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Despite of their therapeutic effects, drug's exposure may have negative effects on human health such as adverse drug
reaction (ADR) and side effects (SE).
Adverse drug events (ADEs), that correspond to an event occurring during the drug treatment (i.e. ADR and SE), is not
necessarily caused by the drug itself, as this is the case with medical errors and social factors. Due to the complexity of
the biological systems, not all ADEs are known for marketed drugs. Therefore, new and effective methods are needed
to determine potential risks, including the development of computational strategies. We present an ADE association
network based on 90,827 drug-ADE associations between 930 unique drug and 6221 unique ADE, onwhich we imple-
mented a scoring system based on a pull-down approach for prediction of drug-ADE combination. Based on our net-
work, ADEs proposed for three drugs, safinamide, sonidegib, rufinamide are further discussed. The model was able
to identify, already known drug-ADE associations that are supported by the literature and FDA reports, and also to pre-
dict uncharacterized associations such as dopamine dysregulation syndrome, or nicotinic acid deficiency for the drugs
safinamide and sonidegib respectively, illustrating the power of such integrative toxicological approach.
1. Introduction

The cost of developing a newdrug is highly expensive and time consum-
ing, and the success rate of investigational drugs beingmoved into effective
therapies in clinic is declining. During the pre-marketing stages, many clin-
ical trials fail due to lack of drug efficacy and safety concerns (Kola and
Landis, 2004). Furthermore, even if a drug reaches the market, post-
marketing studies can characterize some critical adverse drug reactions
(ADR) not observed during the clinical studies. This is the case for some
drugs described to cause teratogenicity and cardiovascular toxicity, that
have been withdrawn from the market (C. for D.E. and Research, 2018;
FitzGerald, 2004). Recently, some studies have reported liver and respira-
tory failure risk associated to the antioxidant drug Limbrel (O. of R.
Affairs, 2019). Globally, lack of efficacy (therapeutic effect) and toxicity
(adverse effect) have been identified as two major reasons for the drug
attrition in late development stages and drug safety (Waring et al., 2015).
According to the definition of WHO, adverse effects are divided into three
groups: adverse drug event (ADE), adverse drug reaction (ADR) and side ef-
fect (SE). ADR and SE are unexpected effects that occurred during the use of
drug at normal dose. The causality of both, ADR and SE, are related to the
verse drug reaction; SE, side effect; AD
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drug pharmacological properties. The main distinction between ADR and
SE is that ADR (e.g.myocardial infarction) is always harmful for the patient,
whereas SE (e.g. weight increase) may be beneficial for some patients
(Thomas, 2018). For example, the drug mirtazapine used in anorexic
patients, may be administered to some patients to solve weight problems,
as one of the SEs cause weight gain (Hrdlicka et al., 2008). The third
group of events belonging to adverse effects is the ADE (e.g. intentional
product misuse). Adverse drug event corresponds to an event that occurs
during the drug treatment, which is not necessarily caused by the drug it-
self. ADE include ADR, SE as well as other events (e.g. product issues, med-
ical errors, social factors) (Schatz and Weber, n.d.; Definition—World
Health Organization, n.d.).

Quantitative structure-activity relationships (QSAR) are computational
methods widely used for drug safety prediction (Bloomingdale et al.,
2017). Several studies have used such computational approach, for exam-
ple to identify the correlation between cardiac adverse effects and drug
properties (Frid andMatthews, 2010), to detect drug-hepatotoxicity associ-
ations (Zhu and Kruhlak, 2014), to predict SEs using combined canonical
correlation analysis with network-based diffusion methods (Atias and
Sharan, 2011), and to identify drugs that may cause ADRs (Hammann
E, adverse drug event; QSAR, Quantitative structure-activity relationships; wS, weighted score;
tration; LRT, Likelihood Ratio Test; MedDRA, Medical Dictionary for Regulatory Activities; PT,
o mass spectrometry; HMS-PCI, high-throughput mass spectrometric protein complex identifi-
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et al., 2010). Nevertheless, most of these studies do not explore potential
mechanism of actions linking a drug to an ADE.

