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Abstract

Breast cancer is the most common malignant tumor and the leading cause of

cancer‐related deaths in women worldwide. Effective means of predicting the

prognosis of breast cancer are very helpful in guiding treatment and improving

patients' survival. Features extracted by radiomics reflect the genetic and

molecular characteristics of a tumor and are related to its biological behavior

and the patient's prognosis. Thus, radiomics provides a new approach to

noninvasive assessment of breast cancer prognosis. Ultrasound is one of the

commonest clinical means of examining breast cancer. In recent years, some

results of research into ultrasound radiomics for diagnosing breast cancer,

predicting lymph node status, treatment response, recurrence and survival

times, and other aspects, have been published. In this article, we review the

current research status and technical challenges of ultrasound radiomics for

predicting breast cancer prognosis. We aim to provide a reference for

radiomics researchers, promote the development of ultrasound radiomics, and

advance its clinical application.
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1 | BACKGROUND

According to the 2020 global cancer statistics released by
the International Agency for Research on Cancer, female
breast cancer has the highest incidence worldwide and

its mortality ranks fifth among cancers, posing a serious
threat to women's life and health [1]. Although doctors
have aimed to improve the 5‐year survival rate of patients
with breast cancer by adopting comprehensive treatment
plans that include surgery, radiotherapy, chemotherapy,
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targeted therapy, and immunotherapy, the prognosis is
still poor once recurrence and metastases occur [2]. It is
very important to develop an effective means of
predicting the prognosis of breast cancer because this
would have far‐reaching significance in guiding treat-
ment and improving patients' survival.

The features extracted by radiomics reflect the genetic
and molecular characteristics of a tumor and are related
to its biological behavior and the patient's prognosis
[3–5]. With the development of computer‐aided technol-
ogy, radiomics is being used more frequently as a
noninvasive means of predicting breast cancer prognosis
[6–8]. Radiomics includes engineered features (tradi-
tional machine learning methods), which extract quanti-
tative information from images in a high‐throughput
manner, and deep learning, a process that simulates
analysis by the human brain by building neural networks
[9]. Both of these features can be associated with the
prognosis of breast cancer and used to build a clinical
prediction model. Ultrasound is commonly used to
screen for breast cancer and for follow‐up, because it is
inexpensive, involves no irradiation, and is reproducible.
Ultrasound radiomics uses traditional machine learning
and deep learning methods to transform ultrasound
images into mineable quantitative data and construct
models for supporting diagnosis and assessing prognosis.
However, the clinical application of ultrasound radiomics
is limited by the dependence of ultrasound image quality
on humans. At present, to the best of our knowledge,
there are no published reviews or summaries of the
research status and technical challenges of ultrasound
radiomics for predicting the prognosis of breast cancer.
In this article, we aimed to summarize and analyze the
value of using ultrasound radiomics to predict the
prognosis of breast cancer from four perspectives:
conventional ultrasound (CUS) radiomics, radiomics of
new ultrasound technology, existing technology chal-
lenges, and future prospects.

2 | CONVENTIONAL
ULTRASOUND (CUS) RADIOMICS

CUS is the most common means of ultrasonic diagnosis of
breast cancer, and the acquisition of images is relatively
simple. Radiomics can extract information that doctors
cannot identify from images of primary breast cancer. It can
then associate that information with lymph node status,
molecular subtypes of breast cancer, treatment response,
tumor recurrence, survival time, and other patient char-
acteristics, thus providing evidence‐based support for making
decisions in the clinic [10–15]. The workflow of ultrasound
radiomics generally includes image acquisition, image

segmentation, model construction and validation, and
database establishment [16].

Currently, CUS radiomics is mostly used to assist
preoperative, noninvasive diagnosis of molecular subtypes
of breast cancer. Research has mainly focused on the
diagnosis of triple‐negative, luminal type, and human
epidermal growth factor receptor‐2 positive breast cancer
with an area under the curve (AUC) range of approxi-
mately 0.76–0.93 [17–21]. In addition, Jiang et al. [22] have
constructed a deep convolutional neural network based on
4828 CUS images from 1275 patients for diagnosing the
four molecular subtypes of breast cancer. The accuracy of
this model is reportedly 80.07% (95% confidence interval
[CI]: 76.49–83.23) to 97.02% (95% CI: 95.22–98.16) and
87.94% (95% CI: 85.08–90.31) to 98.83% (95% CI:
97.60–99.43) for the two test cohorts of each subtype.
Furthermore, Zhang et al. [21] combined CUS with
mammography images from 3360 paired cases and
proposed multimodal deep learning with intra‐ and
intermodality attention modules to predict molecular
subtypes of breast cancer. The accuracy of the model
was 88.5% (95% CI: 86.0–90.9). The purpose of these
models is to avoid unnecessary biopsies and to guide
preoperative treatment.

