
Review Article
Statistical and Computational Methods for
Genetic Diseases: An Overview

Francesco Camastra,1 Maria Donata Di Taranto,2 and Antonino Staiano1

1Department of Science and Technology, University of Naples Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
2IRCCS SDN, Via E. Gianturco 113, 80143 Napoli, Italy

Correspondence should be addressed to Antonino Staiano; antonino.staiano@uniparthenope.it

Received 16 September 2014; Accepted 23 April 2015

Academic Editor: Abdul Salam Jarrah

Copyright © 2015 Francesco Camastra et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The identification of causes of genetic diseases has been carried out by several approaches with increasing complexity. Innovation
of genetic methodologies leads to the production of large amounts of data that needs the support of statistical and computational
methods to be correctly processed.The aim of the paper is to provide an overview of statistical and computational methods paying
attention to methods for the sequence analysis and complex diseases.

1. Introduction

The concept that some disease could be inherited by parents
was always present, but only after the discovery of DNA as
the genetic material, the research about molecular causes of
diseases started. Since the first associations of a disease to
a defect in a specific gene, the genetic diagnosis becomes
an aim of medical scientists in order to early identify
the affected patients and to improve their treatments. For
simple monogenic diseases, the conventional way to search
for mutations in a gene is the sequencing of amplified
fragments corresponding to the gene regions. Innovation in
molecular methods together with innovation in computa-
tionalmethods allowed developing new analytical techniques
useful to unravel most complicated cases. When the gene
responsible for the disease is unknown, in order to identify
the genetic defects, the next-generation sequencing could be
applied to sequence the whole genome/exome of affected
patients, producing then a huge amount of data. In early
2001, during the first assemblies of the human genome,
Baldi and Brunak, in their seminal book [1], stressed on
the need of statistical and computational supports to the
genetic analysis: “[. . .] these high throughput technologies are
capable of rapidly producing terabytes of data that are too over-
whelming for conventional biological approaches. As a result,
the need for computer/statistical/machine learning techniques

is today stronger rather than weaker”. Today, after fourteen
years, the need has become even stronger as the human
knowledge of genetic mechanisms still increases, making the
research on genetic diseases an amazing adventure as well
as difficult and demanding. In case of diseases with a com-
plex etiopathogenesis, for example, those caused by several
variants in different genes, more advanced investigations are
required. Some examples of methods for association studies
are here reported together with methods for meta-analysis of
different studies. The study of quantitative traits associated
with specific variants is a hot topic in the field of complex
diseases, as well as gene expression studies. The presence of
a genetic mutation/variant is not the only dysfunction cause
of the encoded protein; in fact also alterations in its levels
could be responsible for a pathological phenotype. Here we
report the example of the combination of both studies, the
analysis of expression quantitative trait loci that investigates
the association of the quantitative data about gene expression
with the presence of specific variants across the genome.
Thus the aim of this paper is to provide the reader with an
overview of the statistical and computational methodologies,
focusing on sequence analysis and complex diseases. Further
hot topics, such as methods for next-generation sequencing,
gene expression studies, miRNA regulation, and epigenetics,
are not discussed merely for sake of space.
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The paper is organized as follows: in Section 2, the study
of sequence variants is described, while in Section 3 methods
for association studies, meta-analysis, and expression quan-
titative trait loci, specifically targeted to the study of complex
diseases, are discussed; finally, some conclusions are drawn in
Section 4.

2. Sequencing Analysis

The classical approach for identifying the genetic alteration
of a hereditary disease is the sequence of causative genes.
Although, in the past, a variant identified in patients and
not in control subjects was called pathogenic, currently the
definition of pathogenicity should be better demonstrated
because some variants have only little effects on the disease
[2] and could not be considered the real cause of phenotypic
alterations. The only one direct criterion to demonstrate the
pathogenicity of a variant is the functional characterization
of the protein carrying the variant. If this is difficult to be
performed, in silico predictions could help.

Research in databases is the fastest way to retrieve
information about a variant and to know if the variant was
previously identified. The research in database of muta-
tions (e.g., the Human Gene Mutation Database, HGMG—
http://www.hgmd.org/) and single nucleotide polymor-
phisms (SNP) (e.g., http://www.ncbi.nlm.nih.gov/snp) allows
linking to previous papers about the variant or linking to
1000 genome data, for example, the variant frequency.

