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Abstract

Investigating genomic structural variants at basepair resolution is crucial for understanding their 

formation mechanisms. We identify and analyze 8,943 deletion breakpoints in 1,092 samples from 

the 1000 Genomes Project. We find breakpoints have more nearby SNPs and indels than the 

genomic average, likely a consequence of relaxed selection. By investigating the correlation of 

breakpoints with DNA methylation, Hi-C interactions, and histone marks and the substitution 
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patterns of nucleotides near them, we find that breakpoints with the signature of non-allelic 

homologous recombination (NAHR) are associated with open chromatin. We hypothesize that 

some NAHR deletions occur without DNA replication and cell division, in embryonic and 

germline cells. In contrast, breakpoints associated with non-homologous (NH) mechanisms often 

have sequence micro-insertions, templated from later replicating genomic sites, spaced at two 

characteristic distances from the breakpoint. These micro-insertions are consistent with template-

switching events and suggest a particular spatiotemporal configuration for DNA during the events.

Introduction

Genome structural variations (SVs) involving hundreds and thousands of bases are common 

during evolution and are widespread in the human genome1,2. The larger fraction of the 

human genome affected by SVs than SNPs3 implies they may have greater, or at least 

similar, consequences for phenotypic variation and evolution than SNPs1,2. Not surprisingly, 

SVs can cause and have been associated with numerous diseases4–10.

SV occurrence and existence is a complex phenomenon that is not completely understood. 

SVs, like other genomic variants, are genetic imprints of mutational processes in cells. The 

sequence content of SVs can carry important information about their origin, but bases 

around their breakpoints hold the most crucial details of SV genesis. Long homologies 

around breakpoints suggest SV formation by non-allelic homologous recombination 

(NAHR); short homologies, with high mobile element content within SV regions, suggest 

they originated through transposable element insertions (TEI); while little or no homology 

(NH) at breakpoints indicates that an SV originated as a result of a non-homologous end-

joining (NHEJ) events or by a template-switching mechanisms during replication11. The 

latter mechanisms include fork stalling and template switching (FoSTeS)12 and 

microhomology-mediated break-induced replication (MMBIR)13. Mistakes in breakpoint 

resolution of just several bases can lead to misclassification of mutational signatures and 

compromise downstream analysis. Thus, studying SVs at breakpoint resolution is 

fundamental to understanding the mutational mechanisms generating them.

A few systematic genome wide studies of SV breakpoints have been carried out to date14–17. 

In particular, studies by Lam et al.14, Conrad et al.16, and Kidd et al.15, analyzed 1,961, 324, 

and 1,054 SV breakpoints in 14, 3, and 17 individuals respectively. The majority of SVs 

analyzed in those studies were larger than 1 kbps. Analysis of genomes from 180 individuals 

in the pilot phase of the 1000 Genomes Project17 revealed that there are at least an order of 

magnitude more SVs present in the human population, a significant fraction, if not most, of 

which are smaller than 1 kbps. The challenge of precise breakpoint identification from 

inexpensive short-read sequencing was also realized18. Along with advances in breakpoint 

ascertainment, recent multiple studies aimed at deciphering genome function have been 

conducted that have generated a wealth of functional genomic data. For example, the 

ENCODE project19 and The NIH Roadmap Epigenomics Mapping Consortium20 released 

data on chromatin marks, methylation, DNase hypersensitive sites, and transcription binding 

sites in multiple cell lineages and tissues. These data allow the study of SV breakpoints in 

the context of genome functional and epigenetic contents.
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Here we describe the discovery and analysis of a large set of 8,943 high confidence deletion 

breakpoints from 1,092 individuals sequenced in phase 1 of the 1000 Genomes Project21. 

We put special emphasis on the derivation of our set of high precision breakpoints and 

provide this dataset as a valuable resource for others. Our subsequent downstream analysis, 

including correlating breakpoints with functional genomic data, reveals important details of 

their mechanisms of formation and the genomic characteristics associated with them. In 

particular, we hypothesize that some NAHR deletions occur without DNA replication and 

suggest that DNA should be in a particular spatial and temporal configurations to generate 

SVs during a template-switching event.

Results

Deriving the confident set of breakpoints

We performed comprehensive discovery of deletions21, targeted breakpoint assembly22, and 

breakpoint mapping with two pipelines22,23 to arrive at a candidate set of breakpoints (Fig. 

1A). To derive high quality dataset we needed to address two types of errors: false deletion 

calls and incorrect breakpoint assembly. Consequently, we developed a dedicated filter that 

utilized unmapped reads and an empirical null model (Fig. 1B). Briefly, the model used 

inner sequences adjacent to deletion breakpoints to construct junctions simulating random 

sequences, i.e., null sequence junctions. Note that this model imitates biologically relevant 

sequence homologies around breakpoints. We realigned unmapped reads to real and null 

junctions and optimized the criteria for considering whether a read supports a junction by 

interrogating alignments to null junctions, as such alignments reflect random noise (see 

Methods).

For validation we performed PCR amplification across breakpoints and tested for 

differences in intensity values for SNP probes across individuals with and without deletions 

– the Intensity Rank Sum (IRS) test17 (see Methods). The final set consisted of 8,943 

deletion breakpoints with consistent FDR estimates from PCR (6.8%) and IRS (6.4%) 

validations for deletion existence, and 13.7% for deletion presence with precise breakpoints 

from PCR. Precision was confounded by repeats around breakpoints. Typically, we 

observed a shift between breakpoint coordinates from assembly and validation, but in one 

case we observed that assembly collapsed repeats (Supplementary Fig. 1). Using a read 

depth approach, we genotyped 4,384 variants from the set as deletions in two trios 

sequenced to high coverage by long reads. With these data as supporting evidence we 

confirmed 3,034 breakpoint sequences (34% of the entire set) and, after minimizing 

confounding factors, calculated yet another FDR estimate of 18% for deletion presence with 

precise breakpoints (Supplementary Data 1 and Methods).

