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A B S T R A C T   

The main aim of this study is to figure out how well cryptand-2.2.1 (C 2.2.1) and cryptand-2.1.1 
(C 2.1.1) macrocyclic compounds (MCs) work as novel extractants for scandium (Sc) by using an 
artificial neural network (ANN) models in MATLAB software. Moreover, C2.2.1 and C2.1.1 have 
never been evaluated to recover Sc. The independent variables impacting the extraction process 
(concentration of MC, concentration of Sc, pH, and time), and a nonlinear autoregressive network 
with exogenous input (NARX) and feed-forward neural network (FFNN) models were used to 
estimate their optimum values. The greatest obstacle in the selective recovery process of the REEs 
is the similarity in their physicochemical properties, specifically their ionic radius. The recovery 
of Sc from the aqueous solution was experimentally evaluated, then the non-linear relationship 
between those parameters was predictively modeled using (NARX) and (FFNN). To confirm the 
extraction and stripping efficiency, an atomic absorption spectrophotometer (AAS) was 
employed. The results of the extraction investigations show that, for the best conditions of 0.008 
mol/L MC concentration, 10 min of contact time, pH 2 of the aqueous solution, and 75 mg/L Sc 
initial concentration, respectively, the C 2.1.1 and C 2.2.1 extractants may reach 99 % of Sc 
extraction efficiency. Sc was recovered from a multi-element solution of scandium (Sc), yttrium 
(Y), and lanthanum (La) under these circumstances. Whereas, at a concentration of 0.3 mol/L of 
hydrochloric acid, the extraction of Sc was 99 %, as opposed to Y 10 % and La 7 %. The 
Levenberg-Marquardt training algorithm had the best training performance with an mean- 
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squared-error, MSE, of 5.232x10− 6 and 6.1387x10− 5 for C 2.2.1 and C 2.1.1 respectively. The 
optimized FFNN architecture of 4-10-1 was constructed for modeling recovery of Sc. The 
extraction process was well modeled by the FFNN with an R2 of 0.999 for the two MC, indicating 
that the observed Sc recovery efficiency consistent with the predicted one.   

1. Introduction 

The metallurgical, chemical, and electrical industries can all benefit from the utilization of the rare earth element, scandium (Sc) [1, 
2]. Scandium has a smaller ion radius (0.745 Å) and lower hydroxide alkalinity than yttrium (0.9 Å) and lanthanum (0.98 Å) [3]. It has 
a substantially higher proclivity for both complexes generation and hydration. Scandium has attracted a lot of attention in recent years 
due to its unique features in solid oxide fuel cells, aluminum alloys, and other cutting-edge materials [4–8]. Scandium is frequently 
found in Sc-bearing ores alongside other rare earth elements, Ti, V, and U [7,9]. The majority of Sc is currently extracted as a 
by-product from waste of TiO2, red mud, molten aluminum slag, tungsten slag, among other sources [8,10,11]. Sc content was 
determined to be less than 200 ppm. However, the majority of these resources are composed of other elements including Al, Fe, Ti, and 
Zr [12,13]. Because of the low Sc content, the recovery process must be highly selective for Sc. In this context, the majority of recovery 
research has concentrated on the hydrometallurgy process [14,15]. Leaching of Sc into the aqueous phase is the initial step. Then, to 
enhance and purify Sc from the leaching fluid, several separation procedures are used [16,17]. Solvent extraction (SX) is the most 
widely used for Sc recovery [10,18], but other methods, such as resin ion-exchange and polymer inclusion membrane, have also been 
investigated [19–22]. Acidic and neutral organophosphorus compounds, particularly Cyanex 272, tributyl phosphate (TBP), 
di-2-ethylhexyl phosphoric acid (D2EHPA), and P507, are extensively used as extractants for Sc in the SX process [9,23–26]. 

Macrobicyclic ligands, such as cryptand-2.2.1 (C2.2.1) and cryptand-2.1.1 (C2.1.1), are composed of two bridgehead atoms (N, C, 
P, and so on) linked by three bridges [27,28]. Their cage-like cavities can surround metal ions and create stable complexes, which are 
typically spherical [29–31]. Recently, we investigated the ability of some of MC compounds for Sc such as crown ethers (12-crown-4, 
15-crown-6, DC-18-crown-6) and cryptands (cryptand-2.2.2, cryptand-2.2) [21,32,33]. 

The goal of this work was to provide a thorough analysis utilizing an optimization method that will address the key factors affecting 
the extraction of Sc ions from aqueous matrices employing unconventional MC extractants like cryptand-2.2.1 and cryptand-2.1.1. 
This paper aims to describe how to use cryptands as extractants to increase metal ion selectivity. The MCs used in the study, which 
has donors for both oxygen and nitrogen, acts as the bridgehead atom. The recovery of Sc from three elements model solution was then 
carried out based on optimization results to explore the selectivity of MC towards these trivalent ions. The neural network is the most 
common way to make predictive models that can be used to do nonlinear statistical modeling. However, the various experimental 
studies could not ascertain the extent of a non-linear relationship between the process variables such as pH, concentration of MCs 
(mol/L) and Sc (mg/L), contact time and extraction efficiency. 

