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Heart diseases are characterized as heterogeneous diseases comprising multiple subtypes. Early diagnosis and prognosis of heart
disease are essential to facilitate the clinical management of patients. In this research, a new computational model for predicting
early heart disease is proposed. The predictive model is embedded in a new regularization based on decaying the weights according
to the weight matrices’ standard deviation and comparing the results against its parents (RSD-ANN). The performance of RSD-
ANN is far better than that of the existing methods. Based on our experiments, the average validation accuracy computed was
96.30% using either the tenfold cross-validation or holdout method.

1. Introduction

Cardiovascular disease, or CVD, refers to various heart
disorders, including structural heart abnormalities and
blood vessel blockages. Over 17 million individuals have
died from cardiovascular disease, according to the World
Heart Federation (WHEF). Additionally, the World Health
Organization (WHO) reports that cardiac disease has a
greater yearly fatality rate than any other disease. In various
domains of the biomedical sector [1-3], machine learning
techniques have been successfully utilized. Machine learning
has transformed the biomedical industry, paving the way for
several new methods for simplifying the identification of
various disease classes. Applied mathematicians have long
recognized the “curse of dimensionality” as a significant
barrier to using complex biomedical data. Such data is
distinguished by having a higher-dimensional space with
fewer points. Reducing the feature space will help the
classification models be more effective [4-5]. Once the ir-
relevant features are eliminated, efficient classifications and
predictions of various diseases are possible [6-9]. Choosing

an appropriate data preprocessing strategy is unavoidable,
but classifying and predicting models still poses another
challenge. It is highly difficult to diagnose cardiovascular
disease, and we must do it with great accuracy and profi-
ciency. Usually, the diagnosis is based on just assumptions
and the doctor’s experience. However, just like humans, we
are not infallible, and our decisions could result in either a
life-saving or a tragic outcome. In these critical situations,
machine learning techniques have emerged. Instead of using
human knowledge, this method can accurately foretell a
disease. Selecting the correct categorization and prediction
model is still considered a difficult task by many researchers.
Without classifying and predicting CVD, these models’
performance in classifying and predicting cardiovascular
disease declines significantly. After developing such a model,
the proper evaluation must be validated through a strong
channel, such as using a medical and research institute for
heart disease detection and prediction. This study proposed
a new predictive model for early heart disease detection, in
which weight decay is used to shrink the influence of each
data point in the weight matrix. Once weight decay has been
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applied, the influence of each data point is multiplied by A to
obtain the regularization term. To summarize, this paper has
contributed the following to the literature.

We compare the performance of RSD-ANN with other
models. Our experimental results indicate that our model
achieved relatively higher results than those of previously
published methods. We present the design and imple-
mentation of a regularizer based on the Relative Standard
Deviation for the Artificial Neural Network (RSD-ANN)
system. Furthermore, we study the performance of RSD-
ANN in combination with the PCA transform and different
existing regularizers with varying parameters of regulari-
zation and their impacts on the accuracy.

This paper is organized as follows: Section 2 discusses the
methods employed in the detection of heart diseases. Section
3 explains the use of the dataset for heart detection. In
Section 4, the benefits of the regularization methods are
discussed. In Section 5, the proposed architecture is dis-
cussed. Section 6 explains the training and validation pro-
cess. Section 7 discusses the efficiency of the architecture
through evaluation matrices and provides a comparison
with the state-of-the-art methods. Finally, conclusions are
drawn, and future directions are discussed in Section 8.