As expected, we find exponentially more of the less frequent deletions, with roughly 54% 

genotyped in less than 2% of studied individuals (Supplementary Fig. 2). Using OMNI 

genotyping arrays we estimated that our breakpoint genotyping, while being very precise, 

misses roughly 60% of samples; the results of shallow 4–8× sequencing limiting coverage of 

breakpoints to an average of 2–4 reads. Additionally, due to stringent criteria for breakpoint 

support, breakpoints of rare deletions are less likely to be confirmed by read mapping. As a 

consequence, the frequency spectrum of deletions in the set was shifted toward more 
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common events as compared to the SNP set discovered from the same data (Supplementary 

Fig. 2).

Overall, our breakpoints are of higher quality than those derived in the pilot phase of the 

1000 Genomes Project17 (Supplementary Fig. 3) and are more representative in their length 

distribution than those used recently in the following phase21 (Fig. 1C), as the latter set was 

limited to large non-repetitive events that could be well-genotyped across the analyzed 

populations. A large fraction of our dataset, 3,739 (42%), were deletions of at least a 

thousand bases in length. This set was also significantly larger (when counting variants 

larger than 100 bps) than those analyzed previously14–16,24,25 (Supplementary Table 1). 

4,583 (51%) of deletions intersected 2,706 GENCODE annotated genes, which included 

2,498 protein coding genes and 1,487 of their exons.

We further classified the deletions by their likely mechanism of origin using sequence 

signatures at breakpoints from the following classes14: non-allelic homologous 

recombination (NAHR), transposable element insertions (TEI), and non-homologous (NH) 

events. Note that our set does contain bona fide insertions relative to ancestral state, such as 

transposable elements14. In particular, majority of the TEIs are insertions of Alu elements. 

The final set consisted of 13% NAHR, 25% TEIs, and 61% NH deletions. Large fraction of 

NH deletions (58%) had evidence of being generated though template-switching 

mechanisms, i.e., contained at least 2 bp identity around breakpoints or MI longer than 10. 

The remaining NH deletions are likely to arise through NHEJ. Several of the MI suggested 

the involvement of transposable elements via non-canonical insertion mechanisms. For 

example, the MI of one deletion (chr1:200,258,970–200,259,149) consisted of the sequence 

of 3’-end of an active Alu element and 21 bp long poly(dA) tail, and is thus likely templated 

from RNA of an Alu element26. We also identified a deletion (chr17:1654955-1655422) 

generated with a breakpoint signature indicating recombination across the right arm 

monomers of two oppositely oriented Alus27. Overall, the deletions in this set were 

generated though a variety of mutational mechanisms.

We provide this dataset as a public resource (Supplementary Data 1 and http://

sv.gersteinlab.org/phase1bkpts) with complete information about breakpoint coordinates, 

mechanism classification, and, if applicable, the sequence of micro-insertions (MI) at the 

breakpoint. The resource can be used in various ways including SV genotyping by mapping 

reads to breakpoint junction sequences. To this end, we extended BreakSeq14,28 a junction-

mapping algorithm for SV detection, into BreakSeq2 for rapid and enhanced SV genotyping 

(Supplementary Fig. 4). BreakSeq2 supports the SAM/BAM file format and is able to utilize 

more reads for mapping to sequence junctions. It estimates the zygosity of the calls to 

provide more information for interpretation. We benchmarked BreakSeq2 breakpoint 

genotyping on a high-fidelity synthetic genome29 and on a deep-sequenced human genome 

of an individual30. BreakSeq2 applied (see Methods) with the new, extended breakpoint 

library is able to genotype roughly ~2,000 SVs per individual with 80%–90% sensitivity, 

double compared to the previous version14, while maintaining a high precision of over 98% 

(Supplementary Data 2).
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Variant co-aggregation with deletion breakpoints

To analyze the association of variants with deletion breakpoints, we aggregated SNPs and 

indels found in the same group of individuals around breakpoints. To reduce the 

contamination of our analysis with false positive calls, we only used variants that reside in 

confident sites, as defined by the mask of the 1000 Genomes Project21, and calculated 

densities with respect to the number of such sites. Normalized densities (see Methods) of 

both SNPs and indels increased in the 400 kbp regions around breakpoints of each class 

(Fig. 2A and Supplementary Fig. 5). One might suggest that false SNP calls as a result of 

read mis-mapping around breakpoints could cause the observed increase, as reads spanning 

the SV junctions are often misaligned. However, the increases have a scale that is large 

relative to the 450–650 bp insert size of sequencing libraries and, therefore, cannot be 

artifactual. Analysis of sequence conservation around breakpoints revealed that these 

increases could likely be explained by the co-occurrence of different variants in genomic 

regions under reduced selection. This is evident by the aggregated conservation score 

decreasing around breakpoints in conjunction with an increase in SNP densities.