Today, with the acquisition of knowledge in drug-induced toxicities and
ADRs through high throughput studies (LINCS, ToxCast) (Stathias et al.,
2020; Dix et al., 2007) and databases (SIDER, Drug Central, ChemProt)
(Ursu et al., 2019; Kuhn et al., 2016; Taboureau et al., 2011), development
of innovative computational methods is feasible to decipher and predict bi-
ological targets associated to toxicity and ADE (Ciallella and Zhu, 2019;
Audouze et al., 2010; Taboureau and Audouze, 2017; Hodos et al., 2016).
For example, Bender et al. have developed a model to predict potential
ADR(s) related to targets for drugs that are still on the market (Bender
et al., 2007). Another study reported by Vogt et al. demonstrated the corre-
lation between the genes perturbation and phenotype features at level of
organ system. One of the outcomes was the strong linkage between gene
GLB1 and Mucopolysaccharidosis type IV. In addition, they also found
that the effect of drug was easier to cause organ damage compared to the
influence of disease (Vogt et al., 2014).

With the development of sophisticated computational methods such as
deep learning, a new paradigm is emerging to predict chemical toxicity
(Uesawa, 2018). Although the initial reductionist drug design approach,
i.e., one-target one-drug paradigm, has been the driven force for many
years in drug discovery (Hopkins, 2008; Hopkins, 2007), the recent ad-
vances on molecular biology and genomics technologies are showing that
drug action appears to be far more complex: a compound hits multiple tar-
gets, which are involved in complex cellular networks (Boezio et al., 2017;
Wist et al., 2009).

Recently, network-based approaches have given new insights of drug
action. Chen et al. performed an ADR-protein network, and identified 41
network modules related to specific ADRs (Chen et al., 2013). Campillos
et al. constructed a drug-target-SE network, and demonstrated that drugs
with similar side-effect profile have a similar protein target profile
(Campillos et al., 2008). Oprea et al. included some tissue information on
a similar network, and reported that a drug is more likely to cause SE in
the organ/tissue where it is more likely to accumulate (Oprea et al.,
2011). Scheiber et al. have developed a network-based model using the
structural information of the drugs to predict ADEs (Scheiber et al.,
2009). In this study, the authors show that compounds with similar chem-
ical structures share ADE profile.

The objective of the present study was to develop an ADE-ADE network
model based on drug-ADE information, in order to predict uncharacterized
drug-ADE linkage, and to assess ADEs that are more often associated each
other's. Such network may also suggest ADE complexes occurring when a
new drug-ADE is observed. To perform this model, we took advantage of
a protein-protein association network-based approach developed inter-
nally, previously applied, and experimentally validated (Audouze et al.,
2010). Suchmodels allowed to predict linkage between chemicals and pro-
teins and diseases, therefore reflecting the complexity of a biological system
(Audouze et al., 2010; Taboureau and Audouze, 2017; Audouze et al.,
2014). A pull-down scoring systemwas implemented to automatically iden-
tify novel drug-ADE associationswithin the developedADEs network. As an
example, three case studies (i.e. safinamide, sonidegib, rufinamide) were
used, and findings were validated through literature supports.

2. Materials and methods

Due to the increasing concerns regarding drugs and their potential ad-
verse events (ADE) during the pre-marketing period, computational strat-
egy may help to decipher mode of action of drugs. Here we proposed a
computational systems toxicology model to explore putative toxic effects
of the compounds. A workflow of the strategy is shown in Fig. 1.

2.1. Data set for model development

Drugs and their corresponding ADEs information were extracted from
the DrugCentral V5.1.2 database (last access as of March 10, 2020) (Drug
Central, n.d.). This database contains multiple types of data related to
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drugs (bioactivity profiles, chemical properties, clinical indication, pharma-
ceutical formulation, pharmaceutical exposure, …). Since 2018, the ADE
data source Adverse Event Reporting System (FAERS) is included into the
DrugCentral database (Ursu et al., 2019). FAERS was established in 1968
by Food and Drug Administration (FDA) to collect the ADE and medication
error reports associated to the drugs on the market. The objective of FAERS
is to support the FDA's post-marketing safety surveillance program for drugs
and therapeutic biologic products (openFDA, n.d.).