Studies have shown that CUS radiomics can accu-
rately evaluate the efficacy of neoadjuvant chemotherapy
(NAC) for breast cancer and contribute to decisions on
the extent of surgery and modification of treatment plans
[23–25]. Jiang et al. [23] constructed a deep learning
radiomics model for preoperatively predicting the patho-
logical complete response of locally advanced breast
cancer. This model is based on pre‐ and post‐NAC
ultrasound images and has an AUC of 0.94 (95% CI:
0.91–0.97) for independent external validation. It also
outperformed radiologists (AUC of radiomic signature
[RS] 1 = 0.82, 95% CI: 0.76–0.87; AUC of RS2 = 0.92, 95%
CI: 0.90–0.96). This outperformance occurs because the
changes that occur in a tumor and its microenvironment
when that tumor responds to treatment are not easy for
humans to identify on ultrasound images. However,
radiomics can capture these subtle changes and is,
therefore, a more sensitive means of evaluating response
to treatment [26, 27]. Gu et al. [24] developed a deep
learning radiomics model for predicting the response to
NAC in breast cancer at an early stage with AUCs of
0.812 (95% CI: 0.770–0.851) and 0.937 (95% CI:
0.913–0.955) for evaluating efficacy after the second
and fourth courses of NAC, respectively. In addition, the
researchers explored the interpretability of the model and
found that it primarily focused on changes within the
tumor after the second course of NAC and changes in the
surrounding tissues after the fourth course of NAC; this
increases the clinical applicability of the model.
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CUS radiomics can also be used to evaluate the
disease‐free survival (DFS) of breast cancer patients after
surgery [8, 28, 29]. Previous studies have shown a
correlation between ultrasound findings and prognostic
factors for breast cancer. On this basis, radiomics can
obtain richer information and predict prognosis more
accurately [30–32]. Xiong et al. [8] established a radio-
mics nomogram for predicting DFS in invasive breast
cancer with a C‐index of 0.796 (95% CI: 0.70–0.89) and
found that CUS radiomics features are potential imaging
biomarkers for risk stratification of DFS in patients with
invasive breast cancer. In addition, Yu et al. [28]
developed a radiomics nomogram based on intratumoral
and peritumoral ultrasound features for estimating the
DFS in triple‐negative breast cancer with an external
validated C‐index of 0.71 (95% CI: 0.66–0.76). This model
was more effective than the clinicopathological model and
tumor node metastasis (TNM) staging system (p< 0.01).

3 | CONTRAST ‐ENHANCED
ULTRASOUND (CEUS) AND
ELASTOGRAPHY RADIOMICS

CEUS continuously and dynamically reflects the
microcirculatory perfusion of tumors. CEUS radiomics
can extract richer information from CEUS images and
videos; this information has been shown to be
beneficial in improving the accuracy of diagnosis of
breast cancer [33, 34]. Besides, CEUS radiomics
features can be used to evaluate the histological
features of breast cancer with high specificity
(84.62%–88.24%) [35]. However, there is a lack of
relevant research on the application of CEUS radio-
mics in predicting the duration of survival, recurrence,
and metastasis of breast cancer. Previous studies have
shown that the qualitative and quantitative character-
istics of CEUS are related to the prognosis of breast
cancer [36, 37]. Therefore, the value of the clinical
application of CEUS radiomics in predicting the
prognosis of breast cancer needs further investigation.

Elastography is an ultrasonic technology that
reflects the stiffness of tissues, shear wave elastogra-
phy (SWE) being the most widely used index. In
breast cancer, greater stiffness of a lesion according to
SWE is associated with predictors of a poor prognosis
[38, 39]. Traditional SWE has a limited ability to
predict axillary lymph node (ALN) metastasis, with
reported AUCs being only 0.585–0.719 [40]. Zheng
et al. [41] used deep learning methods to deep mine
the image features of SWE and achieved excellent
prediction performance (AUC = 0.902, 95% CI:
0.843–0.961). Thus, a model based on SWE images

can also accurately evaluate the tumor burden in the
ALNs (AUC = 0.905, 95% CI: 0.814–0.996). In addi-
tion, Jiang et al. [10] have developed and validated an
ultrasound elastography radiomics nomogram for
preoperative evaluation of the ALN burden in patients
with early stage breast cancer. This nomogram
discriminated between disease‐free axillary (N0) and
any axillary metastases (N+ (≥1)) and achieved a C‐
index of 0.817 (95% CI: 0.769–0.865) for the validation
cohort. Further, the nomogram discriminated
between low (N+ (1–2)) and heavy metastatic ALN
burden (N+ (≥3)) and achieved a C‐index of 0.810
(95% CI: 0.755–0.864) for the validation cohort.
Elastography combined with CUS radiomics improves
the performance of the prediction model and can
better assist doctors in individualizing treatment.

4 | TECHNICAL CHALLENGES

Although radiomics has many applications in diagnosing
breast cancer and predicting its prognosis, there is
overwhelming evidence that the prediction model studies
have been of poor quality [42, 43]. Thus, applying
radiomics to diagnosis and treatment is still a considera-
ble challenge.