2. Related Work

For complex parameter interpretation across multiple cat-
egories of data, machine learning methods outperform
statistical approaches in both accuracy and precision. Ma-
chine learning techniques produce accurate and robust
predictions based on a small set of assumptions [10], and
they are becoming increasingly popular. Machine learning
techniques are either classified as unsupervised learning
methods or supervised learning methods. A trained dataset
is not required for the former, but it is required for the latter.
Gavhane et al. [11] devised a model for analyzing and
monitoring the human cardiovascular system. This model
was created to detect coronary artery disease in patients.
They used the Cleveland dataset. The dataset has 76 prop-
erties and 303 instances. The authors used 13 of the 76
available attributes in the analysis process. The model de-
tected coronary artery disease using Bayes networks,
Functional Trees (FT), and Support Vector Machines
(SVM). SVM-based holdout tests were 83.8% accurate,
whereas FT-based holdout tests were only 81.5%. The rel-
evant attributes were selected using the Best First method.
The accuracy of the FT was 84.5%, the Bayes net was 84.5%,
and the SVM was 85.1%. Repaka et al. [12] used Naive Bayes
to design a method for detecting cardiac disease. Due to its
application of the Bayes Theorem, this strategy became one
of the most influential categorization models. WEKA was
used to implement the solution. The model had an accuracy
of 86.419%. However, for larger datasets, the model’s reli-
ance on the Bayes Theorem cannot be validated. Babu et al.
[13] proposed several methods for classifying cardiovascular
diseases. This solution was implemented using the WEKA
tool. Machine learning techniques such as Bagging, Naive
Bayes, and J48 were employed. The J48 technique had an
accuracy of 84.35%. The naive Bayes algorithm was 82.31%,
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while the Bagging strategy was 85.03%, making it the more
accurate method of the three. Parthiban and Srivatsa created
a predictive model for diabetic patients’ CVD using Naive
Bayes and SVM [14]. Only 142 people out of 500 were
impacted, while the remaining patients were unaffected by
the condition. The Naive Bayes algorithm was accurate to
74%. Tan et al. [15] proposed a hybrid approach using
wrapper-based feature selection. It included Support Vector
Machines (SVM) and Genetic Algorithm (GA) techniques.
To analyze the proposed approach, WEKA and LIBSVM
were employed. The authors used five datasets from the UC
Irvine machine learning repository. The hybrid technique
was applied to the heart disease dataset to achieve the highest
accuracy of 84.07%. Ordonez [16] proposed a rule-based
association method for heart disease prediction. The rule set
was optimized using an algorithm. This algorithm discov-
ered association rules in the training data and validated them
on a separate test dataset. The significance of the associated
rules in the medical field was validated using support and
confidence values. This strategy resulted in the development
of rules with a high degree of predictive accuracy for heart
disease. Rairikar et al. [17] proposed a method for cardiac
disease prediction. This system was developed using thirteen
clinical characteristics extracted from a UC heart disease
dataset. Algorithms based on the Learning Vector Quanti-
zation (LVQ) technique and Artificial Neural Networks
(ANNSs) were used to diagnose heart disease. The proposed
system achieved a level of accuracy of approximately 80%.
Nahiduzzaman et al. [18] developed a framework for di-
agnosing heart disease using SVM and Multilayer Percep-
tron (MLP). This method achieved 80.41%. Finally, Nahar
et al. [19] proposed a novel hybrid CVD prediction tech-
nique that combines Computerized Feature Selection (CFS)
and Medical Feature Selection (MFS). However, in the
absence of a more precise classification methodology, this
strategy resulted in an inefficient model. A multistage
Convolutional Neural Network (CNN) model for diag-
nosing coronary heart disease was developed by Dutta et al.
[20]. For data imbalance, this model proved to be resilient.
However, lasso regression was used in this case because it
assumes a linear relationship between the input factors and
the labels. Worth noting, unbalanced data lead to incorrect
classification of data. Tougui et al. proposed a model for
classifying and predicting heart disease using ANN and SVM
in [21]. The authors achieved an accuracy of 84.7%. In
addition, they utilized 12 risk factors, such as cholesterol,
food, age, sex, and blood pressure, to develop a genetic
neural network algorithm for predicting heart diseases. 50
individuals from the American Heart Association vol-
unteered to take part in the study. Though this approach has
some merit, it also has a couple of drawbacks. The allocation
of neural networks is a random process, and the neural
network’s performance is adversely affected when searching
for the optimal global value. The other disadvantage of
adopting the backpropagation technique is that it may result
in the neural network failing to achieve convergence. Pathak
and Arul Valan [22] proposed predictive models for cardiac
disease using trees, SVM, Naive Bayes, Neural Networks,
and fuzzy approaches. The F-measure, accuracy, recall, and
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precision of the system were all tested and satisfactory.
However, there was no suitable feature selection process
used in this research. Hence, the J48 classifier model was
shown to be the most successful among the numerous
models tested in this study.