In order to evaluate the associations between drugs and ADEs with
disproportionally high reporting rates, the Likelihood Ratio Test (LRT) for
safety signal detection method has been proposed by Huang et al. (Huang
et al., 2011). LRT demonstrated the good power and sensitivity for
searching the significant connection between ADE and drug (Huang et al.,
2011; Huang et al., 2019). To create our model, the LRT values available
in the DrugCentral database were considered. We only kept the drug-ADE
associations with a LRT ratio ≥ 1 for the further analysis. The LRT ratio
was calculated by following equation:

LRT ratio ¼ Likelihood ratio
Likelihood ratio threshold

where the ‘likelihood ratio’ represents the score of an ADE for a specific
drug, and the ‘likelihood ratio threshold’ is the threshold for a drug-event
combination observed for this ADE. Based on the theory of LRT method,
if the LRT ratio is ≥1, this ADE was considered to be associated with this
specific drug (Huang et al., 2011).

2.2. Adverse drug reaction categorization with System Organ Class (SOC)

To classify the ADEs, the Medical Dictionary for Regulatory Activities
(MedDRA) terminology was integrated into the network (MedDRA, n.d.).
MedDRA (Version 22.1, last access as of March 10, 2020) is a standardized
terminology used for all phases of development of medical products, from
premarketing to post-marketing (Fig. S1) (Introductory Guide MedDRA
Version 23.0, n.d.). All the ADEs in the developed network were in
Preferred Term (PT). Preferred Term is a medical word or clinical expres-
sion to describe a concept in medical record (such as: therapeutic indica-
tion, pathology, disease…). We also integrated the System Organ Class
(SOC) classification, that is the highest level in the MedDRA terminology.
The aim of SOC was to represent the ADEs at the level of organs and body
systems including other special categories (e.g. social factors, surgery,
poison and injury). As a PT may be linked to more than one SOC, only
the primary SOC of each PT was shown in our study (Introductory Guide
MedDRA Version 23.0, n.d.).

2.3. Generating a high confidence ADE-ADE network

The relevant drug-ADE associations collected from the DrugCentral da-
tabase were used to create the ADE-ADE network. The ADEmodel was gen-
erated based on the previously published and validated approach, the
protein-protein association network (P-PAN) (Audouze et al., 2010;
Audouze et al., 2014). The P-PAN was based under the assumption that
nodes are linked to each other if they shared at least one component (i.e.
proteins in the original model, ADEs in the present study). Here, the
proposed network was constructed by representing each ADE with a node
(for example the node ‘Vomiting’). Then, each ADE was connected to an-
other ADE to form ADE's pair, if at least one overlapping drug between
both ADE was identified. Therefore, ADEs are associated together in the
drug space. Based on the distribution of the number of overlapping drugs
between each pair of ADE, only ADE-ADE associations having at least
three shared drugs were kept for further analysis (Audouze et al., 2010).
In our network, the ADE-ADE links were converted into a non-redundant
list of associations. That means, if the adverse event A and the adverse B
are connected, the network may have two associations, A-B and B-A. Only
one of them was retained in our model.



Fig. 1.Workflow of the computational systems toxicology approach to predict adverse drug events (ADE) of drugs. Data: As a first step, drug-ADE associations were extracted
from the DrugCentral database (http://drugcentral.org/ (accessedMarch 10, 2020). Model generation: AnADE-ADE networkmodel was created based on the compiled data,
in which two ADEs were connected if they shared at least one drug. For each ADE pair, a weighted score (wS) was calculated in order to highlight the most significant ADE-
ADE associations. Prediction: for a given drug, the known ADEs were automatically screened against the ADE-ADE network. To quantify the prediction, and prioritize drug-
ADE associations finding through the network, a pull-down score (pullS) was calculated between known ADE and its first order interacting ADEs present in the developed
model.
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2.4. Weighted score

A weighted score (wS) was calculated for each ADE pair within the aim
to select the most significant ADE-ADE associations, and to reduce noise in
the model. The wS was calculated as the sum of weights for overlapping
compounds between two ADEs, where weights were inversely proportional
to the number of assigned ADE (Audouze et al., 2010; Audouze et al.,
2014). The associations between ADE were kept if two ADE share at least
three drugs. Only the top significant ADE pairs were loaded into Cytoscape
V3.7.1, an open sourced software platform for visualization of the complex
interacting ADE network (Saito et al., 2012).