Some mutation types can be immediately considered
pathogenic because they lead to a dramatic change of the
encoded protein; these include large deletions and insertions
comprising one or more exons and deletion and insertion
causing reading frameshift and nucleotide substitutions lead-
ing to the formation of a premature stop codon (nonsense
mutations). Computational predictions are essential for other
mutations with uncertain significance, for example, substi-
tutions leading to an amino acid change (missense), not
changing amino acid sequence (synonymous), leading to
possible splicing alterations and deletion or insertions with-
out frameshift. Different approaches are utilized to evaluate
variant effects depending on the mutation type, as listed
below.

(1) Missense Mutations. The change of a single amino
acid could not be deleterious if the affected amino
acid is not included in the functional domains of
the protein or if it is not essential in the protein
folding. The simplest method utilized to evaluate the
relevance of an amino acid is the multiple alignment
of the orthologous sequences allowing identifica-
tion if the mutated amino acid is conserved during
evolution. This is the basis of several algorithms
created to evaluate the pathogenicity of a missense
mutation such as SIFT (Sorting Intolerant From Tol-
erant; http://sift.jcvi.org/) [3] that is solely based on
sequence. PolyPhen-2 (Polymorphism Phenotyping;
http://genetics.bwh.harvard.edu/pph2/) [4] evalua-
tes the variant effect using 11 features based on the
sequence alignment and on the structure data selected

from a wider pool using machine learning methods.
Another tool based on both sequence and structure
data is PMut (http://mmb2.pcb.ub.es:8080/PMut/)
that is based on the use of neural networks [5] trained
with disease-associated mutations and neutral varia-
nts.MutationTaster (http://www.mutationtaster.org/)
[6] is useful for different mutation types and uses
3 different models all based on a Bayes Classifier
[5] trained with disease-causing mutations and with
neutral polymorphisms.

(2) Synonymous Mutations. Synonymous mutations are
often excluded as causative mutations at the first
screening, since they do not cause an apparent change
in the protein but they can modify the regulatory
mechanisms at the basis of gene expression. Any
change in the nucleotide sequence can lead to splicing
alterations or to mRNA instability caused by alter-
ations of secondary structure or by altered binding
ofmiRNAs, resulting in decreased protein expression.
An additional mechanism of synonymous mutations
pathogenicity is due to the alternative codon usage
that can increase or decrease the elongation rate
depending on the relative abundance of tRNA and
influencing the protein folding [7]. Computational
approaches to the study of synonymous mutations
include the analysis of mRNA structure calculating
the ΔG induced by sequence variations [8, 9], of the
codon usage [10], of miRNA binding, and of splicing
prediction as reported in the next paragraphs.

(3) Splicing. An intronic nucleotide change near to the
acceptor and donor site is easily presumed to affect
splicing mechanisms leading to intron retention
or exon skipping. Each intronic variant should be
assessed for its potential effects on splicing and
recently also exonic variants in theCFTRgene leading
to a missense variation have been demonstrated to
be more relevant in the splicing process than in the
protein alteration due to the amino acid change [11].
Tools to identify alterations at the acceptor/donor
sites include, for example,Human Splicing Finder that
calculate the strength of a nucleotide as splicing site
based on position weight matrices [12] and NNSplice
based on a stochastic grammar inference [13]. Gene-
Splicer improves splice site detection using an algo-
rithm to characterize the nucleotide sequence around
the site based on Markov modeling techniques [14].
Other methods are focused on the evaluation of
Exonic Splicing Enhancer such as ESEfinder [15].

(4) Deletion or Insertion without Reading Frameshift. A
deletion or an insertion without reading frameshift
induces a deletion or an insertion of few amino
acids and should be studied with respect to the
conservation of involved region and the possible
alteration of protein structure. De novo prediction of
a protein structure is still a challenge but increasing
data of experimentally determined structure allowed
creating tools such as Rosetta [16] that searches
for preexisting structures of fragments with similar
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sequence and perform the fragment assembly. An
innovative approach to the structure study is its
coupling with evolution study of protein sequence
that help to identify the most important region of the
protein [17].