Baitharu and Pani [23] proposed a study primarily con-
cerned with healthcare decision-making and would employ
various techniques, including J48, IBK, VFI, Nave Bayes,
Multilayer Perceptron, and Xero. The accuracy attained was
extremely low, and it is, therefore, unsuitable for use in
healthcare decision-making situations. Bouaziz et al. [24]
presented a K-NN technique for predicting cardiac illness
based on wavelet analysis. The primary goal was to detect
cardiac disease with the smallest number of features possible.
After the samples have been generated for each output class, the
suggested Average KNN computes the Euclidean distance
between them to quickly identify and pick the nearest
neighbors. The method has lower accuracy and is less efficient
than other methods. Sharma and Saxena [25] developed a
genetic algorithm-based technique for predicting cardiac dis-
ease in their paper. The accuracy of this technique was 73.46%,
based on the utilization of 14 different attributes. This approach
is inefficient and unsuitable for decision-making. Using a
hybrid model ensemble feature selection approach, Tripathi
et al. [26] proposed a method for credit scoring. The efficacy of
this methodology was purely dependent on the selection of the
most appropriate classifiers for the ensemble. Using a rough set
and multlayered ensemble for classification, Tripathi et al. [27]
created another hybrid credit scoring model implemented in
the real world. Both models are well suited for use in credit
scoring situations. Balogun et al. [28] suggested a technique
that used four-filter feature ranking (FFR) and a fourteen-filter
feature subset selection to determine the best filter feature to
use (FSS). This technique improved the predictability of the
inducers and is particularly well suited for diagnosing software
defects. Akintola et al. [29] investigated the impact of filter-
based attribute selection approaches on predicting software
defects. The ten datasets from the NASA and Metric Data
Program software repository were evaluated using the Principal
Component Analysis (PCA), CFS, and Filter Subset Evaluation
methods developed by the researchers. Balogun et al. [30]
investigated the effects of 46 feature selection strategies using
Naive Bayes and decision tree classifiers to determine their
effectiveness. The use of probability-based, statistical-based,
and classifier-based FFR approaches was advocated in this
review. This approach is particularly well suited for discovering
software flaws. Kolukisa et al. [31] established a novel adaptive
and optimized ensemble technique to analyze coronary artery
disease (CAD) that is both fast and accurate. Even though this
strategy employed an ensemble approach for classification, it
did not use any pretreatment techniques before classification.

On the other hand, Latha and Jeeva [32] looked at
numerous ways of enhancing the efficiency of weak pre-
diction approaches. When it came to classification, the
strategy used both bagging and boosting ensembles. As
described by conducting a survey of various CVD prediction
techniques, the dimensionality of a medical dataset is ex-
tremely high, necessitating the use of an efficient feature
selection mechanism to keep the number of attributes to a

minimum while also incorporating an efficient machine
learning model to improve prediction accuracy. Addition-
ally, there is a lack of suitable classification and prediction
methodologies for accurately classifying and forecasting data
on heart disease. Additionally, with recent advancements in
classification techniques such as ensemble learning, there
may be a way to improve prediction accuracy and efficiency
in the future. This study established a new predictive model
for identifying heart disease diagnosis in patients using a
new regularizer. RSD-ANN has several advantages over
other models, including requiring less computing time and
providing higher generalization capabilities.

3. Dataset

The heart disease dataset used in the experiments is available on
the University of California’s open repository. There are 303
instances, 76 features, and 2 classes in total (absence and
presence of heart disease). Each instance contains information
about a patient’s heart disease diagnosis and physical and
biochemical constants commonly used in medical diagnosis.
Notably, this is one of the most commonly used open datasets
in medical machine learning papers [33]. We only used 14
features for this study, including the class attribute, which has
the following distribution: the absent class had 150 instances,
corresponding to 55.5% of the dataset, and the present class has
120 instances, corresponding to 44.5% of the dataset. As shown
in Table 1, the class values are binary: they answer “yes” or “no”
to the question of existing heart disease.