Besides the overall SNP density, the densities of all individual substitution types (e.g., C to 

A) also increase close to NH and TEI breakpoints (Supplementary Table 2). However, this is 

not the case for NAHR breakpoints, for which C to A and T to A are depleted, while C to T 

substitutions are enriched (Fig. 2B; Supplementary Table 2). We hypothesized that the 

observed differences in SNP aggregation can be explained by the sequence and motif 

content around breakpoints of each class and/or different selection pressure acting on 

substitutions of each type. Indeed, further analysis, performed by removing CpG di-

nucleotides from consideration, revealed that the increase in C to T substitutions is due to 

the enrichment of the CpG motif exclusively around NAHR breakpoints, but not around NH 

or TEI breakpoints (Fig. 2B and Supplementary Fig. 6). This is expected, as it is known, that 

the motif itself, C to T mutations within it, and NAHR breakpoints are associated with 

recombination hot-spots31,32. Indeed, NAHR breakpoints in our set were strongly associated 

with higher recombination rates (enrichment of 1.4 with p-value < 10−3, Bonferroni 

Correction), while no significant association for breakpoints of other classes was observed 

(see Methods). However, unexpectedly, the density of C to T substitutions in CpG motifs 

decreased close to NAHR breakpoints (Supplementary Fig. 6). Since such substitutions are 

methylation-associated we directly tested for DNA methylation levels around breakpoints.

Association of with epigenome and chromatin states

DNA methylation levels from H1ESC line showed no change close to breakpoints of all 

classes (Supplementary Fig. 7). We next searched for an association of breakpoints with 

hypomethylated regions in sperm as compared to H1ESC33. A strong association was 

observed for TEI and NAHR breakpoints (Fig. 3A). In particular, the TEI breakpoints were 

five times and NAHR breakpoints were over 50% more likely to reside in hypomethylated 

regions than expected by chance (both p-values < 2×10−4, see Methods). Such an 

enrichment for TEI (mostly Alus) could reflect the long-standing observation of 

demethylation of Alu elements in sperm34. Alternatively, the enrichment could reflect a 

preference of transposon integration complexes for hypomethylated DNA, as has been 

observed in somatic TEIs in cancer genomes35. Similar enrichment for NAHR deletions is 
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consistent with the reduced C to T substitution densities in CpG regions around the 

deletions’ breakpoints. This observation is not confounded by CpG islands, most of which 

are also constitutively unmethylated in sperm (Supplementary Fig. 8).

Next, we used two states of the chromatin interactome, as defined by Hi-C experiments36, 

roughly corresponding to open and closed chromatin, to investigate any correlation of 

breakpoints with open and active DNA chromatin. We tested for the occurrence of 

breakpoints in genomic bins of 100 kbps assigned to either state. To determine the 

significance of our findings we fixed relative arrangements of chromatin states and the 

relative arrangements breakpoints, but randomized positions of the states and breakpoints 

with respect to each other (see Methods). We observed (Fig. 3B) that NH and TEI 

breakpoints are depleted for open chromatin, while NAHR breakpoints are enriched (p-value 

< 10−4, Bonferroni Correction). Segmental duplications (SDs) are known to mediate 

NAHR. We indeed (Fig. 3B) saw a positive correlation (Spearman coefficient 0.85) between 

NAHR and SDs but only in the closed chromatin, while in the open chromatin we observed 

a negative correlation (Spearman coefficient −0.32). Similarly, we observed a strong 

correlation of recombination rate with NAHR breakpoints in closed chromatin (Spearman 

coefficient 0.94), but significantly weaker correlation in the open chromatin (Spearman 

coefficient 0.28). This suggests two conditions for generating deletions by NAHR.

We further analyzed an association of breakpoints with 10 chromatin marks (Fig. 3C). The 

three classes of breakpoints showed very different associations. NH breakpoints were 

depleted for all active marks and also for the H3K9me3 repressive mark. TEI breakpoints 

showed weak depletion of active marks. However, NAHR breakpoints were characterized 

differently. The density of repressive H3K27me3 mark decreases close to NAHR 

breakpoints, while the densities of all active marks increase. As active marks are linked to 

open chromatin36, these observations corroborate the association of NAHR with open 

chromatin.

Hi-C data and chromatin marks define open chromatin on a large kilobase to megabase 

scale, while accessible DNA, which is a subset of open chromatin, can be defined on the 

scale of a few hundred and dozen bases. We correlated our breakpoints with DNase 

hypersensitive sites and with nucleosome free DNA (Supplementary Fig. 9). DNase data 

revealed association of NAHR breakpoints with accessible DNA at a kilobase range. 

Nucleosome occupancy data further uncovered preference of NAHR breakpoints to reside in 

nucleosome-free regions. Analysis of the both data types revealed no association with NH 

breakpoints, but depletion of TEI breakpoints in nucleosome occupied and DNase accessible 

regions.

Breakpoint deletions and their relation to replication timing

Multiple studies have reported the existence of micro-inserted sequences at deletion 

breakpoints. In our dataset we observed 2,391 (27%) deletions with micro-insertions ranging 

in length from 1 to 96 bps with the majority being less than 10 bps in length (Fig. 4A). 

Those could arise from technical ambiguities in breakpoint reporting when there are SNPs or 

indels close to breakpoints (see Methods). We therefore focused the following analyses on 

micro-insertions longer than 10 bps.
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As in previous studies15,16, micro-insertions were observed almost exclusively (83%) for 

NH events. It has been suggested that template-switching mechanisms during replication 

generate deletions with micro-insertions that are copies of some sequence in the genome13. 