3. Complex Diseases

Many common diseases, including heart disease, diabetes,
hypertension, and schizophrenia, are complex; that is, they
are caused bymany genes interactingwith environmental fac-
tors [18, 19], making its study difficult. Complex diseases are
due to the presence of a set of gene variants potentially pre-
disposing to the disease that can develop if other nongenetic
factors are present, for example, environmental factors.These
diseases are also defined as polygenic and/ormultifactorial in
order to highlight the complexity of their etiopathogenesis.
The genetic variants associated with a complex disease are
often common polymorphisms that individually have little
impact on the phenotype; for example, the presence of a single
variant could not cause any alteration, whereas the presence
of several variants in specific conditions could be considered
the cause of the disease. In order to determine disease
mechanisms, disease-associated genes must be identified and
analyzed in combination; nonetheless determining how they
interact to cause the disease is a challenge.

3.1. Association Studies. First studies on variant associations
were conducted by case-control design. In this design, the
frequencies of alleles or genotypes at the site of interest are
compared in populations of cases and controls; a higher
frequency in cases is taken as evidence that allele or geno-
type is associated with increased risk of disease. The usual
conclusion of such studies is that the polymorphism being
tested either affects risk of disease directly or is a marker
for some nearby genetic variant that affects risk of disease.
Due to the modest role of a single variant, the studied
population becomes even more large and the number of
studied variants increased. Genome-wide association studies
(GWAS) have revolutionized human genetics. They have
led to the identification of thousands of loci that affect
the disease susceptibility and clarified our understanding of
the architecture of complex major diseases [20]. In GWAS
many common genetic variants in different individuals are
analyzed in order to establish if any variant is associated with
a phenotypic trait. A single nucleotide polymorphism, or SNP,
is a single base-pair change in the DNA sequence that occurs
with a frequency greater than 1% [21]. Although in the last
years a profusion of GWAS for complex human traits was
successfully completed [22], even for the simplest analyses
there is little general agreement on the most appropriate
statistical procedure, including preliminary analyses, that is,
Hardy-Weinberg equilibrium testing, inference of phase and
missing data, SNP tagging, and single SNP and multipoint
tests for association [23]. When a well-defined phenotype
has been selected for a study population, and genotypes are
collected using well suited techniques, the statistical analysis

of genetic data begins. An overview of statistical approaches
for genetic association studies is given in [23].

The de facto analysis of genome-wide association data
is a series of single locus statistic tests where each SNP is
independently examined for association to the phenotype.
The usual approach to assess evidence for an association
between genetic variants and a phenotype is to compute a
𝑝-value for the null hypothesis (𝐻

0
), of no association. We

recall that the 𝑝-value is the probability of obtaining a result
of a statistic test identical to the one actually observed when
the null hypothesis is true. Some widely used methods for
computing 𝑝-values are linear regression, logistic regression,
Fisher exact test, and 𝜒2 test [23, 24]. If multiple tests are
performed, adjustments of 𝑝-values are required. To this aim,
several methods are available, for example, Bonferroni, False
Detection Rate (FDR), and 𝑞-value.We recall that the 𝑞-value
of an hypothesis is the minimum FDR at which the test is
statistically significant. 𝑞-values are usually derived from the
full distribution of 𝑝-values across all tests. However, with
𝑝-value only, it is difficult to quantify how much confident
one should be that a given SNP is truly associated with a
phenotype. Indeed, the same 𝑝-value computed at different
SNPs or in different studies can have different implications
for the plausibility of a true association depending on the
factors that affect the power of the test, such as the minor
allele frequency of the SNP and the size of the study. This
is because the probability that a SNP with a given 𝑝-value
is truly associated with the phenotype depends not only
on how unlikely that 𝑝-value is under 𝐻