2.5. Deciphering potential ADEs for a drug

To be able to detect new ADEs for a drug through the developed ADE
network, we developed a ‘neighbor ADE procedure’ that is based on a
multi-step network-neighbor's procedure developed previously (Audouze
et al., 2010; Taboureau and Audouze, 2017). In the current study, we
adapted it to ADE. We first listed ADEs that are known to be linked to one
drug of interest, for which we aim to identify the novel potential ADE.
Then, the developed ADE model was screened with the listed of known
ADEs. This step allows to decipher the direct interacting ADEs as well as
the surrounding ADEs. As a result, sub-network(s) containing the known
ADE inputs and their first order interacting ADEs from ADE network was
created. To quantify the associations between ADE input and ADEs from
the developed model, we assigned a pull-down score (pullS) for each pair
of ADE (Fig. S2). Originally, pullS was used for high quality scoring of
protein-protein interaction data, and was developed from complex protein
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pull-down experiences (de Lichtenberg et al., 2005) (such as: tandem-
affinity-purification method coupled to mass spectrometry (TAP–MS)
assay (Gavin et al., 2002) and high-throughput mass spectrometric protein
complex identification (HMS-PCI) assay (Ho et al., 2002)). This concept
was therefore adapted to calculate pullS between input ADE and ADE
from the model, following the equation:

pullS ADE1ADE2ð Þ ¼ log10 N1∩N2ð Þ N1∪N2ð Þ= N1þ 1ð Þ N2þ 1ð Þ½ �

where N1 was the number of drugs with ADE1, N2 was the number of drugs
with ADE2, (N1 ∩ N2)was the number of common drugs with both ADEs
(ADE1 and ADE2), (N1 ∪ N2) was the total number of drugs found with
ADE1 and ADE2. Note that we only considered ADE pairs with N1-N2

≥ 3, meaning that at least three drugs were shared between them. The
lower the pullS value is, the more confident the ADE-ADE association is
(see Fig. S2 for more details).

3. Results

3.1. Data compilation

ADE-drug associations and their corresponding LRT were downloaded
from the DrugCentral database (v5.1.2, last access as of March 10, 2020).
In total, we extracted 487,698 associations between 9998 unique ADE
and 1524 unique drug. The maximum number of ADEs assigned to one
drug ‘Methotrexate’ was 3598, and the maximum number of drugs associ-
ated with one ADE ‘Vomiting’ was 1044. To facilitate further analysis, we
only kept the associations with LRT ratio≥1, reducing to 90,827 drug-

http://drugcentral.org/
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ADE associations between 930 unique drug and 6221 unique ADE. The av-
erage number of ADEs for a drug was 7. The maximum number of ADE
assigned to one drug ‘Methotrexate’ was 1575, and the maximum number
of drugs associated with one ADE ‘Nausea’ was 409.

3.2. Generating the ADE-ADE network

Using the selected drug-ADE associations, we developed a network
model, using the previously established PPAN procedure (Audouze et al.,
2010; Taboureau and Audouze, 2017; Audouze et al., 2014). The PPAN
was based under the assumption that nodes (here each ADE is considered
as a node) are connected to each other if there share at least one common
interacting partner (e.g. a drug). Therefore, ADEs are associated together
in the drug space. Based on the distribution of the number of overlapping
drugs between each pair of ADE, only ADE-ADE associations having at
least three shared drugs were kept for further analysis (Audouze et al.,
2010). The final obtained ADEs network contains 1,515,860 ADE-ADE
unique associations between 3721 ADEs (Fig. 2). The ADE-ADE association
with the higher number of overlapping drugs was ‘nausea- vomiting’ with
363 drugs. To keep the most significant associations, we calculated a
weighted score (wS) for each pair of nodes. Associations with the highest
wS (value of 5.821) was ‘Completed suicide-Toxicity to various agents’ sup-
ported by the literature (Crome, 1993), and the smallest wS (value of
0.002) was ‘Drug interaction-Ovarian failure’ mentioned in a previous
study (Anasti, 1998).

In a last step, System Organ Classes (SOC) were integrated in the ADE-
ADE network to facilitate further visualization, and exploration of targeted
systems by drugs. In the developed ADE network, each ADE was classified
into the 27 System Organ Classes using the Preferred Term (PT) (Fig. S1).
Taking all the information into account, the maximum number of ADEs
assigned to one SOC ‘Nervous system disorders’ is 442.