To test for this possibility we determined the likely genomic origin, i.e., the template site, of 

133 inserted sequences of which 114 were 20 bps or longer, constituting 42% of all micro-

insertions of such length (Supplementary Data 3). Other micro-insertions did not map to the 

reference genome, mapped only partially, or mapped to multiple locations. We categorized 

template sites as those: i) within a deletion, which were 49 (37%) in total; ii) outside of a 

deletion, but on the same chromosome, totaling 52 (39%); and iii) on a different 

chromosome, totaling 25 (19%). Seven template sites spanned breakpoints and were 

excluded from analysis.

It was previously observed that NH events typically have few bases of homology around 

their breakpoints and template sites14–16,37. We do confirm this observation (Fig. 4B) for 

blunt deletions and those 101 template sites located on the same chromosome as the 

corresponding deletion. However, no sequence micro-homology around breakpoints was 

apparent for deletions having template sites on different chromosomes (Supplementary Fig. 

10A).

The distribution of the nearest distance between template site and either of the breakpoints 

revealed preferred relative arrangement (Fig. 4C). The template site was typically located 

either between 20 to 60 bps (adjacent site) or between 2 to 6 kbps (distant site) of one of the 

breakpoints. The existence of such characteristic distances may signify the mechanism(s) 

leading to the generation of micro-insertions.

It was previously noted38 that breakpoints of deletions generated by different mechanisms 

are associated with different replication times. We confirm those observations: NAHR 

deletions are typically associated with early replicating regions, NH with later ones, while 

TEIs show no significant relation to replication time. Furthermore, template sites outside 

deletions typically replicate later (Fig. 4D) than breakpoint regions (p-value < 0.03 by 

binomial test). However, the same effect was not significant for template sites within 

deletions, possibly due to low resolution of the replication time measurement, which is of 

kbp scale. Similarly we did not see preference for later or earlier replication times for 

template sites on different chromosomes (Supplementary Fig. 10B).

Discussion

In this study we derived a large set of germline deletion breakpoints. This set represents 

deletions across a broad length scale, with high quality of breakpoint sequences, and across 

three likely mechanisms of origin, thereby allowing us to categorize breakpoints into 3 

classes: NH, NAHR, and TEI. It should be noted that NAHR and TEI events are more 

difficult to discover as they contain repeats, and so are likely to be underrepresented in this 

set. Further analysis revealed that a common feature for breakpoints of all classes is the 

association with evolutionarily less conserved genomic regions, spanning up to hundreds of 

kilobases downstream and upstream of the breakpoints. This is likely due to purifying 

selection disfavoring deletions. Selection is likely the reason explaining co-occurrence of 
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breakpoints in each class with SNPs. Alternatively, one can suggest that genomic features 

(e.g., nucleosome-free DNA) that predispose to certain classes of SNPs may also predispose 

to certain classes of SVs. While indeed we see such associations (e.g., for NAHR 

breakpoints), except for reduced conservation, we did not find any other feature that would 

be universally associated with breakpoints in each class. Associations with other measures—

CpG motif density, various types of nucleotide substitutions, histone marks, open chromatin, 

accessible DNA, methylation, and replication time—were different between deletion 

mutation mechanisms.

The classical NAHR mechanism postulates meiotic cell division as a requirement for 

generating a germline SV. This implies certain associations that we did observe in our study. 

In particular, NAHR breakpoints were associated with higher recombination rates, with 

higher GC content and with higher density of CpG motifs. However, and unlike other 

classes, they were also associated with open chromatin, higher DNA accessibility and active 

histone marks in mitotically dividing cells. This poses a paradox. No defined structure of 

DNA exists at the time of chromosome segregation39 and histone marks are gone40, thus, no 

association of breakpoints with open/active chromatin is expected. In fact, as a result of 

purifying selection one might expect an inverse relation of breakpoints with open chromatin 

and active histone marks, such as in the case of NH breakpoints. Neither recombination rate 

nor the fraction of bases in segmental duplications or in repeats explain these associations 

for NAHR breakpoints. The association of NAHR with early replication timing is also 

stunning. By the time of chromosome segregation, DNA replication is complete and 

replication time should not play a role.

Additionally, we found two lines of evidence associating NAHR breakpoints with 

hypomethylation: lower frequency of C to T SNPs in CpG motifs and an enrichment with 

demethylated regions in sperm. NAHR breakpoints have been previously suggested to be 

associated with hypomethylation41, but the findings were debated with the notion that 

technical variability may explain the association42. In our SNP aggregation analysis, we 

used roughly 70% of the human genome sequence where SNPs could be confidently 

determined. Demethylated regions in sperm used in our study were determined from 

comparative analysis of methylation profiles that are directly inferred from whole genome 

bisulfide sequencing in sperm and embryonic cell. Such comparative analysis is not likely to 

be influenced by technical artifacts. We, thus, state that the observed association of NAHR 

breakpoints with hypomethylation is not artefactual, though not as strong as Li et al. 

suggested41. It also corroborates association of NAHR breakpoints with open chromatin.

Based on all these observations, we hypothesize that a fraction of structural variations 

mediated by NAHR could originate in germ cells and early embryonic cells without 

replicating DNA and dividing. Open/active chromatin contains unpacked DNA that is easy 

to melt and may contain single-stranded DNA, for example, as a result of transcriptional 

activity. Such DNA can serve as a template in double strand break repair pathway for breaks 

in homologous region(s) that are close in space and thereby likely to be from the same 

chromosome36. In fact, intramolecular NAHR, which is homologous recombination between 

regions of the same continuous chromosome, has been previously suggested43,44, and the 

consequence of such an event would be generation of a deletion and a piece of extra-
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chromosomal circular DNA (eccDNA). eccDNA was recently extensively analyzed45 in 

mouse somatic tissues and human cancer cell-lines. The striking observation was that 

eccDNA was enriched in CpGs and exons, supporting the suggestion that unpacked DNA is 

a requirement for eccDNA generation. The length of eccDNA circles was typically 200–400 

bps, but could be as long as 2,000 bps, consistent with a median of 418 bp for NAHR 

deletions in our set. The association with early replication timing in our hypothesis is 

transient through open chromatin, which replicates first46.