Machine learning is becoming a potent and popular technique for resolving a variety of issues [34–38].Neural networks (NNs) are 
effective of optimizing nonlinear systems and forecasting the production of new data sets, among other optimization applications. In 
recent years, NNs have been used as an effective modeling tool in a range of processes, including adsorption [39–43], flotation, SX, and 
a variety of other areas of mineral processing. Consequently, the greatest obstacles in the recovery of Sc from aqueous solution are its 
low concentration and low selectivity. This work proposed new extractants for Sc recovery in response to the challenges raised above. 
In this paper, attempts have been done to identify the ability and optimum conditions for Sc extraction process by MC (C2.2.1 and 
C2.1.1) using ANN technique. Moreover, applying these conditions to extract Sc from multi trivalent metal ions (M+3 = Sc, La, Y). To 
our knowledge, the recovery of Sc by C2.2.1 and C2.1.1 has never been investigated. The goal of this work is to extract Sc from aqueous 
solution using cryptand-2.2.1 (C 2.2.1) and cryptand-2.1.1 (C 2.1.1) macrocyclic compounds, using NARX, and FFNN techniques, and 
compare the accuracy and productivity of the model behaviour. This could be of a potential value in the separation and the purification 
of Sc in the REEs processing industry. 

Fig. 1. Chemical structures of the C2.2.1 (a) and C2.1.1 (B) extractants.  
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2. Materials and methods 

2.1. Materials 

The analytical grade of all compounds allowed for their use without further purification. 4,7,13,16,21-pentaoxa-1,10-diazabicyclo 
[8.8.5]tricosane cryptand-2.2.1 (C16H32N2O5, 96 %), 4,7,13,18-tetraoxa-1,10-diazabicyclo[8.5.5]eicosane cryptand-2.1.1 
(C14H28N2O4, 98 %). Fig. 1 shows their structures, which were sourced from Sigma-Aldrich Chemicals Co. 1,2-dichloroethane 
(C2H4Cl2, 99.8 %), chloroacetic acid (C2H3ClO2, 99 %) and chloroform (CHCl3, 99 %) were purchased from Merck Chemicals Co., 
acetic acid (CH₃COOH, 20 % v/v), Ethanol (C2H5OH, 96 %),sodium hydroxide (NaOH, 97 %), hydrochloric acid (HCl, 37 %) and 
scandium solution (1 g/L) in diluted nitric acid (2 %) were purchased from VWR Chemicals BDH Co, Leuven, Belgium. Xylenol orange 
tetrasodium salt (96 %) was purchased from BDH Chemicals Ltd., Poole, England. All aqueous solutions were prepared with deionized 
water. Sc, Y, La standards. 

2.2. Instrumentation and analytical procedures 

The determination of REEs concentrations in aqueous solutions was carried out by atomic absorption spectrophotometer (AAS), 
Shimadzu AA-7000 type, Japan instrument. The pH of aqueous solutions that a pH meter has measured (METTLER TOLEDO, Seven 
Multi, Germany). 

2.3. Artificial neural network model 

The Artificial Neural Networks (ANNs) are computational models that replicate how the human brain learns and makes decisions 
[44–46]. Prior to use, they are designed to go through a learning process. The network structure, the type of activation functions in the 
neurons in human brain, the learning time, and the amount of neurons used throughout the learning process are just a few of the 
essential factors that have an impact on their capacity for decision-making and the accuracy of their conclusions. With over 40 years of 
use, the ANN is a proven technique for various forecasting issues in several fields. ANN appears to be an excellent option for repre
senting non-linear dependency due to its universal approximation functional form [47,48]. 

The main objective of artificial neural networks is to establish a generalized, non-linear connectivity between input and output data 
sets. Input, output, and at least one hidden layer are often used to construct different types of ANNs. Fig. 2, describe the summary of 
main steps to find the optimum conditions for Sc recovery by MC. 

The complexity of the link between the input and output data sets determines the number of hidden layers. In this study, a 
multilayer ANN known as a supervised feed-forward multilayer perceptron (MLP) was used. The MLP neural network is the most 
popular and straightforward ANN assigned to feed-forward neural network FFNNs model. A single input layer, one or more hidden 
layers, and a single output layer are all part of the numerous layers that make up FFNNs. Information can only advance to the output 
layer due to the connection arrangements between the layers [44,49]. X1,X2, .....,Xn; refers to the network’s input, the output of the 
hidden and output layers is denoted by the letters O and Y. However, weight matrices can be used to indicate the relationship between 
the input and hidden layers as well as the hidden and output data as Wij and Wjk, respectively [50]. Let l, n, and k refer to the number of 
neurons in the input, hidden, and output layers in order to determine the desired data, respectively: 

Oj = f

[
∑n

i=1
WijXi + bj

]

for j= 1, 2,……., l (1)  

Fig. 2. Summary of main steps to find the optimum conditions for Sc recovery.  
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Yk = f

[
∑l

j=1
WjkOj + bk

]

for k= 1, 2,……., l (2)  

where bj and bk stand for the threshold factors for the neurons in the hidden and output layers, respectively, and f is the activation 
function. The input, hidden, and output layers of the appropriate MLP are included in this study. However, the parameters in the input 
data set and what is needed to obtain from the network determine how the neurons in the input and output layers function. 

The network in this case comprises four inputs: MCs compounds, pH, contact time, and the concentration of Sc. The output is the 
recovery of Sc. On the other hand, the number of neurons in the buried layer is affected through trial and error methods. It should be 
noted that the applied activation function uses linear activation functions for the input and output layers while claiming non-linear 
activation functions for the hidden levels. The following equation is used in the hidden layer [51]: 

f (x)=
1

1 + e− x (3) 

The forward propagation of the input data is done in order to apply the ANN. Then, to calculate the square error value, E, equation 
(4) is used [52]. In this equation, Yk and Fk refer to the predicted and expected output, respectively. After back-propagating the 
incorrect value, the gradient descent method is used to rectify the weights between the layers. 