Statlog’s categorical features are depicted in Figure 1 as a
mosaic plot. The horizontal axis displays the values for
categorical or discrete attributes, with the number repre-
senting the number of people who have that characteristic
value. The proportion of people with and without heart
disease for a particular value of a characteristic is called the
height proportion. There appeared to be a specific link
between some characteristics and heart disease. For instance,
when the slope was type 2, the risk was more significant for
women than for males, and there was a significant associ-
ation with heart disease. Differentiating the values according
to the density function illustrates the association between
numerical and cardiac diseases (Figure 2). The plots indicate
that there may be a correlation between age, the maximum
heart rate achieved during an exercise test (thalach), and the
depression generated by activity at rest (oldpeak) in indi-
viduals with or without cardiac disease.

4. Regularization: Control the
Model Complexity

As a predictive model is trained, the learning model may begin
to memorize the data, causing the generalization error to in-
crease. As a result, the model performs admirably on training
data but dramatically worsens on unknown or test data. The
process of avoiding memorization is known as “regularization.”
The goal of regularization is to penalize the learning model for
starting to generalize by performing well on previously unseen
data. Penalty terms are imposed on the prediction model by
various types of regularizers. The most commonly used
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TaBLE 1: Dataset description for heart disease.

S. no. Attribute name Value range
1 Age group =25
2 Gender Male =1, female=0
3 Pain in chest 4 distinct values denote the intensity of pain
4 Diastolic pressure >94
5 Cholesterol quantity per mg/dl >126
6 Sugar quantity in blood per mg/dl >120
7 ECG values 0,1o0r2
8 MHR >71
9 Angina induced Oorl
10 ST peak depression >0
11 ST segment elevation I,2o0r3
12 No. of great vessels considered 0,1,20r3
13 Thal value Fixed defect =6, reversible defect=7, normal =3.
A
100
75
50
& 138
25
Healthy Heart disease
Class
I Healthy
I Heart disease
A A
100 100
9 49
75 75
72
S 50 < 50
25 25 12 91
24
0
Female Male ST slope 0 ST slope 1 ST slope 2
Sex Slope
I Healthy I Healthy

I Heart disease

I Heart disease

FIGure 1: Categorical features of mosaic plots.

regularization methods include L1 and L2 regularizers. A more
in-depth discussion of the L1 and L2 functions, as well as the
elastic net and new regularizers, is provided below.

4.1. Lasso Regularizer. L1 or lasso regression is a type of
regression model that employs L1 regularization in the
context of regression modeling. The L1 regularization

multiplies the coefficient by the sum of the absolute values of
the coefficients, which is the most straightforward kind of
regularization. This assists us in deciding which features to
include in our model since it downsizes the less critical ones
while removing the less important ones (making them zero).
In mathematical language, lasso regression penalizes the loss
function by including the absolute value of the coefficient of
the regression model as a penalty term [34]:
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Ficure 2: Contours representation of L1, L2, elastic net, and new
regularizers.
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where P is the total number of features in the data, 5 is the
weight values associated with each feature, and j is the j — th
row of the weight matrix. A is the model’s regularization
parameter. Reduced overfitting is achieved by increasing A.
The regularization term multiples by A (scalar), which
modifies the overall effect of regularization. Consequently,
increasing the A value will improve the regularization
impact.

4.2. Ridge Regularizer. The term “L2 or ridge regression”
refers to L2 regularization. The parameters must be reduced
to regularize the coefficients. The coefficients shrink in size
when a penalty is applied. The additional penalty associated
with ridge regularization is equal to the total of the squared
values of the coefficients added to the loss function [34]:

n
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where P is the weight matrix row for each feature, is the
feature’s coeflicient value, and j is the j—th row of the
weight matrix. The correct value for A must be found
carefully. A large Lambda overfits the training data, leading
to underfitting. In general, L2 regularization does an ex-
cellent job of reducing overfitting.