The association of TEI breakpoints with SNP density, conservation, open chromatin, and 

histone marks was similar to that of NH breakpoints, but less pronounced. We think this is 

due to TEIs, as bona fide insertions are likely to disrupt only a few bases around insertion 

sites and, thus, are less likely to have deleterious effect as compared to NH deletions 

spanning from hundreds to millions of bases. TEI association with hypomethylation in 

sperm could be due to a known phenomenon34 or could imply preference for insertion into 

hypomethylated DNA35. Distinguishing these possibilities will require further study. 

Besides, possible association of methylation with TEIs, we observed strong correlation of 

transposable elements with nucleosome free DNA. This observation is consistent with the 

notion that, nucleosomes are generally refractory to nicking by human L1 reverse 

transcriptase, the key enzyme for retrotransposition47.

Our analysis also provided insight into the mechanism(s) of generating deletions in the NH 

class. Such deletions are thought to originate from NHEJ and template switching 

mechanisms during replication, such as FoSTeS or MMBIR. The template switching 

mechanisms predict13 that a replication fork can accidentally switch sites of template DNA 

during DNA duplication. Switching sites skips some genome sequences, thereby generating 

deletions, or re-replicates the same sequence, thereby generating duplications. Micro-

insertions are generated at breakpoints when switching occurs more than once. We found 

that template sites for MIs have sequence micro-homology at breakpoints, are located at two 

characteristic distances from breakpoints (between 20 to 60 bps – adjacent and between 2 to 

6 kbps – distant), and replicate later than the regions of breakpoints. In about half of the 

cases, template sites were within breakpoints of corresponding deletions. One might explain 

such cases by the co-occurrence of two deletions (or of a deletion and an indel), generated in 

different individuals (possibly by different mechanisms), and eventually integrated on the 

same allele and discovered as a single deletion. In other words, it might be suggested that 

micro-insertions are genomic sequences between two adjacent variants. We think that such 

an explanation does not apply to most cases. The distributions of the nearest distance to 

breakpoints for sites within and outside breakpoints are very similar and both have the same 

two characteristic distances. This suggests that deletions with MI template sites within and 

outside breakpoints are generated by the same mechanism, e.g., by template switching. As 

template sites from outside deletions could not be explained by variant co-occurrence, we 

argue that template sites within deletions could not be explained by variant co-occurrence 

either.

We also observed that template sites at different chromosomes do not have sequence micro-

homology at breakpoints and are not replicating later or earlier as compared to breakpoints. 

This may imply that MIs with template sites on the same and different chromosomes are 
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created by different mechanisms, e.g., MI was copied from RNA transcribed from distant 

region26, as we found one such event. It is also possible that template sites on different 

chromosomes arise from mis-mapping the sequences of micro-insertions.

We further hypothesize that the distance to template sites could be related to DNA packing 

in a cell during replication. For example, larger characteristic distances could reflect the 

length of DNA when wrapped with one loop around the replication bubble to bring a 

template site close to a collapsed or stalled replication fork. The later replication times of 

template sites suggest that it would still be in the form of a double helix and when 

dissociated, perhaps by another replication bubble, could provide the template sequence for 

template switching by the collapsed or stalled fork.

Large high quality breakpoint dataset significantly empowered our analysis. For example, 

133 mapped template sites of MIs constitute only 1.5% of all breakpoints in our set. 

Previous studies dealt with smaller sets, and a similar analysis was not feasible. Future 

studies will have larger and more comprehensive, including for duplications and inversions, 

breakpoint sets. Thus, it is likely that our knowledge of mutational mechanisms for SVs will 

be further expanded and refined.

Methods

Deletion discovery and merging and breakpoint inference

Deletions discovered by five CNV callers48–52 were merged with the set of breakpoints 

discovered in 180 pilot samples of the 1000 Genomes Project17. The merged set contained 

113,649 deletion calls. For each call we collected read pairs around its boundaries in 

samples where the deletion was discovered and assembled them with TIGRA-SV22 into 

contigs spanning breakpoints. The contigs were aligned to the deleted regions with 

CROSSMATCH and AGE23 to identify deletion breakpoints (see below). This way we 

inferred 36,237 breakpoints, of which 17,947 (50%) breakpoints were exactly the same by 

the two approaches, 9,537 (26%) breakpoints were different by the two approaches, and 

8,753 (24%) were uniquely inferred by either one of the approaches. In cases where the two 

approaches inferred different breakpoints, we chose breakpoints from AGE alignments, as 

the AGE method was specifically designed to align contigs with structural variations. 

Because of disagreement between the two approaches, we further filtered breakpoints by 

aligning unmapped reads to sequence junctions of the deletions (see below and Fig. 1). 