E=
1
2
∑l

k=1
(Fk − Yk)

2 (4) 

The nonlinear autoregressive, NARX neural network has a number of layers, an output feedback connection, and is a nonlinear 
autoregressive network with an exogenous input [53]. The NARX neural network employs an iterative training method in which the 
biases and weights are incrementally changed to improve the model performance at each stage. As long as they are available, the 
network’s outputs are regressed with the target of the actual values during training, and the results are sent back to the network. 

Compared to other networks, NARX models provide an additional degree of flexibility when incorporating information from 
exogenous inputs. The model’s accuracy is increased, and the number of parameters needed is reduced owing to the additional degree 
of freedom. Equation (5) shows the NARX outputs during training [54]. 

y(t)= f
[
u(t − nu), . ... u(t − 1), u(t), y

(
t − ny

)
, .... y(t − 1)

]
(5)  

where: 
The non-linear function is called f. 
The network input at time t is u(t). 

Fig. 3. Feed-forward neural networks, FFNNs, topology developed to predict the efficiency of the Sc extraction process.  
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The network output at time t is denoted by y(t). 
The input and output are in the following order: nu and ny. 
When multi-layer perception is incorporated into the f method, the resulting system is referred to as the NARX network [39]. 
Two indicators were used in this study to evaluate the NARX and FFNN models using the predicted and actual results to check the 

reliability of the NARX and FFNN models. These indicators are mean-squared-error, MSE and extraction efficiency, E%. 

MSE=
1
n

∑n

i=1

(
Da(t) − Df (t)

)2 (6)  

RE=
Da(t) − Df (t)

Da(t)
× 100 (7)  

where: 
Df (t) denotes the predicated value, while Da(t) is the actual value at time t. 
The criteria employed to assess model performance were MSE and RE. Utilizing several indicators served to verify the model’s 

accuracy. By analysing the error between the actual and anticipated results, all indicators were based on the results that were attained. 

2.3.1. Methodology of FFNNs and NARX models design 
Fig. 3 depicts the topology of the generated network FFNNs [4:10:1] by directly illustrating the connections between inputs and 

artificial neurons. The network was trained by modifying the model parameters (weights and biases) to minimize the mean-squared- 
error (MSE), as shown in Fig. 2. In other words, the smaller MSE will lead to the greater the network’s prediction ability. The input 
nodes used for training are 4 (MCs type compound, pH, time, Sc concentration), the hidden neurons are 10, and the output node is 1 
(extraction efficiency). 

To construct a suitable FFNNs, the back-propagation training process was applied using the MATLAB neural network toolbox. The 
weights were randomize initialized to begin the training process. After feeding the input layer, the input variables (MC concentration, 
pH, contact time, and Sc concentration) were multiplied by the first weight matrix and transferred to the hidden layer (Wij). The output 
vector of the hidden layer is created by adding the values that result from the multiplication step and passing them through the Sigmoid 
activation function in the hidden layer neurons. This vector is multiplied by the four weights matrix (Wjk) and sent to the output layer 
in order to predict the objective function, extraction efficiency percent of Sc. The error value is then determined by comparing the 
target and expected patterns. 

Otherwise, the error is propagated backward to update the weights using an appropriate training technique, such as the Quasi- 
Newton algorithm, Levenberg-Marquardt algorithm, etc. The training will be terminated if the error is within the stated limit. The 
steps above are continued until the error falls within the desired range or the set number of iterations has been reached. After the 
network has been properly trained, it must be tested using data that has never been seen before for validation purposes. Several FFNNs 

Fig. 4. Nonlinear autoregressive neural network NARX model structure of Sc extraction process.  
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models were evaluated in this study. Each model included a varying number of hidden layers and a varied number of neurons. 
Additionally, various training procedures were evaluated and compared in terms of MSE and correlation factor. Two techniques were 
used to evaluate model performance: mean MSE and coefficient of determination (R2). A more accurate estimation of extraction ef
ficiency was achieved by using an FFNNs model with a higher R2 and lower MSE. 

Fig. 4 shows the two layers of NARX that were employed in this study to forecast the extraction efficiency (E%) of macrocyclic 
chemicals. Time, dosage, pH, and initial concentration are the four inputs that make up the network’s input layer. There is also one 
output layer (E%). Fig. 3 shows the network bias (bh), network weight (wij), and delay element (z). 

2.4. Methodology of NARX model design  

1 the weights and biases of NARX network are randomly chosen.  
2 the activation functions for hidden and output layers are set by default to hyperbolic tangent function (tansig) and linear function 

(purelin) in most network training, respectively. 
3 the network is prone to the local optimization, resulting in a poorly performing training result, Therefore, algorithms of optimi

zation, characterized are often used to optimize the connection weights and biases of BP neural network, and obtain better model 
prediction performance (iteration).  

4 stop iteration at optimal transfer function, weights and biases.  
5 training network.  
6 updating weights and biases.  
7 prediction results. 

