T (Fig.  12). 
Focus index values and dispersion index values were used 
respectively to measure sharpness distribution and sta-
tistical dispersion (Figs.  13, 14, 15, 16). The focus index 
graph shows that 3 T images have better sharpness and 
better focus in both groups. As per dispersion index 
graph, 3 T is also better in terms of spatial resolution. In 
all measurements, the results were statistically significant 
with p < 0.01 (see Table 2).

Discussion
In this experiment, the findings revealed that 8-bit 
BMP actually yielded higher F than the original 16-bit 
DICOM. Larger F coefficient does not necessarily mean 
better quality. Nonlinear discriminant analysis (NDA), 
linear discriminant analysis (LDA), and principal com-
ponent analysis (PCA) can generate low or large F 
when B11 is overtrained [60]. Thus RAW data analysis 
was performed, as it is more constant than NDA, LDA, 
and PCA transformations. With featured standardiza-
tion turned-off, RAW data analysis calculated same F 
values each time measurements are repeated. In this 
case, larger F from 8-bit BMP is unlikely to be due to 
overtraining problem in the network. It is rather due 
to squeezing tricks employed in lossy compression. 
While ROIs appear more uniform, some fine details 
get discarded. In MaZda texture analysis software, his-
togram can indeed measure regional tonality directly 
from image statistics rather than from secondary vis-
ual means such as graphical appearance on a monitor 
screen; which is susceptible to eye limitations (e.g. acu-
tance, screen size, etc). Thus 16-bit image can be accu-
rately mapped three-dimensionally from intensity value 
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of 0 to a maximum intensity of 65,535; and variance pro-
vides information about details, sharpness and edges in 
the image. 3 T is technically able to capture more details 
due to higher resolution. Nevertheless, higher resolu-
tion does not always guarantee better quality and neither 
does it always mean more details. Without proper unit 
settings to booster available dynamic range, resolution 
is just a mere increment in the cost of storage media. 
Available dynamic range of an image is the informa-
tion that is not seen until it is actually used. The origi-
nal encoding bit space is crucial for storage of captured 
details. In 8-bit space, for instance, it is mathematically 
impossible to recover fine highlight details such as blue 
sky in an indoor image of a blown-out window on a 
bright sunny day. Lowering exposure shows grey sky. In 
12- or higher-bit space, the sky should be still blue. This 
is where available dynamic range comes in play. Wave-
lets, on the other hand, were not used for measuring 
quality but for double-checking and matching regions of 
interest (i.e. ventricles, thalamus, grey matter, and white 

matter). Concomitant texture analysis with wavelets and 
histogram allows accurate classification of closely related 
anatomical structures in the brain during development, 
and thus an important set of tools for early detection 
of tissue changes in the brain. For example, grey matter 
is vastly present in the brain. It can be difficult for the 
unaided human eye to trace the boundaries of hypotha-
lamic nuclei on a prenatal magnetic resonance image. It 
is due to the fact that grey matter is also present deep 
inside the cerebrum and inside the thalamus, hypothala-
mus, and the basal ganglia. Even with the fetal brain fully 
formed, it is still elusive for the human eye to deline-
ate and differentiate these anatomical structures during 
pregnancy. In the overexposure example, the human 
eye would see the exact same blown-out region with no 
obvious quality discrimination in either 8-bit or 16-bit 
space, while histogram and wavelets would pick up the 
hidden details and reveal a difference in parametric val-
ues. This is where texture analysis software fits in bio-
medical imaging.

Fig. 12  ROI variability graph showing difference between 1.5 and 3 T
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Constraints, limitations, and assumptions
MaZda Texture Analysis version 5 was used through-
out this experiment (Additional file  5). It is a quantita-
tive analysis tool which can extract various parameters 
from 16-bit DICOM without need of conversion to 8-bit 

BMP, and it can measure the actual stored bits within 
a DICOM container of 16 allocated bits. This feature is 
crucial in terms of comparing 1.5–3 T for discriminative 
power of closely related anatomical structures in fetal 
brain imaging. Unfortunately, many MaZda parameters 

Fig. 13  Sharpness distribution: Group 1 acceptable range is [+1, −1]. Zero is absolute sharpness; in other words, better focus. 3 T has more points 
closer to zero

Fig. 14  Sharpness distribution: Group 2 acceptable range is [+1, −1]. Zero is absolute sharpness; in other words, better focus. 3 T has more points 
closer to zero
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were excluded from this experiment because of either 
8-bit or 12-bit limitations. An updated, customized ver-
sion of this software package would require several man-
hours and therefore was not feasible in due time.