0
but also on how

unlikely it is under the alternative hypothesis 𝐻
1
(which

differs from test to test) [25]. Bayesian methods provide an
alternative approach for assessing associations that alleviates
the limitations of 𝑝-values at the cost of some additional
modelling assumptions. As an example, a bayesian analysis
requires explicit assumptions about effect sizes at truly
associated SNPs. Bayesian methods [5] compute measures
of evidence that can be directly compared among SNPs
within and across studies, and for combining results across
studies, across SNPs in a gene, and across gene pathways.
For a comprehensive guide to bayesian methods for genetic
association studies, refer to [25]. In general, the discovered
genetic variants based on univariate analysis account for only
a small proportion of the heritability of complex traits [26,
27]. One possible explanation for the “missing heritability”
is that testing for association of the phenotype with each
SNP individually is not well suited for detecting multiple
variants with small effects [28]. Analyzing SNPs one by one
can neglect information on their joint distribution.Therefore,
a number of association tests involving multiple SNPs have
been applied or developed [23, 29]. The development of a
multiple testing procedure involves two steps: ranking the
hypotheses and choosing a cutoff (i.e., a threshold value)
along the rankings. Different methods use SNPs dependency
for choosing the cutoff [30, 31], while [29] uses the depen-
dency of adjacent SNPs, discovered by a Hidden Markov
Model (HMM) [32], to createmore efficient rankings. A gene-
based test for association has been, instead, proposed in
[33], where a greedy [34] bayesian model selection is used
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to identify the independent effects within a gene and then
combined to generate a stronger statistical signal. A further
strategy to uncover the “missing heritability” is to use Gene
Set Analysis (GSA) as a way to extract additional information
from genome-wide SNP data [35]. GSA has the objective
of assessing the overall evidence of variant association in
a whole set of genes with a disease status. A gene set is
a predefined set of genes based on criteria other than the
data being analyzed, for example, genes within a specific
biological pathway [22]. Several methods for performing the
gene enrichment in GSA are based on Fisher’s exact test
and the 𝜒2 test [36]. GSA has the potential to detect subtle
effects of multiple SNPs in the same gene set that might
be missed when assessed individually [37]. Since numerous
genes can be combined into a limited number of gene sets for
analysis, the multiple testing burden may be greatly reduced
byGSA.Moreover, the incorporation of biological knowledge
in the statistical analysis may aid the researchers in the
interpretation of the results. For a state-of-the art review
of gene set studies the reader can refer to [22], while a
thorough review of statistical approaches for “prioritizing”
the GWAS results is given in [35]. In [38], instead, the SNPs
are grouped into SNP sets on the basis of proximity to
genomic features such as gene or haplotype blocks, and then
the joint effect of each SNP set is tested. The testing of each
SNP set is made via the logistic kernel-machine based test.
The latter test provides a statistical framework that allows
flexible modeling of epistatic and nonlinear SNP effects ([38]
and the references therein). Several further proposals to
GWAS come from the machine learning research field [39,
40]. From this perspective, it is argued that methods like
Neural Networks (NNs) [5], Support Vector Machine (SVM)
[41], and Random Forests (RFs) [42] may more naturally
and effectively deal with the high dimensionality of data and
the occurrence of multiple polymorphisms with respect to
more traditional statistical techniques [40, 43]. A number
of applications of NNs and hybrid NN have been developed
to study childhood allergic asthma [44], Parkinson’s disease
[45], Alzheimer’s disease [46], and multiple sclerosis [47].
SVM has been applied to Parkinson disease [48] and type 2
diabetes [49], while RFs have been applied to study Crohn
disease [50], familial combined hyperlipidemia [51], and
colon and ovarian cancers [52].

3.2. Methods for Meta-Analysis. To date, a huge number of
association studies identified many genetic variants associ-
ated with complex diseases. However, these studies often
explain only a small proportion of the disease trait’s variability
[53, 54]. Genetic effects due to common alleles are small
and detecting signal requires larger sample sizes [55]. With
this growth in evidence has come an increasing need to
collate and summarize the evidences in order to identify true
genetic associations among the large volume of false positives
([54] and references therein). Furthermore, replication of
findings in independent data sets is now widely regarded as
a prerequisite for convincing evidence of association [56].
This is why meta-analysis has become an ever more popular
approach for the validation of genetic loci predisposing

for common disease and phenotypes. Meta-analyses can be
defined as the statistical integration of information from
multiple independent studies with the aim of obtaining an
overall estimator (e.g., significance level, 𝑝-value, and odd
ratio) of the investigated association [57]. Most genetic risk
variants discovered in the past few years have come from
large-scale meta-analyses of GWASs and several hundred
GWAS meta-analyses have already been published [58, 59].
Most of thesemeta-analyses had sample sizes in the discovery
phase exceeding 10,000 participants [60]. These efforts have
dramatically increased the yield of discovered and validated
genetic risk loci and large meta-analyses may continue to
increase the yield of loci in proportion to the total sample
sizes [57]. GWAS meta-analysis can be organized in a num-
ber of stages (see references [58, 59] for a more detailed
description and reference [57] for a more concise one).
However, this overview is focused on the state-of-the-art of
statistical models for data synthesis in GWAS meta-analysis
and following closely the review given in [57].