For NARX network modelling, 60 points datasets (30 points were input two times for training, each point has 4 different pa
rameters) were used as input. The creation of a NARX neural network involves a number of phases, including gathering the experi
mental data needed for network testing, validation, and training. Before moving on to the testing session, which was based on unseen 
data input, the training and validation data set was created in a parallel session to train and validate the model. MATLAB R2021a was 
used and trainlm function was chosen for network training; many configurations were tested in this work to identify the most effective 
network topology. The ideal network topology that was utilized to build the model consisted of three hidden layers, each with 10 
neurons, one input layer with 4 nodes, and one output layer with 1 node. The network transfer function chosen was the tansig function. 

2.4.1. Optimization the best condition of artificial neutral network models 
To optimize the performance of the ANN design for simulating the extraction of Sc, the hidden neurons were adjusted using the 

Fig. 5. Optimization of the training function, number of layers, and the hidden neurons of each of the ANN architecture used for modeling the 
extraction of Sc. 
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chain rule. According to the chain rule, the least amount of network error is produced by an optimized ANN model. In order to find the 
configuration with the lowest error and highest R2 during network training, the hidden neurons of the networks were changed from 3 
to 10 for each trial. For each trial, four different network configurations were tested. The training, validation, and testing were all 
improved as a result. 

Fig. 5 illustrates the specifics of the Sc recovery optimization that was examined in this work. The network error measured by MSE 
for the FFNNs and NARX is impacted by the variance in the hidden neurons. Table 1 shows the details of the parameter estimation for 
each trial based on the training function, number of layers, and number of hidden neuron optimization. With hidden neurons equal to 
10, optimized ANN architecture of 4-10-1 was constructed for modeling recovery of Sc as shown in Fig. 6 (a and b). In the current 
investigation, input and output parameters were supplied into a network. Table 1 shows the parameters’ ranges. 

2.4.2. The limitations of ANN are  

• The neural network required training to operate.  
• The structure of a neural network is disparate from the structure of microprocessors therefore required to be emulated.  
• It needed high processing time for big neural networks.  
• Fixed sized inputs: A neural network architecture has a fixed number of input layers. As such, it can only take a fixed sized input and 

output for any task. This is a limiting factor for many patterns recognition tasks. 

This limitation can be improved.  

1. Increase hidden Layers.  
2. Change Activation function.  
3. Change Activation function in Output layer.  
4. Increase number of neurons.  
5. Weight initialization.  
6. More data.  
7. Normalizing/Scaling data.  
8. Change learning algorithm parameters. 

The complexity of algorithms: there are 4 factors to consider here i.e. iterations, layers, nodes in each layer and training examples. 
Table 2 compare the complexity of the proposed models. 

2.5. Determining the parameters of the process 

At room temperature of 25 ◦C, recovery experiments with two different macrocyclic chemical types, C 2.2.1 and C 2.1.1, were 
performed. An extensive study was conducted to identify which variables most significantly influenced recovery process. As shown in 
Table 3, the four independent variables that chosen for the optimization process were the concentration of C 2.2.1 and C 2.1.1 in mol/ 
L, the concentration of Sc in mg/L, pH, and time in minutes. The multielement extraction was carried out after determining the best Sc 
recovery conditions and analyzing the interaction of all variables. 

2.6. Solvent extraction of Sc from model solution and its recovery from organic phase 

The methods for extracting Sc covered in the optimization study were as follows: equal volumes (10 mL) of the aqueous phase (Sc 
solutions) and organic phase (1,2 dichloroethane contained C2.2.1 or C2.1.1) were contacted and combined in the separatory funnel. It 
is preferable to combine the organic phase with distilled water prior to the extraction process to achieve saturation with the aqueous 
phase. The organic and aqueous phases were separated after stabilizing the phases, and the aqueous phase was assessed using an AAS 
apparatus to confirm the Sc content and guarantee total accuracy. 

The Sc ions were found in the separated organic phase as complexes with C2.2.1 or C2.1.1, and the recovery of Sc was the goal in the 
next stage. Under the following conditions: 0.008 mol/L C2.2.1 and C2.1.1, 25 mg/L Sc, La, and Y, 10 min of extraction time, varied pH 

Table 1 
Optimization of the training function, number of layers, and the hidden neurons of each architecture used to model the extraction of Sc by C2.2.1 and 
C2.1.1.  

No. Training function No of layers No of neurons FFNNs NARX Architecture of network 

MSE for macrocyclic compounds 

C221 C211 C221 C211 

1 trainlm 2 3 0.0001172 0.026201 0.040916 0.004188 4-3-1 
2 trainbfg 2 4 0.0071415 0.0050401 0.037833 0.011821 4-4-1 
3 trainr 3 4 0.011719 0.034745 0.085059 0.16294 4-4-1 
4 trainlm 2 10 5.232*10− 6 6.1387*10− 5 0.0054129 0.0010302 4-10-1  
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Heliyon 9 (2023) e21041

8

solutions, and a 1: 1 organic to aqueous phase (O/A) ratio, Sc was extracted from synthetic multi metal ions (M = Sc, La, and Y). Once 
more using a separatory funnel, 10 mL of loaded organic phase was exposed for 10 min to 10 mL of HCl acid solution at various 
concentrations. 

After the aqueous phase was separated, the metal content was determined using an AAS instrument. Fig. 7 presents the stages in a 
practical manner. 

2.6.1. 1Calculating equation 
The mass balance equation can be used to compute the M-complex concentration in the organic phases. The following equations 

were used to calculate the distribution ratio (D), extraction efficiency (E), stripping ratio (S), Caq, which represents the equilibrium 
concentration of a metal in the stripping solution, and Corg, which represents the initial concentration of a metal in the loaded organic 
phase: 

Fig. 6. Architecture of selected network for prediction the extraction of Sc for C2.2.1 and C2.1.1:(a) FFNNs and (b) NARX.  