4. Case studies using the ADE-ADE network

The requirement of new or repurposed drugs to treat diseases such as
neurological and oncological disorders is expected to increase rapidly in
Fig. 2. Representation of the top significant ADE-ADE associations based on the weighte
weighted score (wS ≥ 2) are shown. Each node represents one unique ADE, colored b
according to the number of drugs known to be linked to it. The width of each edge r
ADEs. For example, ‘Nausea’ and ‘Vomiting’ share 363 drugs (wS of 5.07), and ‘Nausea’
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next five years. Due to the biological complexity in such diseases, it is nec-
essary to improve patient safety during the preclinical phase (The Changing
Landscape of Research and Development, n.d.). The developed ADE-ADE
network model was used to assess potential uncharacterized ADEs for
three marketing approved drugs by the FDA after 2000 e.g. safinamide,
sonidegib, rufinamide. These three drugs were selected as they have very
few known ADEs in DrugCentral (≤2) (Table 1). First, known ADEs for
each drug were individually screened on the developed ADEmodel to iden-
tify potential ADE associations (using the pullS). As a next step, to evaluate
the accuracy of the predictions, we manually evaluate the results using a
two ways procedure: 1) Finding some literature-based evidence supporting
the potential linkages between themost significant predictedADEs; 2) Com-
paring the predicted ADEs with toxicity information reported in FDA
documents.

4.1. Case study 1: safinamide

Safinamide is a monoamine oxidase type B (MAO-B) inhibitor
indicated as add-on treatment with levodopa for ‘off’ episode of
Parkinson's disease (The Changing Landscape of Research and
Development, n.d.). By inhibiting the metabolism of dopamine and
glutamate release, safinamide makes the concentration of dopamine
increased which lead to extend the time of ‘on’ episode. Meanwhile,
safinamide would not be considered as effective treatment for
Parkinson's disease as monotherapy (Cattaneo et al., 2016). By
today, the unique known ADE in DrugCentral is ‘Parkinsonism hyper-
pyrexia syndrome’. Using the developed ADE-ADE network and the
pull-down procedure, 52 potentials ADEs were identified, and among
the most significant we were able to retrieve literature support,
excepted for one ADE (Table S1) (Fig. 3a). The most significant pre-
dicted ADE was ‘Sudden_onset_of_sleep’. Exploring the literature with
the PubMed database, this ADE has been reported in a study with pa-
tients treated with safinamide in 100 mg/day (Fabbri et al., 2015).
Others ADEs were predicted for safinamide (‘Compulsive_shopping’,
‘Compulsive_sexual_behaviour’, ‘Gambling_disorder’ and ‘Impulse-
control_disorder’, ‘Hypersexuality’, ‘Obsessive-compulsive_disorder’),
d score (wS). For clarity, only the top significant associations selected based on the
y the organ system classification (SOC) to which it belongs. The size of the node is
epresents the wS, calculated based on the number of shared drugs between two
and ‘Malaise’ have 266 common drugs (wS of 2.08).



Table 1
Known adverse drug effects of three approved drugs. For each drug, ADE information was extracted from the DrugCentral database.

Drug name Adverse event in DrugCentral SOC Approval date in FDA Indication

Safinamide Parkinsonism hyperpyrexia syndrome Nervous system disorders March 21, 2017 Parkinson's disease
Sonidegib Febrile neutropenia Blood and lymphatic system disorders July 24, 2015 Basal cell carcinoma of skin
Rufinamide Status epilepticus Nervous system disorders Nov. 14, 2008 Seizures associated with Lennox-Gastaut syndrome

Seizure Nervous system disorders
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that are part of various concerns about potential links between
safinamide, impulse control problems, and compulsive and impulse
behavior (FDA drug label, n.d.). Using safinamide with other antipsy-
chotic drugs, such as dopamine antagonists may aggravate the symptom of
‘Parkinson's_disease’ and ‘Parkinsonism’, as indicated by the FDA (FDA drug
label, n.d.). ‘Delusion’, ‘Jealous_delusion’ were identified in our model and
also reported in clinical trials (CENTER FOR DRUG EVALUATION AND
RESEARCH XADAGO (SAFINAMIDE) MEDICAL REVIEW(S), n.d.). With-
drawal effectwas also predicted as a potential ADE for safinamide. Symptoms
resembling to ‘Neuroleptic_malignant_syndrome’, which was reported with a
rapid dose reduction or withdrawal of the drug support our suggestion
(Marquet et al., 2012; Stocchi et al., 2012).

Our model was also capable to identify uncharacterized ADEs. The ADE
‘Dopamine_dysregulation_syndrome’, that is a dysfunction of the reward
system with symptoms such as compulsive craving of a medication, was
predicted with a significant score. Although no literature study allowed to
confirm such linkage, a mechanism of action of safinamide is to inhibit ca-
tabolism of dopamine (FDA drug label, n.d.).