First, there is a lack of uniform standards for operating
procedures. Since the quality of ultrasonic image acquisi-
tion is highly dependent on the operator, whether the
predicted results of radiomics depend on the model and
parameters of the ultrasonic machine needs to be further
investigated by large studies. Thus far, radiomics studies of
ultrasonic imaging are less available and more difficult to
interpret than radiomics studies of other imaging methods
such as magnetic resonance imaging and mammography.
To help researchers perform high‐quality and reproduc-
ible studies, in 2017, Lambin et al. [44] proposed an
evaluation of the quality of radiomics research through a
radiomics quality score, the aim being to facilitate the
standardization of radiomics research. A simplified
version of this score is shown in Table 1.

In addition, traditional radiomics research requires
human involvement, which increases the uncertainty of
the results. Some researchers have attempted to improve
ways of addressing this problem [45, 46]. For example,
Lee et al. [45] standardized the values of radiomics
features. There is currently no generally accepted
effective method; however, deep learning can learn
features of images independently and output relevant
results, improving the reproducibility of the method. As
yet, deep learning models still cannot be interpreted
reliably. More supportive clinical evidence and further
research are still needed.
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5 | FUTURE PROSPECTS

Currently, the TNM staging system remains the primary
basis for clinical evaluation of the prognosis of breast
cancer. The development of radiomics provides doctors
with a noninvasive means of comprehensively evaluating
the heterogeneity of breast cancer. CUS radiomics has
great potential in predicting the prognosis of breast
cancer patients. Thus, the development of a multimodal

prediction model that combines ultrasonic techniques
such as CEUS and elastography is a potential direction
for future research.

Furthermore, most radiomics studies have been small
and retrospective. Although they can theoretically
predict the prognosis of breast cancer, they are still at a
clinical research stage [47]. In the future, large,
multicenter, high‐quality studies are needed to enable
the clinical application of the results of radiomics

TABLE 1 Simplified radiomics quality score (cited from Lambin et al. [44]): 36 points denote 100% quality.

Criteria Points

1 Image protocol quality—well‐documented image protocols
(e.g., contrast, slice thickness, energy, etc.) and/or usage of
public image protocols

+ 1 (if protocols are well‐documented)

+ 1 (if the public protocol is used)

2 Multiple segmentations (segmentation by different physicians/
algorithms/software, perturbing segmentations by noise,
segmentation at different breathing cycles)

+1

3 Phantom study on all scanners—detect interscanner
differences and vendor‐dependent features

+1

4 Imaging at multiple time points—collect images of individuals
at additional time points

+1

5 Feature reduction or adjustment for multiple testing:
overfitting is inevitable if the number of features exceeds
the number of samples. Consider feature robustness when
selecting features

+3 (if either measure is implemented)

−3 (if neither measure is implemented)

6 Multivariable analysis with non‐radiomics features +1

7 Detect and discuss biological correlates +1

8 Cut‐off analyses—determine risk groups by either the median,
a previously published cut‐off, or report a continuous risk
variable

+1

9 Discrimination statistics—report discrimination statistics and
their statistical significance. One can also apply the
resampling method

+ 1 (discrimination statistic and its statistical significance are
reported) +1 (if a resampling method technique is also
applied)

10 Calibration statistics—report calibration statistics and their
statistical significance. One can also apply the resampling
method

+1 (if a discrimination statistic and its statistical significance are
reported) + 1 (if a resampling method technique is applied)

11 Prospective study registered in a trial database +7

12 Validation—the validation is performed without retraining
and without adaptation of the cut‐off value, provides
crucial information concerning credible clinical
performance

−5 (unverified) +2 (validation from the same institute) + 3
(another institute) + 4 (two distinct institutes) + 5 (three or
more datasets from distinct institutes)

13 Comparison to the gold standard +2

14 Report on current and potential clinical utility +2

15 Cost‐effectiveness analysis +1

16 Open science and data—make code and data publicly available +1 (scans open) + 1 (ROI segmentation open) + 1 (code open) +
1 (radiomics features are calculated on a set of representative
ROIs and the calculated features and representative ROIs
are open)

Abbreviation: ROI, region of interest.
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research and to promote the development of precision
treatment strategies for breast cancer.

6 | CONCLUSIONS

Ultrasound radiomics is a noninvasive, relatively mature
means of comprehensively evaluating tumor heterogeneity
and diagnosing breast cancer. However, the evaluation of
breast cancer patients' responses to therapy and prognosis is
still at a preliminary research stage. A future promising
research direction is the development of multimodal
prediction models that combine patients' clinical data,
pathological results, gene expression, multiple images, and
other data. Notably, high‐quality radiomics studies are
needed to advance the clinical application of radiomics in
the accurate diagnosis and treatment of breast cancer.
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