Table 2 
the comparison of complexity of the proposed models.  

No Neural Networks (NN) Machine Learning models (ML) 

1 NN is a collection of machine learning methods for modeling data with 
graphs of neurons. 

Advanced algorithms are used by machine learning to analyze data, learn 
from it, and apply those learnings to find interesting and relevant patterns. 

2 Neural networks do not need human interaction since the stacked layers 
within convey the data via hierarchies of different concepts, eventually 
making them capable of learning from their mistakes. NN arranges 
algorithms in a way that it can make accurate decisions on its own. 

Although machine learning models can learn from data, in the beginning 
they may need some human interaction. Machine learning models make 
judgments based on what they have learnt from the data. 

3 There are four different types of neural networks: feed-forward, recurrent, 
convolutional, and modular. 

There are two categories of machine learning models: supervised learning 
models and unsupervised learning models. 

4 A neural network’s structure is very intricate. It involves a system of 
interconnected nodes arranged in layers, each of which classifies the 
features and data from the layer before it transmits the classification to the 
nodes in the layer below. 

A neural network’s structure is very intricate. It involves a system of 
interconnected nodes arranged in layers, each of which classifies the 
features and data from the layer before it transmits the classification to the 
nodes in the layer below.  

Table 3 
Experimental range and levels of variables used in the ANN models.  

Type Variables Range Number of variables 

Inputs MC (mol/L) 0.002-0.010 (step 0.002) 5 
pH 1-5 (step 1) 5 
Time (min) 3-15 (step 3) 5 
Concentration of Sc 25-125 (step 25) 5 

Outputs Extraction efficiency % of Sc 4.7–99.0 for C2.2.15.0–99.3 for C2.1.1 18 
22  
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DSc =
Ct − Ca

Ca
×

Va

Vo
(8)  

where Ct and Ca stand for a metal’s initial and ultimate concentrations in water, respectively (ppm). 

E (%)=
D

D + Va
Vo

× 100 (9) 

a volume of the organic phase called Vorg (mL) is a volume of the organic phase (mL); Vaq refer to the volume of aqueous phase (mL). 

S (%)=
Caq

Corg
× 100 (10)  

3. Results 

3.1. Neural network models performance 

ANNs were used to simulate the extraction of Sc ions from an aqueous solution by Cryptand-2.2.1 and Cryptand-2.1.1 using the 
MATLAB R2021a software. In this study, two different types of neural networks—FFNNs and NARX neural networks—were applied 
and evaluated for productivity and performance. For the extraction investigation, the best model was utilized to analyze the effects of 
several parameters, such as pH, concentrations of MCs (mol/L) and Sc (mg/L) and contact time (min). 

An ANN-based model was constructed in this study to identify the appropriate parameters for extracting Sc. This was accomplished 
using a three-layer of FFNNs. The training data was repeated twice (60 data points) to increase the number of data entering the 
network for the purpose of training and this increases the strength of the network training. However, the data utilized to test the 
network only consisted of 30 points (Table 4), which were not included in network training. The primary collected data (which 
contained 60 data points) was subdivided into three subgroups: training, validation, and test. To test the FFNN’s ability to recognize 
"unseen" data that had not been used for testing, the data were divided into subgroups of 70 % for training, 15 % for validation, and 15 
% for testing. The generalizability of the FFNNs model can be assessed using this technique. This is the linear regression plot shown in 
Fig. 8. It shows how the predicted results are compared to the experimental results. If the ANN training is perfect, the network outputs 
would be exactly the same as the objectives. In reality, it isn’t very often that the FFNNs training is so perfect, though. 

Even so, it’s demonstrated in Fig. 9, the correlation factor (R2) shows how well measured and predicted values match up. If the R2 

value is one, this means there is a perfect linear relationship between the FFNNs and real-world results. If the R2 value is near to zero, 
on the other hand, there is no association between them. As demonstrated in the related figure, the R2 values for training and testing 
data in this work are 0.99991 and 0.99991 for C2.2.1 and 0.99994 and 0.99972 for C2.1.1, respectively, indicating an outstanding fit 

Fig. 7. Schematic representation of extraction and stripping for single and triple-elements model system (Optimum conditions are: organic phase: 
0.008 M, A/O: 10 mL:10 mL, shaking time: 10 min, temperature: 25 ◦C). 
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Table 4 
Designed matrix along with observed and predicted response values.  