We went one step further and explored FDA reports. All ADEs identified
by our model were compared to the observed ADEs during clinical trials
and potential risk as described in FDA document (FDA drug label, n.d.).
Interestingly, all ADEs mentioned in the FDA report were retrieved, and
predicted by our computational network-based model (Table S2).
Fig. 3. Visualization of the most significant ADEs predicted to be associated to safinam
represent the known ADEs related to each drug (from the DrugCentral database). The
known ADE. The width of the edges is according to the pull-down score (pullS) tha
associations, leading to identify an ADE for a drug that is supported by the literature a
reveal uncharacterized ADEs for a drug. For a better visualization of targeted systems
represented by colored nodes.
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Nevertheless, the predicted ADE ‘Dopamine_dysregulation_syndrome’
was not previously reported in the FDA reports.

4.2. Case study 2: sonidegib

Sonidegib is a hedgehog signaling pathway inhibitor that plays an impor-
tant role in the developmental process of embryo cells. This drug is used for
treatment of basal cell carcinoma of skin, which is one type ofmalignant neo-
plasms (Katoh and Katoh, 2005). According to the DrugCentral database,
only one known ADE exists for this drug that is ‘Febrile_neutropenia’. The de-
veloped ADE model was screened for ‘Febrile_neutropenia’, and among the
1750 potential ADEs, 20 ADEs had a significant score (Fig. 3b) (Table S3).
Among them, no literature evidence between exposure to sonidegrib and
ten predicted ADEs was found (Table S3). The most significant predicted
ADE was ‘Nicotinic_acid_deficiency’. Nicotinic acid (also known as niacin)
is a vitamin B3 used in prevention of basal cell carcinoma of skin
(Totonchy and Leffell, 2017). Although there was no direct evidence to sup-
port this association sonidegib-niacin deficiency, this drug is known to beme-
tabolized by the cytochrome CYP450 3A4, while niacin is an inhibitor of this
enzyme (Gaudineau and Auclair, 2004). The ADE ‘Chronic lymphocytic leu-
kaemia recurrent’was also predicted. A published study revealed that pertur-
bation forHedgehog signaling pathway activates cancer stem cells inmyeloid
leukaemia (Zhao et al., 2009), leading potentially to ‘Richter's_syndrome’
ide (4a), sonidegib (4b) and rufinamide (4c). In each subnetwork, central nodes
predicted ADEs, using the developed ADE-ADE network model, are linked to each
t allow to prioritize the findings. Solid edges represent known-predicted ADEs
nd/or a FDA reports. Dash edges indicate novel ADE-ADE associations, allowing to
, ADE from the model was classified with the System Organ Class (SOC), which is
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(Collier et al., 2016) andmay support ourfinding. Among the predictedADEs
with literature supports, ‘Lower_respiratory_tract_infection_fungal’was signif-
icantly predicted. A publication reported that patients that received sonidegib
in 800mg, have shown the symptom of ‘pneumonia’ during the clinical trials
(CENTER FOR DRUG EVALUATION AND RESEARCH, n.d.), which support
our prediction. Another prediction, ‘Juvenile_melanoma_benign’ was sup-
ported by a FDA document that indicates that this ADE occurred in 3% of
patient treated with 200 mg of sonidegib, and in 1% patients treated with
800 mg (CENTER FOR DRUG EVALUATION AND RESEARCH, n.d.). Other
ADEswere deciphered, for which literature evidence were retrieved in differ-
ent studies, and besides all these specific ADEs, more common ADEs
(vomiting, diarrhea) were also identified by our approach (Table S3). Inter-
estingly, some ADEs such as foetal death and teratogenicity (Table S4) were
identified by our model. Such predictions are supported by the fact that this
drug is known to affect early developmental signaling in the embryo, and
therefore potentially invoke adverse pregnancy outcomes. When comparing
our predictions with existing information in FDA pre-marketing document
(FDA drug label ODOMZO(sonidegib), n.d.), all were retrieved, therefore
supporting the good predictability of such computational approach
(Table S4).