One possible approach, that is, the Fisher’s approach [57],
is based on combining 𝑝-values. Here the null hypothesis
that the true effect is null in each of the combined data sets
is checked against the alternative hypothesis that there is
nonnull association in at least one data set. A closely related
approach to 𝑝-value combination is based on the average
of 𝑍-values [61]. Although the two methods are correlated,
one advantage of the 𝑍-score approach, over the Fisher
method, is that it takes into account the direction of the
effect, and it is rather straightforward to introduce theweights
for each study. An alternative and popular approach is fixed
effects meta-analysis, used for synthesizing GWAS data and
resulting to be very effective for prioritizing and discovering
phenotype-associated SNPs [62]. Fixed effects meta-analysis
assumes that the true effect of each risk allele is the same
in each data set. The inverse variance weighting [56] is the
most used model for fixed effects meta-analysis, in which
each study is weighted according to the inverse of its squared
standard error [58]. Cochran-Mantel-Haenszel [63] approach
is a further popular used method in genetics which provides
similar results to the inverse variance weighting method [61].
A well known estimator of the between-study variance for
the random effect approach is the DerSimonian and Laird
estimator (see [57] and references therein). However, this
method might be less robust with respect to rare variants
[64]. Although random effect models are not adopted in
discovery efforts, they are suitablewhen the goal is to estimate
the average effect size of the investigated variant and its
uncertainty through different populations, for example, as
for predictive purposes [65]. In Han and Eskin [66], a novel
random effect method has been suggested to improve dis-
covery power when heterogeneity in effect sizes exists across
the studies, differently to traditional random effect models.
Bayesian techniques have been also used for GWAS meta-
analyses.TheBayes factor [67] has been used by theWellcome
Trust Case Control Consortium, while the Coronary Artery
Disease Consortium has estimated the posterior probabilities
that a given variant is null [68]. Moreover, bayesian methods
have been developed to identify the best inheritance model
for variants discovered by GWAS meta-analyses [69] and
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the polygenic structure of complex diseases [70]. Neverthe-
less, bayesian models have two main drawbacks. Firstly, they
depend on the assumption that the parameters of interest
follow a given prior distribution. Secondly, their genome-
wide implementation can require a huge computational
burden [57].

3.3. Expression Quantitative Trait Loci. Quantitative trait
locus (QTL) is a DNA region associated with a quantitative
phenomenon. In most genetic diseases, quantitative traits
are often a measure of the disease severity, such as the lipid
levels in a dyslipidemia. Genetic variants could be studied
for its capacity to affect these quantitative traits and then to
influence the disease severity. Differences in gene expression
levels between patients and controls are now recognized as
an additional mechanism influencing the development of
a complex disease. We are here reporting an example of
QTL study based on gene expression levels, the expression
Quantitative Trait Locus (eQTL), for example, the study of the
effect of a DNA variant on the gene expression. Experimental
data from eQTL mapping are mainly formed by a genetic
map, marker genotypes, and microarray data extracted by a
set of individuals. After the removal of systematic effects, it
can obtain measures of gene expression levels. This section
does not deal with statistical issues related to a correct eQTL
experimental design. To this purpose the reader can refer to
[71] and references therein.

eQTL data were used for the identification of the so-
called hot spots [72], constructing gene networks [73] and
the setup of subclasses of clinical phenotypes [74], and
shortening the list of candidate genes [75]. All these studies
are based on the generation of a list of transcripts and the
respective genomic locations these transcripts correspond to.
The methods for the eQTL localization are mainly based on
usual QTL mapping techniques. A logarithms of odd (LOD)
score curve is computed for each transcript. LOD score
allows comparing the probability of measuring the observed
values if two loci are linked with respect to the probability
of observing the same values at random. LOD score curve
is obtained computing LOD score for all genomic positions.
Several approaches have been proposed to control the FDR
based on 𝑝-values and 𝑞-values [76].