N0 Experimental variables Objective function 

E (%) 
C 2.2.1 

E (%) 
C 2.1.1 

MC (mol/L) pH of Sc solution Time (min) Sc (mg/L) Experimental 
/observed 

Predicted by ANN Experimental/observed Predicted by ANN 

1 0.008 2 6 100 32 32.70 33 33.00 
2 0.006 5 9 75 24 23.91 24.2 24.21 
3 0.006 3 9 75 85 83.96 84 84.26 
4 0.008 4 12 50 98 99.00 99.3 99.30 
5 0.004 2 12 100 18 16.70 17 17.00 
6 0.006 3 9 25 97 98.70 99 99.00 
7 0.006 3 9 125 60.2 60.70 61 61.00 
8 0.008 4 6 100 98 98.70 99 99.00 
9 0.004 2 6 50 27 24.72 25 25.02 
10 0.004 4 12 100 20 18.70 19 19.00 
11 0.008 2 12 50 90 92.69 93 92.99 
12 0.006 3 15 75 87 89.70 90 90.00 
13 0.002 3 9 75 4.7 4.70 5 5.00 
14 0.006 3 9 75 87.3 83.96 87 84.26 
15 0.004 4 6 100 19 16.70 17 17.00 
16 0.008 4 6 50 99 98.70 99 99.00 
17 0.01 3 9 75 99 98.70 99 99.00 
18 0.006 1 9 75 15.5 13.70 14 14.00 
19 0.004 4 6 50 40 40.70 41 41.00 
20 0.004 2 12 50 28 25.72 26 26.02 
21 0.008 2 12 100 75 74.90 75.2 75.20 
22 0.004 2 6 100 13 10.00 10.3 10.30 
23 0.006 3 3 75 70.8 69.71 70 70.01 
24 0.004 4 12 50 30 28.71 29 29.01 
25 0.008 2 6 50 77 77.70 78 78.00 
26 0.008 4 12 100 98 97.71 98 98.01 
27 0.006 3 9 75 85 83.96 84 84.26 
28 0.006 3 9 75 85 83.96 84 84.26 
29 0.006 3 9 75 85 83.96 84 84.26 
30 0.006 3 9 75 85 83.96 84 84.26  

Fig. 8. Results of network design for recovery of Sc–R value of data: (a) train, (b) validation, (c) test, (d) overall.  
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between the target data and ANN output. For fresh trials in the validation, preparatory experiments were run using combinations of 
experimental parameters that weren’t in the training data set. Table 4 and Fig. 8(a–d) show the experimental/observed and predicted 
values. As the number of epochs grows, the MSE of training and testing data lowers, with the highest performance for C2.2.1 and 
C2.1.1 observed at epochs 3 and 8, respectively, on the validation curve shown in Fig. 10. 

The FFNNs model provides the better performance, according to a comparison of the RE and R2 values for the two models. The 
FFNNs model has an R2 of 0.9998 and a maximum RE of 12.59% (Fig. 11). It is difficult to choose a model structure with high accuracy 
and predictability since so many variables must be taken into account, including the number of hidden layers, the neurons in each 
layer, and the type of transfer function. The optimal network structure in this study was chosen based on network productivity and 
performance using a variety of node counts, hidden layer configurations, and transfer function types. The performance of the 
developed neural network model was evaluated based on the testing set using various indicators, using the starting MSE value from the 
training step; the results are shown in Table 1. The FFNNs model outperformed the NARX model, according to comparisons of the 
results, which are shown in Fig. 10 for the two models. The numerical values and calculations are presented in Table 5. 

3.2. Recovery of Sc from triple elements solution 

The present optimization results revealed a distinct behavior of the Sc extraction process with two macrocyclic compounds as well 
as the influence of process operating variables. C 2.1.1 extractant was chosen from the investigated MCs due to its high compatibility 
(ionic radius ~ 0.8 Å) for the extraction of Sc (ionic radius ~0.7 Å) from triple elements solutions (Sc, La, Y). These elements were 
chosen for extraction because they have similar physicochemical properties to Sc, although their ionic diameters are different. 
Consequently, the selectivity of MCs will be indicated. 

The following variables were used to conduct the SX investigation of the triple elements system: 25 ◦C, 0.008 mol/L C 2.1.1 
concentration, 10 min of extraction time, 25 mg/L (Sc, La, Y) concentration, and varied starting pH solutions (pH = 2–3). The findings 

Fig. 9. The actual and predicted values for C2.2.1 and C2.1.1.  

Fig. 10. Performance plot of trained ANN model.  
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demonstrated that the initial pH solution value affects the selectivity of C 2.1.1 towered these ions, which have varying ionic radius: 
Sc~ 0.74 Å, Lã 1.16 Å, and Y~ 0.98 Å [55]. Importantly, the ability of C 2.1.1 to complex and to bind cations in aqueous solutions is 
particularly sensitive to the pH of the medium since it is a diprotic base. The pH of the solution can be altered to alter binding affinity. 
At a certain pH level, certain metal ions can bind, and when the pH falls below that level, they can be released [56–58]. By adjusting the 
pH, it is possible to switch the binding affinity, with metal ion binding taking place at a specific pH and metal ion release occurring at a 

Fig. 11. Coefficients of correlation (R2) of the neural network models.  

Table 5 
Initial and final concentration of Sc in single element system.  