4.3. Case study 3: rufinamide

Rufinamide is an antiepileptic drug used for the treatment of the patient
with Lennox-Gastaut syndrome, a severe form of epilepsy (called also sei-
zure), usually occurring during infancy or early age (Heiskala, 1997). The
mechanism of action of this drug is to modulate the inactivation of sodium
channels. By screening independently, the two known ADEs ‘Seizure’ and
‘Status_epilepticus’ with the developed ADE network, 3095 potential
unique ADEs were identified by our approach. Among them, 1721 were
linked to ‘Status_epilepticus’ and 3088 to ‘Seizure’. Themost significant pre-
dicted ADEs for each of the known ADEs are shown in Fig. 3c (Table S5).
Among them, eight were not supported by the literature, and scientific pub-
lications could be retrieved for 27 rufinamide-ADE linkage.

Prediction of ADEs associated to ‘Seizure’: Among the high scored pre-
dicted ADEs, no literature evidence was found for seven of them.
‘Product_tampering’, could be indirectly supported by a study that
demonstrated that antiepileptic treatment may induce seizure due to
the dosage reduction of the drug (Bauer, 1996). Also, it has been re-
ported that the predicted ADE ‘Postictal_psychosis’ is common after
the occurrence of seizure (Morrow et al., 2006). Other ADEs were sug-
gested as ‘Hyponatraemic_seizure’, that cause another predicted ADE
‘Cerebrospinal_fluid_leakage’, ‘Proctitis’; ‘Tongue blistering’ and
‘Hordeolum’. Several other significantly predicted ADEs were sup-
ported by the literature. ‘Infantile_spasms’, as rufinamide could be ex-
creted in mother's milk (FDA drug label BANZEL(rufinamide), n.d.);
‘Confusional_state’ was supported by a clinical trial. It showed that
rufinamide increased the risk of unusual thought or behavior (FDA
drug label BANZEL(rufinamide), n.d.). Studies indicated a potential
correlation between antiepileptic drug and risk of cancer (Singh
et al., 2005). Other ADEs, less significant, were predicted such as
‘Drug_ineffective’. It could be explained by a non-adapted use of
rufinamide in patient (Patsalos and Bourgeois, 2010; Kim et al.,
2012). From a FDA perspective, one of the most significant prediction
‘Postictal_psychosis’, not supported by the literature, is mentioned in a
report (FDA drug label BANZEL(rufinamide), n.d.). Also, rufinamide
was indicated to cause hyperactivity reaction due to affection of multi-
ple organs, leading to ‘Toxicity_to_various_agents’ (Guengerich, 2011)
and was found in our network. Exposure to rufinamide may also affect
the blood and lymphatic systems, leading to ‘Hypotension’. This result
was noted in the FDA report, and observed during clinical trials
(CENTER FOR DRUG EVALUATION AND RESEARCH, n.d.).

Prediction of ADEs associated to ‘Status_epilepticus’: Only one predicted
ADE was not supported by the literature, ‘Psychogenic_seizure’, but a
study shows that depression was considered as a risk factor inducing
‘Psychogenic_seizure’ in pediatric population (Devinsky et al., 2011).
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Among the most significant predicted ADEs supported by the literature and
FDA reports, ‘Clonic_convulsion’ is known to occur in pediatric patients (4 to
17 years) at the dose of 45 mg/kg per day during clinical trials (FDA drug
label BANZEL(rufinamide), n.d.). Changes of doses during treatment of
rifunamide, may also lead to withdrawal effects (‘Muscle_contracture’ that is
linked to ‘Generalised_tonic-clonic_seizure’, ‘Seizure’, ‘Condition_aggravated’,
‘Epilepsy’, ‘Myoclonus’) (FDA drug label BANZEL(rufinamide), n.d.;
Conradsen et al., 2013). Therefore the FDA recommended to reduce progres-
sively posology of rufinamide (FDA drug label BANZEL(rufinamide), n.d.). All
predicted ADEs were compared with the ones described in the FDA report
(FDA drug label BANZEL(rufinamide), n.d.), and common predicted ADEs
(headache, dizziness, fatigue, somnolence, and nausea) were retrieved
(Table S6).

5. Discussion

New and innovative methods are needed to predict putative
uncharacterized ADEs from drug exposure. In the present study, we devel-
oped a network-basedmodel using known information of drug-ADE associ-
ations, and demonstrated the predictive power of such approach to
decipher uncharacterized ADEs for a specific drug. To our knowledge, the
proposed ADE-ADE model is the first to provide a global mapping of ADE
relationships in the drug space, without considering the structural informa-
tion of the drugs. Integration of the SOC information into the ADE network
allowed to shown that drugs does not affect only the targeted systems, but
multiple systems leading to various pathways perturbations that may cause
ADEs (Figs. 2 & 3). Such findings may be explained by the fact that thera-
peutic targets might act in different cells and organs.