4.3. Elastic Net Regularizer. In the elastic net linear re-
gression, regression models are regularized using both the
lasso and ridge techniques. By combining the ridge and lasso
techniques and learning from their shortcomings, the
technique improves the regularization of statistical models.
The elastic net approach addresses lasso’s constraints, such
as when only a few samples are required for high-dimen-
sional data. The elastic net approach allows for the

incorporation of “n” variables until saturation is reached. If
the variables are highly correlated, lasso will usually pick one
from each group and ignore the rest. To increase the ver-
satility of the elastic net, a quadratic expression (||B||*) is
added to the penalty (a type of ridge regression when applied
in isolation) because the quadratic expression in the penalty
elevates the loss function toward being convex. Elastic net is
a hybrid of ridge regression and lasso regularization that
excels at modeling data with many strongly correlated
predictors. Consider a data matrix with dimensions of p,
where p denotes the number of predictor variables and a
solution vector with dimensions of #n, where n denotes the
number of observations. The goal of an elastic net is to
minimize the following loss function:

p
1y DB ap, ®
j=0

where A is the regularization parameter and « is the mixing
parameter. The A parameter is nonnegative, that is,
A € [0, 00). When the value of A is zero, the regularization
has no effect. In other words, the only goal is to reduce the
loss function to its smallest possible value. As the value
approaches infinity, the regularization effect becomes more
pronounced. Instead of minimizing the loss function, the
only goal is to keep the coeflicients 8 as small as possible.
When «a = 0, the elastic net is the same as ridge regression
(i.e., a set of correlated predictors’ coefficients are similarly
reduced toward zero). In contrast, when a = 1, the elastic
net is the same as the lasso regression (one of the correlated
predictors has a larger coefficient, while the rest are shrunk
to zero).

4.4. New Regularizer. In general, the L1 regularizer selects or
reduces features, whereas the L2 regularizer reduces the
weights of unimportant features. The lasso fails to provide a
grouped selection, which is the primary shortcoming of
regularizers of this type of selection. It has a tendency to
select one variable from a group while ignoring the rest in
the group. Aside from that, the elastic net contributes to
reducing the impact of specific features while not totally
eradicating them. Furthermore, they manage individual
weights without taking into account the relationship be-
tween the weight matrix entities. To address this constraint,
we designed a new regularizer that considers the weight
values’ dispersion. This regularizer is referred to as a stan-
dard deviation-based regularizer (RSD). The new regularizer
computes the regularization term by multiplying the weight
matrix’s standard deviation by A. The goal is to build a more
adjustable weight decline method. As a result, the regularizer
restricts the learning model from utilizing global values from
the weight space as input (see Figure 1).

As depicted in Figure 2, the new regularizer’s outlines are
presented in detail. Specifically, the penalty for all regu-
larizers (L1, L2, elastic net, and the new) is equal to one in
this case. We have also omitted the sum factor from the
suggested regularizer to preserve its dimensions. As a result,
the regularizer’s spread depends on the penalty term A. The



spread expands as the penalty term A is reduced, and the
spread shrinks as the penalty term A increases. The equiv-
alent mathematical formulation for the new regularizer is
provided as follows:

Py Pk 2
W=- 1Y B -(Y5 (4)
o(w) =— - ; ,
Pk j=1] Pk i=1 /

where k denotes the row numbers in the weight matrix and j
is the weight matrix’s row whereas ¢ denotes the weight
values of standard deviation. The parameter A controls the
weight matrix values, and P is the columns number in each
j — th row of the weight matrix (P depends on the number of
features in the dataset). So, P is the size of the weight vector.
Hence, we minimize the loss function with respect to w
through the standard deviation of w to adopt the specific
range values. The Nesterov ADAM optimizer was used to
train the model, which included tanh activation functions.
The model was trained over 100 epochs. A feed-forward
network was used to classify the labeled data.

5. Model Architecture

To analyze the efficiency of RSD-ANN, we have performed
certain steps given below. The functionality and dependency
of each step are depicted in Figure 3.

(1) Data preprocessing
(2) Data scaling
(3) Dimension reduction/feature selection

(4) Classifier selection

5.1. Data Preprocessing. During data preprocessing, nominal
and textual attributes are converted to numerical values
through the label encoding algorithm. After that, the du-
plication of data is removed to avoid the classifier biased
toward the majority class in data and thus affect the per-
formance. Data preprocessing is a crucial task in both su-
pervised and unsupervised learning.