NO. MC 
,mol/L 

pH of Sc solution Time 
,min 

Initial concentration 
Sc 
,mg/L 

Final concentration Sc 
,mg/L by C 2.2.1 

E,% 
C 2.2.1 

Final concentration Sc 
,mg/L by C 2.1.1 

E,% 
C 2.1.1 

1. 0.008 2 6 100 68 32 67 33 
2. 0.006 5 9 75 57 24 56 24.2 
3. 0.006 3 9 75 11.25 85 12 84 
4. 0.008 4 12 50 1 98 0.5 99.3 
5. 0.004 2 12 100 82 18 83 17 
6. 0.006 3 9 25 0.75 97 0.25 99 
7. 0.006 3 9 125 50 60.2 48.75 61 
8. 0.008 4 6 100 2 98 1 99 
9. 0.004 2 6 50 36.5 27 37.5 25 
10. 0.004 4 12 100 80 20 81 19 
11. 0.008 2 12 50 5 90 3.5 93 
12. 0.006 3 15 75 9.75 87 7.5 90 
13. 0.002 3 9 75 71.4 4.7 37.5 5 
14. 0.006 3 9 75 9.75 87.3 9.7 87 
15. 0.004 4 6 100 81 19 83 17 
16. 0.008 4 6 50 0.5 99 0.5 99 
17. 0.01 3 9 75 0.75 99 0.75 99 
18. 0.006 1 9 75 63.3 15.5 64.5 14 
19. 0.004 4 6 50 30 40 29.5 41 
20. 0.004 2 12 50 36 28 37 26 
21. 0.008 2 12 100 25 75 25.5 75.2 
22. 0.004 2 6 100 87 13 89.5 10.3 
23. 0.006 3 3 75 22.5 70.8 22.5 70 
24. 0.004 4 12 50 35 30 35.5 29 
25. 0.008 2 6 50 11.5 77 11 78 
26. 0.008 4 12 100 2 98 2 98 
27. 0.006 3 9 75 11.25 85 12 84 
28. 0.006 3 9 75 11.25 85 12 84 
29. 0.006 3 9 75 11.25 85 12 84 
30. 0.006 3 9 75 11.25 85 12 84  
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lower pH. The C 2.1.1 and C 2.2.1 molecules will be protonated with hydrogen ions from the acid at pH < 1(See Fig. 13), as depicted in 
Fig. 12. In case of metal complexation, the deprotonation hydrogen ions occur at pH range (2–3). The numerical values and calcu
lations of Sc, Y, La in triple element system are presented in Table 6. 

This will make the binding constant for metal cations much lower than that of the neutral C 2.1.1 because of charge repulsion. As 
shown in Fig. 13, the multielement extraction findings indicated a 99 % selectivity for Sc ions at pH of value 2, compared to 10 % for Y, 
7 % for La. 

The initial results of recovery studies revealed that the choice of stripping agent and its concentration has a remarkable impact on 
the selectivity property during the stripping process. The stripping agent used was HCl with a concentration range of 0.1–0.9 mol/L 
and a step change of 0.2 mol/L, and it was shown that by adjusting the acid concentration, the stripping selectivity could be changed. In 
terms of interpretation, at 0.1 mol/L HCl acid concentration, Sc achieved 49 % stripping compared to Y 48 %, and La 43 %. At 0.3 mol/ 
L of HCl, Sc was stripped completely from the organic phase, whereas Y was 93 %, La was 91 %. From 0.3 to 0.9 mol/L, the stripping 
efficiency stayed at high levels as illustrated in Fig. 14. The numerical values and calculations of Sc, Y, La in triple element system are 
presented in Table 7. 

3.3. Extraction Mechanism 

It is generally known that metal ions and macrocyclic compounds can create stable complexes. With their 3-D cryptand cavities, 
cryptate complexes are very stable because of their cation size-cryptand cavity match, and this fit is critical for thermodynamic sta
bility [31,59]. Lanthanides cations, in general, are hard acidic cations that prefer to interact with hard bases like O donor atoms over 
softer bases like S and P donor atoms [60,61]. Metal complexes with N-donor ligands display some of the most intriguing stoichio
metric and practical catalytic changes reported in the scientific literature [62].Because of this, the majority of interactions between 
neutral ligands and lanthanides cations are conducted by the ligand’s donor atoms and these cations. During the cation-MC interaction, 
the cation is transported from the aqueous phase and held in the cavity of the MC with a weak coordinate covalent bond. 

All the previous reports used the synergism extraction system (mixture two or more extractants), a comparison is made between 
several previously published reports and the current study (Table 8). 

Fig. 12. Schematic representation of complexation and decomplexation of cryptand 2.1.1 and cryptand 2.2.1.  
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3.4. A comparative study 

The comparative study conducted here assessed the performance of the used a nonlinear autoregressive network with exogenous 
input (NARX) and feed-forward neural network (FFNN) models to estimate their optimum values and compared them with research 
work that previously utilized other models or one of them. Table 9 presents valuable insights into the effectiveness of these models in 
enhancing the performance of various processes. The findings indicate that the current study achieves promising results for the 
scandium recovery process, with a notably high coefficient of determination of 0.999 for two models, surpassing the performance 
observed in previous studies. 

4. Conclusion 

This paper investigated the ability and selectivity of C 2.1.1 and C 2.2.1 macrocyclic compounds as novel extractants for Sc from the 
nitric acid medium. The Artificial Neural Network (ANN) was found to be effective tool for determining the optimal conditions for Sc 
extraction in a variety of operating parameters. Based on a comparison of the performance and accuracy of the NARX and FFNN 
models, it was found that the FFNN model performed better than the NARX model. Maximum RE for the FFNN model was 12.59%, R2 

was 0.9998, and MSE for C221 and C211 were 5.232*10-6 and 6.1387*10-5, respectively. 
The modeling was performed using 30 experimental data points corresponding to various operating parameters such as MC 

Fig. 13. Extraction experiments of multielement 25 ppm of Sc, La, and Y (organic phase: C2.1.1, A/O: 1, shaking time: 10 min, temperature: 25 ◦C).  

Table 6 
Initial and final concentration of Sc, Y, La in triple element system.  