Based on PCR validation, we performed an additional filtering of deletions to reduce 

systematic false positives arising from the use of synonymous split-read (SR) approaches: 

deletion calling by SR, breakpoint derivation from assembly (which is SR-based), and 

filtering from read mapping to junction (which is SR-like). To summarize, all filtering steps 

were: i) removing breakpoints not passing criteria for support by mapped reads to their 

junction (see below); ii) removing deletions classified as VNTR, as their breakpoints are in 

very repetitive regions; iii) removing breakpoints only found by split-read calling 

approaches Delly, Pindel, and assembled in the pilot (the reason being that in the case of a 

mistake by a discovery method, assembly/filtering could repeat it, because it relies on a SR 

approach); iv) removing deletions with breakpoints inferred from only CROSSMATCH 

alignments; v) removing deletions called by only one method with breakpoints inferred from 
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only AGE alignments. The first three filters were the most effective in removing false 

positive calls (Supplementary Fig. 11). The final set consisted of 8,943 deletion breakpoints 

with consistent FDR estimates from PCR (6.8%) and IRS (6.4%) tests for deletion presence, 

and 13.7% for deletion with correct breakpoints from PCR. FDR for deletion breakpoints 

includes mistakes when deletion is not present, but also includes cases in which the 

breakpoint is incorrectly determined (Supplementary Fig. 1). Around 16% of deletions were 

present in only one initial call sets merged (Supplementary Fig. 11), stressing that the 

majority of deletion sites were detected by multiple algorithms.

Defining breakpoints from CROSSMATCH alignments

For a contig assembled from an intra-chromosomal variant in the genomic interval [a,b], we 

prepared a local reference sequence excised from [a−w,b+w], with w=500 bp by default. For 

a contig assembled from an inter-chromosomal rearrangement, we prepared two local 

reference sequences from [a−w, a+w] of chromosome c1 and from [b−w, b+w] of 

chromosome c2, respectively. We mapped each contig assembled by TIGRA to the 

corresponding reference sequences using CROSSMATCH. In the default setting, we used 

the following CROSSMATCH parameters: -bandwidth 20 -minmatch 20 -minscore 25 -

penalty -10 -discrep_lists -tags -gap_init -10 -gap_ext -1. We removed contigs that had more 

than 2 hits to the reference and ignored alignments that had substitution rates greater than 

0.5%. If a contig differs substantially from the reference, CROSSMATCH returns multiple 

local alignments, together with a set of statistics describing the quality of the alignments. A 

glocal alignment (combination of local and global alignment) was constructed from these 

local alignments53. We used that alignment as the basis for reporting the existence of 

breakpoints and details about the type, size, orientation, and location of the breakpoints 

(Supplementary Fig. 12). For example, the glocal alignment that supports a deletion 

breakpoint contains two local 1-monotonic alignments to the reference54. The gap between 

the end position of the first alignment and the start position of the second alignment 

corresponds to the size of the deletion, while the bases shared by both alignments 

correspond to breakpoint homology.

Defining breakpoints from AGE alignments

Contigs assembled by TIGRA-SV at least 100 bps in length were aligned to the 

corresponding predicted deleted region extended by 2 kbps downstream and upstream. AGE 

was run with options ‘-indel -match=1 -mismatch=-10 -go=-10 -ge=-1’, which specifies that 

contigs or reference regions are expected to have large insertions/deletions; that the score for 

base match is 1; that the mismatch penalty is −10; that the gap opening penalty is −10; and 

that the gap extension penalty is −1. Alignments consistent with the predicted deletion were 

selected to identify deletion breakpoints. The consistency was defined by the following 

criteria: i) at least 90% of bases in a contig are aligned; ii) there must be at least 98% of 

identical bases in an entire alignment; iii) there should be at least 97% identical bases in 

alignment of each flank, i.e., downstream or upstream from the deletion; iv) each flank must 

have at least 30 base pairs aligned; v) regions between breakpoints must have 50% 

reciprocal length overlap with the predicted deletion bounds; vi) breakpoints should be 

within 200 bps of the predicted deletion bounds; vii) alternative alignments, if any, must 

satisfy all of the conditions above. In case of multiple contig alignments satisfying the above 
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conditions, the one with the contig of highest coverage, as per assembly, was chosen to 

define breakpoints.

Filtering breakpoints by mapping to breakpoint junctions

Most of the reads utilized in assembly were from 30 to 70 bps in length, i.e., rather short. 

This fact complicates assembly and makes it rather prone to mistakes, particularly in 

repetitive regions, for which deletion breakpoints are enriched. Therefore, to ensure physical 

(rather than artificial, as a result of assembly error) continuity of flanking and inserted (if 

any) sequences at breakpoints, we performed breakpoint filtering by utilizing unmapped 

reads. For each derived deletion breakpoint we constructed a breakpoint junction sequence 

by joining 100 bps downstream with 100 bps upstream of the breakpoints. The micro-

insertion (if present) was inserted in the middle. The set of all 36,237 junctions sequences 

from 200 to 298 bps in length comprised the junction library. Unmapped reads were mapped 

to the junction library using Bowtie 0.12.755 with the options ‘--best --strata -v 3 -m 1’, 

requiring that ungapped alignments are made with at most 3 mismatches and that only 

unique alignments are reported. Prior to mapping, and in the same way that it was done by 

BWA56 during alignment preparation by the 1000 Genomes Project, the reads were trimmed 

at low quality 3’-end up to the average base-quality of 15. Reads mapping with less than 3% 

of mismatches of their length and having aligned bases in downstream and upstream 

flanking sequences were considered in potential support of the junction they aligned to. We 

chose a particular cutoff d on the number/fraction of bases aligned to each flank for 

deciding, which reads supported breakpoints. Breakpoints that had supporting reads from 

two different individuals passed the filter. This requirement ensures that breakpoints passing 

the filter are for heritable germline deletions, as singletons could be of somatic origin.