5.2. Data Scaling. In the dataset, each attribute column has a
different range of data. Some are continuous values having a
low standard deviation, and others have a large range of
values dispersed in feature space. To bring the data to equal
mean and standard deviation, data scaling is performed.
Through scaling, the information in the data is retained. In
this step, both datasets were scaled according to the fol-
lowing equation:

X; - min(X;)
i = A > (5)
max (X;) — min(X;)
for whichi= 1, ..., k where k represents the total number of

rows and X; shows the i — th feature in the data.

5.3. Feature Selection. Feature selection, also known as di-
mensionality reduction, completely removes unnecessary
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Data preprocessing |—>| Data scaling range 0 to 1 |
Dimensionality reduction

4>| Deep neural network with novel reg

Accuracy
Improved?

~|Tune the hyper parameter

| Export the Model

FIGURE 3: The general workflow of the proposed model.

features from the data. For this purpose, we transformed the
data into eight principal orthogonal components using a
statistical method known as Principal Component Analysis
(PCA) algorithm [35]. PCA was applied to the heart dataset,
and all 13 features were reduced to eight correlated
components.

5.4. Loss Function. To evaluate our classifier, we have used
the cross-entropy loss function. The cross-entropy loss
function is defined in equation (6). In neural networks, most
of the time, the cross-entropy is given priority over other loss
functions due to some specific reasons. For example, the
squared loss function is suitable for regression. The other
reason is that the output values of cross-entropy are between
0 and 1. Therefore, it is simple to convert the probabilistic
values between 0 and 1 to either one class or another using
different thresholds. Moreover, the cross-entropy loss
function easily converges to the corresponding class values
compared to other loss functions:

c
Cross entropy = Z (tlog f(s;)) (6)

where C is the number of classes, t; is the ith class, and f (s;)
is the ith output after activation function f.

6. Training and Validation Process

We chose Python as the implementation language for
simulations, and the Keras framework is used for ANN. The
ANN model is embedded with a new regularizer to test our
method. Using the mathematical description given in
equation (3), the proposed regularizer is implemented as a
function. This new function was assigned to the kernel
regularizer in the ANN model instead of the built-in reg-
ularizers. Two hidden layers of five and three units each
make up the ANN predictive model. According to the class
values, the last layer has two units. Except for the final layer,
where the softmax activation function is used, each layer
uses the tanh activation function. In the first two layers, the
weight matrix was initialized with a Gaussian random
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distribution. For 100 epochs, the ANN model is trained on
80% of the data and validated on 20% of the data, with a
batch size of 4 for each iteration. As a result, the results of
multiple simulations were recorded and plotted. The fol-
lowing section contains the results and discussion.

7. Results and Comparison

7.1. Embedding L1 Regularizer with ANN. The default L1
regularizer was embedded with ANN learner and trained for
different values of A. This regularizer’s best results were with
A=10"%, and accuracy was 85.14% (see Figure 4).

The L1 regularizer application, in combination with the
PCA algorithm, increased the accuracy to 87.7%, which was
the best accuracy possible (Figure 5). This increase in ac-
curacy can be ascribed to the removal of less important
features through PCA transformation. PCA only keeps the
correlated features, which has a strong correlation with
possible categories in data.

7.2. Embedding L2 Regularizer with ANN. Similarly, in this
step, we replaced the L1 regularizer with the L2 regularizer in
the ANN model and searched for the best parameters to
yield better accuracy. As a result, 84.8% accuracy was
recorded with 1 =107° (see Figure 6).

We observed a decrease in the average accuracy when
combining the PCA transform with the L2 regularizer. The
average accuracy for this stage was 83.04% (see Figure 7).
This is because the L2 regularizer does not assign zero values
to attribute coefficients. Hence, the less important features
are also incorporated, due to which the accuracy decreased.

7.3. Embedding New Regularizer with ANN. Based on our
results’ analysis, the new regularizer showed a significant
improvement in terms of accuracy. The accuracy of our new
regularizer outperformed L1 and L2 regularizers. The av-
erage accuracy obtained was 88.59% (see Figure 8).