Having said that, in eQTL studies 𝑝-values (correspond-
ing to the peaks of LOD score curves from each transcript) are
used to yield and to control the FDR for a list of transcripts
mapping to one location. Since this approach takes into
account only LOD score peaks, it cannot be used for tran-
scriptmapping tomultiple loci [76]. In order to copewith this
problem, statistical methods have been designed to control
the overall FDR for single and multiple linkage [77, 78]. In
particular, an empirical bayesian method to eQTL mapping
has been proposed by Kendziorski et al. [78]. The method
shares information across transcripts to estimate the poste-
rior probability that each transcript maps to each marker.
The method has two different steps. Firstly, transcripts are
identified. Then, multiple eQTL are identified using the
posterior probability. The method states a genome linked
to a trait if its posterior probability of linkage is in the top

(100 − 𝛼) percent of all probabilities for the trait. A typical
value for 𝛼 is 5.

After having generated the list of transcripts, the iden-
tification of the hot spots is usually the next task. Hot spots
are genomic regions where there is plenty of transcript maps.
The simpler method for identifying the hot spots is the
following. For each genomic region, the overall number of
mapping transcript is computed. Hot spot candidates are the
region whose overall number is ranked among highest ones.
Although very simple, the method above can fail if there are
several loci with effectswhose intensity is not adequately large
to be considered statistically significant. A strategy for coping
with the problem above has been proposed by Kendziorski et
al. [78]. The strategy consists in summing evidence in favor
of mapping across every transcript and verifying that the
obtained score exceeds a given threshold. Further approaches
proposed for the hot spots identification consist in computing
profiles averaged across correlated transcripts [79] and pro-
files from transcripts that are functionally related [72]. After
having determined the candidate hot spots, it is necessary to
use statistical tests in order to assess the confidence that each
spot is hot. Therefore a crucial problem is the identification
of the so-called ghost hot spots, that is, candidate spots that
have been considered erroneously hot. This problem has
been partially addressed by a Poisson-based test [80] that
can detect ghost spots, by computing the probability that a
particular genome region would have at least 𝑘 transcripts
linked to it if there were not any hot spots. Unfortunately,
this test cannot be applied when the candidate hot spots
are identified by summing the evidence of linkage across all
transcripts.

The detection of hot spots yields list of comapping tran-
scripts and involves the inspection of further candidates con-
trolling the whole collection. This is motivated by the obser-
vation that comapping is the result of comembership in a
biological pathway where functional information is deduced
by means of temporally correlated transcripts. Jansen and
Nap [81] showed first how spot list could be used to make
networks, represented mathematically by graphs. A graph is
a couple of a set of vertices and a set of edges, connecting
couples of vertices. In this case, a vertex represents either a
gene or a transcript. An edge connects two vertices when
there is some relationship between them; besides, a weight,
measured by correlation coefficient, is generally associated to
the edge. Pairwise correlations among all transcripts are used
to identify cliques [82], namely sets of vertices, representing
transcripts, completely connected by edges. We have to recall
that the clique’s identification in a graph is aNP-problem [34].
This implies that it is an intractable problem if the graph of the
transcript is not adequately small. Mapping regions common
to cliquemembers are studied to identify potential candidates
that are likely affecting the pathway.

Other approaches that can permit the identification of
potentially causal relationships among transcripts are the
ones based on bayesian networks [83]. Bayesian networks
have the aim of finding the so-called best model, namely, the
model that optimally describes the data (i.e., the transcript
and/or the loci) in some given model space. Finding the
best model usually requires the computation of penalized
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likelihood that manages the trade-off between the goodness
of the fit of the model and the number of model parameters.
In order to guarantee that the problem is computationally fea-
sible, the model space has to be moderate. Narrowing down
the model space for eQTL mapping is usually performed
considering only the transcripts that maps to at least one
location [84, 85].

We conclude the section quoting that several software
tools for eQTL analysis are currently available [86–88].

4. Conclusions

In the paper an overview of statistical and computational
methods focused on sequence analysis and complex dis-
eases has been presented. Among the different techniques
discussed in this overview, bayesian techniques seem to
be promising in terms of performance in some fields,
for example, complex diseases [89]. Since these methods
generally require a remarkable computational burden, their
application has not been popular in the past. Therefore, the
development of new high performing computing platforms
makes possible, in the next future, a massive use of bayesian
techniques in order to cope with biological problems and
in particular with complex disease tasks. Although some
biological problems have been solved, new ones, even more
complex, arise representing, in this way, novel challenges for
either biological or statistical and computational methods.
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