In total, we attempted realigning 15.8 billion reads to the junction library. Given the large 

number of realigned reads and the large size of the junction library, some of the read 

mappings could have been mapped by chance. To discriminate between real and random 

mappings we developed an empirical null model (Fig. 1B). The model is based on imitating 

the junction library with semi-random sequences, thereby creating a null junction library, 

and mapping unaligned reads to that null library. Such a mapping will represent random 

noise and can be used for optimizing values of d. The library is generated from inner 

sequences of deleted regions (Fig. 1B). Such an approach is advantageous in that it allows 

preserving genomic (e.g., nucleotide content and sequence homology at breakpoints) and 

data features (e.g., read coverage) associated with the loci of breakpoints.

We realigned all unmapped reads to the null junction library and varied the values of d to 

find the cutoff at which the number of null junctions passing the filter was <5% of the 

number of real junctions passing the filter at the same cutoff (Supplementary Fig. 13), i.e., 

we aimed for <5% in-silico FDR. This criterion led to setting the value of d at 13 bps. The 

empirical null model allowed us to stratify the precision of breakpoint by various categories. 

For example, and as expected, we observed that breakpoints found by only one approach 

(either AGE or CROSSMATCH based) have higher in-silico FDR. The order of breakpoints 

of different classes by corresponding in-silico FDR was (from lowest to highest): NH, TEI, 
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NAHR, and VNTR. This is also expected, as breakpoints of different classes have 

progressively more repeats around their breakpoints in the same order.

To summarize, we developed an empirical model that captures essential biological features 

of breakpoints, that is not biased because it uses data loci different from the breakpoints, and 

that allows the translation of random mappings into an estimated FDR. We suggest that such 

empirical models can be used to estimate FDR of genotyping known breakpoints from 

sequencing data. However, when it is applied to breakpoint filtering/validation, one should 

keep in mind that the approach may not account for systematic false positives arising during 

structural variant calling by split-read method(s), as was observed in our analysis (see 

above).

PCR and IRS validations

We selected 15–22 deletions of each class for PCR validation. Deletions were selected 

randomly, but required to be genotyped in at least two samples out of 319 for which we had 

DNA available. Here we relied on genotyping by mapping reads to deletion breakpoint 

sequence junctions. For the selected deletions we designed primers with Primer3 such that 

the primers would amplify the breakpoint sequence. For each deletion we ran PCR in at least 

one sample genotyped as having it and sequenced the resulting band with Sanger technique. 

In case the deletion was not confirmed, we ran the PCR in another sample genotyped as 

having it (the deletion).

Intensity Rank Sum (IRS) validation17 was as follows:. Briefly, the validation considers 

intensities of SNP probes within deleted regions and correlates it with deletion genotypes 

across samples. It is expected that for such SNPs, samples with deletion will have lower 

intensity values than samples without the deletion. Rank sum tests are performed to access 

the statistical significance of correlations. IRS only tests the validity of deletion sites and 

does not provide validation of breakpoints. Results of performing these exercises are 

summarized in (Supplementary Fig. 11).

Comparing with OMNI genotypes

A set of 11,472 breakpoints derived in the pilot of the 1000 Genomes Project was tested on a 

custom SNP array designed by ILLUMINA and named OMNI 2.5s array. The pairs of 

probes were designed such that one probe would hybridize to the reference allele and the 

other one to the breakpoint sequence, i.e., to the alternative allele. The probes were different 

in only one nucleotide to mimic probes for SNP genotyping. Accordingly, all the 

downstream hybridization signal processing was performed with standard software for SNP 

array analysis.

Probe design, hybridization in 431 individuals, and genotyping quality control resulted in 

confident array-derived genotypes for 4,385 (38%) breakpoints. 2,483 of our confident 

breakpoints were in this set (Supplementary Data 1) and 292 individuals were both 

sequenced by the 1000 Genomes Project and genotyped by this array. Comparison of 

samples genotyped (by the array) as having a deletion to those done by mapping reads to 

sequence junctions, as we did for filtering breakpoints, revealed that individuals with 

deletion genotypes by read mapping represent almost a perfect subset of those genotyped by 
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arrays (Supplementary Fig. 2). This is easy to rationalize by noting that individuals in the 

1000 Genomes Project were sequenced at a shallow 4–8× coverage, and thus not likely to 

have many reads covering breakpoint sequences, particularly in the case of heterozygous 

deletions. Furthermore, the requirement that reads mapped to deletion sequence junction 

must extend at least 13 bps across the junction in each direction, further reduces the number 

of reads that we consider supporting deletions.

Confirmation of breakpoints in high coverage trios

Breakpoint confirmation was performed using data for two trios sequenced with HiSeq 2500 

at 60× coverage with 250 bp reads. The 8,943 deletions in our confident set were genotyped 

in trios by CNVnator48, and when genotypes suggested the presence of deletions (estimated 

copy-number less than 1.5 or less 0.5, for diploid and haploid regions, respectively), 

corresponding breakpoints were selected for further investigation. Read pairs with 

coordinates in the 2 kbp vicinity of these regions were extracted from BAM files, and each 

pair was tested for an overlap at 3′-ends. If a suitable overlap was detected, the reads were 

merged into a long continuous (gapless) genomic fragment.