An exploration of the distribution of ADE-ADE associations in our
model, shows that both the number of overlapping drugs between two con-
nected ADEs, and the weighted scores were controlling most of the associ-
ations in the network, following the well know “richer get richer” effect
(Hopkins, 2008). Such observation reflects the nature of scale free network
that is generally related to biological network. The most significant ADE
associations (based on the wS) were retrieved for common ADEs such as
Nausea, Vomiting and Diarrhea, which is due to the high number of
drugs linked to these ADEs. Associations with the lowest wS were between
uncommon ADEs such as ‘Parkinsonism_hyperpyrexia_syndrome and
Dopamine_dysregulation_syndrome’. This can be of interest for the assess-
ment of drug-drug interactions that may cause more serious unknown
ADEs.

The major limitation of our integrative systems toxicology approach is
that the ADE predictions are limited to the ones present in the ADE
model. Hence, drug effects that may be reported in the literature or in
FDA reports (such as hematuria for rufinamide, or more complex effect
as retinal degeneration and loss of photoreceptor cells reported for
safinamide), but not in the DrugCentral database, cannot be predicted by
themodel. Such gaps could be pavedwhenmore datawith LRT information
will be available from diverse data sources.

In addition to the ADE predictions for drugs, the model allowed to point
out another interesting issue, which is that someADE occurrence is dose re-
lated. Some ADEs occurred depending to the posology such as “impulse be-
havior” for safinamide, ‘pneumonia’ for sonidegib and “severe seizure” for
rufinamide. Therefore, clinical surveillance need to be done with the iden-
tification of suitable dose, especially for the drug with narrow therapeutic
window (Role of systems pharmacology in understanding drug adverse
events - Berger - 2011 - WIREs Systems Biology and Medicine - Wiley
Online Library, n.d.). Overall, ADE appearance is dependent of the patient
population type (age, gender, ethnicity…). For example, it is known that
older patients have usually multiple illnesses, and therefore are exposed
to polypharmacy treatment (Lavan andGallagher, 2016). Thismay increase
the risk of drug-drug interactions and multiple ADEs. Furthermore, it is im-
portant to consider the time of the start of medication, as the period of vul-
nerability is higher in newborn and infants due to their organ maturation.
This population may have over reaction for the drug in terms of organ
and result other underlying ADEs (FDA drug label BANZEL(rufinamide),
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n.d.; Wu and Peters, 2019). The different formulation (oral and IV) or the
relation of an ADE to a prodrug, the active drug or metabolite are some
other issues that may also cause different adverse effects (Uchegbu and
Florence, 1996; Ma'ayan et al., 2007). So far, our ADE model does not dif-
ferentiate between these points as our approach is limited to binary data
(drugs associated or not with ADEs) compiled from the DrugCentral data-
base. In the future, more specific ADE models could be developed when
such diverse information will be accessible for a large set of drugs.

Such integrative toxicological modeling developed for drug attrition
and pharmacovigilance, may be applied to other research areas such as
the regulatory arena of toxicology that does not always embrace the com-
plexity of biology. It could be considered more generally in chemical risk
assessment. Gene-environment associations, life stage considerations,
stressor-key event linkages related to adverse outcome pathways (AOPs)
or evidences between the chemical exposome and proteins/pathways
dysregulations could be also integrated in such predictive toxicology
models to improve our understanding of the impact from chemical expo-
sure to human health and toxicity (Wu et al., 2020; Carvaillo et al., 2019;
Rugard et al., 2020; Jornod et al., 2020).

6. Conclusion

We propose a novel computational approach different from the existing
ones, that integrate drugs information and calculate in a quantitative man-
ner ADE-ADE linkage. The ability to make new findings, that is prediction
of new potential ADEs for a drug, is illustrated with three case studies.
Results indicate that the developed ADE-ADE network is powerful in the
identification of ADEs associated to drugs and can guide further experimen-
tal studies during the drug development process. As a perspective, our net-
work approach could help to extend the knowledge of the mechanisms of a
drug related to ADEs with the integration of poly-pharmacological and
poly-toxicological data. That would pave the way for effective medicine
with patient safety.
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