Metal ions Initial concentration, mg/L Final concentration in aqueous phase, mg/L Metal ions concentration in organic phase, mg/L Extraction, % 

pH = 1 of triple element solution 
Sc3+ 25 22.2 2.8 10.7 
Y3+ 25 23.2 1.8 7 
La3+ 25 22.9 2.1 8.2 
pH = 1.5 of triple element solution 
Sc3+ 25 7.5 17.5 70.3 
Y3+ 25 22.7 2.3 9 
La3+ 25 22.9 2.1 8.46 
pH = 2 of triple element solution 
Sc3+ 25 0.25 24.75 99 
Y3+ 25 22.4 2.6 10.3 
La3+ 25 23.25 1.75 7 
pH = 2.5 of triple element solution 
Sc3+ 25 0.25 24.75 99 
Y3+ 25 21.8 3.2 12.7 
La3+ 25 23.1 1.9 7.3 
pH = 3 of triple element solution 
Sc3+ 25 0.25 24.75 99 
Y3+ 25 21.8 3.2 12.5 
La3+ 25 23 2 8  
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concentration, pH, contact time, and Sc concentration. In order to predict the optimum conditions for Sc extraction, a three-layer back 
propagation model with multiple training functions in the hidden and output layers was used in conjunction with non-linear 
regression. Two performance metrics were used to evaluate models: MSE and coefficient of determination (R2), which were then 
validated using additional datasets. According to the extraction studies, the ideal conditions for MC extractants to achieve 99% Sc 
extraction efficiency are as follows: pH 2 of the aqueous solution, 0.008 mol/L MC concentration, and an initial Sc concentration of 75 
mg/L. The predicted conditions based on the results of ANN were applied for extracting Sc from the multielement matrix (Sc, La, Y). 
Based on the optimum conditions from ANN, Sc was extracted from a multielement solution (Sc, Y, La). Additionally, it was discovered 
during the recovery research that the concentration and kind of stripping agent have a considerable impact on selectivity. As a result, 
the extraction of Sc was 99% at a concentration of 0.3 mol/L of HCl acid as opposed to 10% for Y and 7% for La. 
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Fig. 14. Recovery experiments of multielement from 25 ppm Sc, La, and Y (organic phase: C2.1.1, A/O: 1, shaking time: 10 min, tempera
ture: 25 ◦C). 

Table 7 
The effect of hydrochloric acid, stripping agent concentration on metal ions recovery efficiency (organic phase: C2.1.1, A/O: 1, shaking time: 10 min, 
temperature: 25 ◦C, pH of extraction:2).  

Metal ions Metal ions concentration in organic phase, mg/L Concentration of HCl, mol/L Final concentration in aqueous phase, mg/L Recovery, % 

Sc3+ 24.75 0.1 12.12 49 
Y3+ 2.6 1.24 48 
La3+ 1.75 0.75 43 
Sc3+ 24.75 0.3 24.5 99 
Y3+ 2.6 2.4 93 
La3+ 1.75 1.5 91 
Sc3+ 24.75 0.5 24.50 99 
Y3+ 2.6 2.44 94 
La3+ 1.75 1.62 93 
Sc3+ 24.75 0.7 24.4 99 
Y3+ 2.6 2.4 94 
La3+ 1.75 1.68 96 
Sc3+ 24.75 0.9 24.5 99 
Y3+ 2.6 2.54 98 
La3+ 1.75 1.73 99  
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Table 8 
Comparison of solvent extraction techniques for Sc recovery.  

Extraction step Stripping step Extracted element Year/References 

Extractant E, % Stripping agent S,% 

15 % D2EHPA 
5 % TBP 

99.00 2 M NaOH 95.40 Sc (2017) [26] 

8 % D2EHPA 
2 % TBP 

99.70 2 M NaOH 
+1 M NaCl 

85.00 Sc (2018) [63] 

16 % D2EHPA 
4 % TBP 

99.00 2 M NaOH 96.00 Sc (2019) [64] 

60 % Cyanex272 
40 % Cyanex923 

98.00 10 % H2C2O4 98.80 Sc (2020) [65] 

15 % D2EHPA 
15 % N1923 

99.00 5 M HNO3 89.30 Sc (2020) [66] 

10 % D2EHPA 
5 % TBP 

99.00 5 M NaOH 99.61 Sc (2021) [67] 

10 % D2EHPA 
5 % TBP 

99.00 3 M NaOH 99.00 Sc (2021) [68] 

10 % Cyanex 923 
10 % Alamine336 

92 % 5 M H3PO4 100 % Sc, Zr (2021) [69] 

0.05 M D2EHPA 97 % 2.5 M NaOH 95.00 Sc, Fe (2022) [8] 
12.5 % TBP 99 % 1 M HCl 92.85 Sc, Fe 

Note: all the tabulated percentages in this table were calculated based on the organic phase. 

Table 9 
Comparative study that applied artificial neural network models.  

No. Input Output or 
response 

Type of ions uptake or 
removed 

Mathematical model type R2 Ref. 

1 initial concentration, adsorbent 
dosage, and pH 

Removal 
efficiency 

Nickel (Ni) ANN 0.98 [70] 

2 adsorbent dosage, contact time, Hg concentration 
and pH 

Removal 
efficiency 

Mercury (Hg) FFNNs 0.97 [54] 

3 pH, contact time adsorbent dosages and initial 
Cd2+ concentrations 

Removal 
efficiency 

Cadmium (Ca+2) ANN 0.99 [71] 

4 concentration of MC, concentration of Sc, pH, and 
time 

Recovery 
efficiency 

scandium (Sc) FFNNs and NARX neural 
networks 

0.999 This 
study  
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