We then combined the PCA algorithm with RSD-ANN
to measure accuracy. As a result of this combination, the
accuracy jumped to 96.30%; see Figure 9. During the PCA
transformation, the number of features was reduced to eight
orthogonal correlated components. As an important note,
the accuracy improved because PCA projects each feature to
maximum variance in feature space. The new regularizer
controls the spread of the weight values in weight space (see
Figure 10). Hence, the data becomes more separable for the
ANN classifier, providing greater accuracy as a result. The
same architecture was used for this simulation, and A values
were slightly increased to 107°.

To validate our proposed model’s effectiveness, we
compared the RSD-ANN results with the results obtained
from combining elastic net regularizer and PCA transform
with eight components on the heart dataset. An accuracy of
81.08% was observed, which showed that the elastic net
regularizer performed worse than the L1 and L2 regularizers
separately. The accuracy plot for elastic net regularizer is
shown in Figure 11.
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FIGURE 4: Accuracy of 85.14% achieved with L1 regularizer.
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FIGURE 5: Accuracy of 87.7% achieved with L1 regularizer with
PCA algorithm.
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FIGURE 6: Accuracy of 84.8% achieved with L2 regularizer.

Table 2 shows each embedded regularizer’s experimental
results with ANN, demonstrating that the new regularizer
performed significantly better than the default regularizers.
Therefore, the proposed regularizer is extensively effective.
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FIGURE 7: Accuracy of 83.04% achieved with L2 regularizer with
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FIGURE 8: Accuracy of 88.59% achieved with new regularizer.
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FIGURE 9: Accuracy of 96.30% achieved with new regularizer with
PCA transformation.

We performed our simulations using RSD-ANN with a
PCA algorithm. Out of 13 attributes, eight orthogonal
correlative features were reproduced via PCA. The
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TaBLE 2: Dataset description for heart disease.

Regularization Without PCA (%) With PCA (%)
L1 85.14 87.5
L2 84.8 83.03
New 88.59 96.30

Best results are highlighted in bold.

experimental outcomes of the proposed approach are
compared to the results of other techniques currently
available. Table 3 shows the classification metrics (accuracy,
sensitivity, specificity, and f-score) of RSD-ANN compared
to other models. Based on our experimental results, it can be
concluded that the RSD-ANN has outperformed all other
models considered in the comparison. The GA-
LDA +hybrid ensemble model achieved an accuracy of
93.65%. On the contrary, our model has the highest accu-
racy. Our model has achieved 93.75% in specificity, whereas
the other approaches have rates below 90%. The sensitivity
rate for the GA-LDA +hybrid ensemble is 96%, which is
higher than the sensitivity rate of RSD-ANN due to
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TaBLE 3: Proposed regularizer versus existing literature’s results using 10-fold CV.

Reference Method Accuracy Sen. Spe. F-score

[37] BSWEFM 87.4% 82.5% 91.3% None

[38] TWIST algorithm 84.14 74.23 78.87 None

[39] ICA+SVM 83.75 80.67 79.28 None

[40] GA-LDA + hybrid ensemble 93.65 96.00 89.25 None
RSD-ANN 96.30% 95.24% 93.75% 94.57%

Best results are highlighted in bold.

identifying and selecting the best features for better pre-
diction. It is worth noting that this measurement may cause
issues if the data analyzed is affected by uncertainty or
inaccuracies. Consequently, it limits its usability. However,
by utilizing a fuzzy classifier, we can avoid these issues [36].
The experiment results demonstrate that our proposed
method outperforms the other models in terms of accuracy
in classifying cardiovascular disease. RSD-ANN was trained
on a train-test split of 80-20% data. According to this di-
vision, the model was trained on 237 patients and tested on
60 patients.

8. Conclusion

In this paper, we present an efficient computational model
for heart abnormality detection. We focused on a learning
model that uses a new regularizer, which is purely based on
the weight matrix’s standard deviation. The new regularizer
penalizes the coefficients of attributes from getting high
values in the weight matrix space. The proposed model
obtained excellent results, and it can be used to assist
medical practitioners when searching for abnormalities in
heart function. During the process, holdout and 10-fold
validation were used, and the accuracy obtained for heart
disease detection was 96.30%. Consequently, the incorpo-
ration of the proposed regularizer with ANN surpassed
other methods in terms of accuracy.
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