Recommendations
As of today, there are still numerous talks about the 
usefulness of 3 T MRI in medical practice and the pos-
sibility of deleterious effects during early pregnancy. The 

Fig. 15  Statistical dispersion: logarithmic graph (Group 1) showing difference between 1.5 and 3 T. 3 T ROIs are more spread out; thus better for dis‑
tinguishing close anatomical structures in fetal MRI. Regions of interest—red: ventricle—yellow: white matter—blue: thalamus—green: grey matter

Fig. 16  Statistical dispersion: logarithmic graph (Group 1) showing difference between 1.5 and 3 T. 3 T ROIs are more spread out; thus better for dis‑
tinguishing close anatomical structures in fetal MRI. Regions of interest—red: ventricle—yellow: white matter—blue: thalamus—green: grey matter
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scientific views about the differential quality between 
1.5 and 3 T are mixed and perplexed due to subjectivity 
and unreliable interpretative techniques, which largely 
depend on the human eye perception. Observational 
studies have reported that the greater magnetic field of 
3 T produces sharper images based on visual appearance. 
Such findings are subjected to controversion because 
different pairs of eyes don’t always see the same thing. 
The normal human eye was reported to have a differ-
ential power of a quasi 8-bit scanner. Very few people 
perceive details beyond that limitation. From a financial 
point of view, billions of dollars could be saved if 1.5 T is 
used instead of 3  T MRI. Nevertheless, financial stand-
point and hardship may indeed prevent a clinician from 
ordering 3  T MRI, instead of using relevance to benefi-
ciaries as a guide to make such a decision. Some still raise 
questions over the safety of 3 T magnetic field in medi-
cal practice. Nevertheless, twelve years ago, studies have 
already shown that 8T MRI causes no obvious damage 
to the human body. Like other imaging modalities, the 
main issue in the medical community that is affecting 
the interpretation of 3  T MR images is subjectivity and 
observer dependence. It is a challenging task for different 
human eyes to correctly identify square-pixel variations 
between the gray-scale image presented in Fig. 1. A key 
feature of texture analysis with computer vision is that it 
can quantify texture in pixelated 1.5 and 3 T MR images 
into numerical values, which in turn can be used to assess 
image quality—therefore eliminating subjectivity and 
reproducibility issues in diagnostic imaging. Some of our 
guest reviewers had argued that texture quantification 

was not necessarily an advantage. Yet the World Health 
Organization (WHO) has noticed a fall in misdiagnosis 
and treatment cost and a rise in detection and diagnosis 
of the pandemic disease of tuberculosis (TB)—with intro-
duction of computer-aided interpretation software in 
regions with prevalent TB outbreak. Again, this research 
is not about whether human vision is better than artifi-
cial vision or vice versa. We disclaim any so-construed 
allegations. The goal is that texture analysis may assist 
obstetricians and radiologists in making more accurate 
and objective medical diagnosis of prenatal pathologies. 
Reaching this outcome is a matter of testing and finding 
suitable artificial systems and methods of texture analysis 
for the appropriate set of images. Last but not least, arti-
ficial magnetic fields of 1.5 T (30,000 times greater than 
earth’s magnetic field) and 3 T (60,000 times greater than 
earth’s magnetic field) [61], scanners have raised theoreti-
cal concerns in the medical community. Unknown risks 
such as teratogenic and biological effects—if they really 
exist—could be reduced by using 1.5  T during the first 
28 weeks—as its quality is sufficient [62–67].

Conclusions
Unquestionably, 3-T exhibits better quality than 1.5-T 
fetal magnetic resonance imaging. The results were sig-
nificant (p  <  0.05). Nevertheless, 1.5-T is of sufficient 
quality for routine fetal examination during early preg-
nancy and therefore can lower the risks of unknown tera-
togenic effects. Though 3  T fetal MRI exhibits superior 
image quality, its usefulness, health claims, side effects, 
benefits, and safety demand further investigation.

Table 2  The best nine values were selected to determine p values

IFOCUS IDISPERSION

1.5 T G1 3 T G1 1.5 T G2 3 T G2 1.5 T G1 3 T G1 1.5 T G2 3 T G2

0.174816 0.001664 0.261094 0.013746 245.8439 3845.506 272.6785 3919.487

0.155916 0.001614 0.076755 0.001496 241.6155 3725.265 208.9656 3684.96

0.07019 0.000614 0.002159 0.000435 222.8727 3584.081 207.59 3605.269

0.084207 0.000317 0.010039 5.16E−07 183.2519 3518.256 191.5476 3396.184

0.12892 0.000824 0.018455 3.76E−06 152.8732 3234.123 62.18858 1969.419

0.14576 0.001041 0.053909 0.00046 63.68822 1949.152 59.11231 1557.758

0.222427 0.001126 0.095316 0.00049 62.51141 1861.574 56.22063 1547.73

0.275593 0.002816 0.100121 0.004151 52.44858 1775.027 50.28433 1542.073

0.315591 0.003521 0.239347 0.01374 48.76635 1763.935 28.30434 614.1261

m = 0.175 m = 0.0015 m = 0.0952 m = 0.0038 m = 142 m = 2806 m = 126 m = 2426

sd = 8E−02 sd = 1E−03 sd = 9E−02 sd = 5E−03 sd = 85 sd = 935 sd = 92 sd = 614

t(16) = 6.3
p = 0.0001

t(16) = 2.9
p = 0.011

t(16) = −8.5
p = 0.0001

t(16) = −5.6
p = 0.0001
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