The reads in the HiSeq 2500 data were 250 bp in length, with an average insert size of ~400 

bp (Supplementary Fig. 14). This means that the reads in most read pairs significantly (50 bp 

or more) overlapped in sequence at the 3′-ends. In our validation method, we merged 

overlapping read pairs to construct long genomic fragments. To merge a given pair aligned 

near deletion breakpoints, we needed to estimate the length of its overlapping sequence. We 

slid the 3′-ends of each read in a pair against each other starting from an overlap of 1 base 

and continuing up to 250 bases. For a given overlap of length n, we assumed a binomial 

distribution for the number of mismatches. We selected overlap lengths that minimized the 

p-value under this assumption, i.e., given k mismatches in a overlap of length n, the 

probability that at most k mismatches would occur by chance with the uniform probability 

for each mismatch of pmismatch = 0.75. We only considered merged read pairs that had 

mismatch counts less than 20% of overlap length, and p-values smaller than 10−10. We 

tested our approach by independently aligning overlapping reads and comparing these 

overlaps to those from alignment. Consistent overlaps were observed for 99.95% of read 

pairs (Supplementary Fig. 15). Pairs of reads with identified overlaps were merged into 

genomic fragments, and bases in overlapping sequences were chosen by taking the base with 

the higher quality score at positions of mismatches. These genomic fragments were from 

250 to 480 bps in length and of higher sequencing quality, than either of the reads in the 

original pair alone.

Using AGE23, we generated split-fragment alignments of such fragments around 

breakpoints and searched for breakpoint support the same way we did for contig alignment 

with AGE (see above). We considered breakpoints with such supporting reads as at least 

partially confirmed. We considered a given breakpoint to have perfect support if read 

alignments had breakpoint coordinates and micro-inserted sequences (if any) that matched 

exactly. A breakpoint was considered confirmed if the majority of split-fragment 

alignments, consistent with the deletion, matched the breakpoints perfectly. We confirmed 
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3,034 (34%) breakpoint sequences perfectly, and for 423 (4.7%) more, we observed slight 

differences in the sequence at breakpoints.

Our ability to confirm breakpoints was confounded by incorrect genotypes (i.e., deletion not 

present in a sample but genotyped as such), as we observed a lower confirmation rate for 

smaller deletions (Supplementary Fig. 16). An additional confounding factor was the limited 

ability to construct long reads, because the 3′-ends had high sequencing error, and reliable 

overlap for paired reads could not be found. In particular, less than 30% of considered pairs 

of reads have an identifiable overlap. Therefore, unconfirmed breakpoints could be 

categorized as: i) just false breakpoints; ii) true breakpoints but with incorrect genotype; or 

iii) true breakpoints with correct genotype, but with no constructed long reads covering the 

junction. To estimate FDR of the set we minimized the number of breakpoints in the latter 

two categories by considering deletions larger than 10 kbp and genotyped in at least 3 

individuals. This resulted in a FDR estimate of 18% for deletion presence with correct 

breakpoints.

Aggregation calculation

Almost 40 million of SNPs and indels found by the 1000 Genomes Project21 in the same 

group of individuals were aggregated around the breakpoints of each class. To reduce the 

contamination of our analysis with false positive calls, we only used SNPs and indels that 

reside in the confident sites as defined by the mask derived by the project. This reduced the 

number of variants by 25%. SNP density was calculated with respect to the number of such 

sites. Densities of substitutions at C and G bases were calculated with respect to the number 

of not masked C and G sites. Densities of substitutions at A and T bases were calculated 

with respect to the number of not masked A and T sites. Each aggregated density was then 

normalized to yield density of one in the interval [±500 kbps, ±1 Mbps].

Histone mark data generated by ENCODE19 project were used for the aggregation analysis. 

We utilized contained normalized histone signals provided by the project. Aggregated signal 

in each bin was normalized with respect to number of available bases, i.e., undetermined 

bases of the reference genome were excluded from the aggregation. Each aggregated signal 

was then normalized to have value of one in the interval [±2 Mbps, ±4 Mbps].

We utilized methylation data generated with bi-sulfide sequencing by The NIH Roadmap 

Epigenomics Mapping Consortium20. The data were provided for only those CpG sites 

where confident methylation level estimation could be made, which is about 95% of all CpG 

sites. Aggregated methylation levels were then normalized to the number of CpG sites.

Intersection with open or closed chromatin

We used the Hi-C data generated on the human lymphoblastoid cell line36 (GM06990). In 

that study, chromatin states were defined from chromatin interaction matrix eigenvectors 

that correspond to chromatin states. The matrix was calculated for consecutive non-

overlapping genomic bins of 100 kbs in length: negative values represent closed chromatin 

states, and positive ones represent open states. There were a total of 28,481 bins with non-

zero eigenvector values. We assigned each breakpoint with an eigenvector value by finding 

the bins they belong to. NAHR breakpoints have higher eigenvector values, indicating a 
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more open chromatin state. Meanwhile, NH and TEI breakpoints show lower values (Fig. 

3B). To test this hypothesis, we utilized a nonparametric rank sum test with restricted 

permutation. Rank sum was defined by the summation of ranks of the eigenvalues of certain 

breakpoint subtypes. Then the observed rank sum was compared with an empirical 

distribution generated by a circular permutation. That is, we joined the end of the whole 

genome bin array with the beginning to make it circular, and rotated this circular array to 

every possible position. We calculated the rank sum for each position. This forms an 

empirical distribution for the null hypothesis. The p-values are corrected by the Bonferroni 

method for multiple testing, i.e., testing for three sets of breakpoints: NH, TEI, and NAHR.

Nucleosome occupancy and DNase accessibility signals

We used the combined DNase peak calls set for hESC cell line with 0.01 FDR from the 

ENCODE project. Then for each 100-bp bin within the 2.5kb upstream and downstream 

regions of the breakpoints, we calculated the average number of overlapping base pairs with 

DNaseI Hypersensitive peaks. The results were reported in the unit of (overlapping) bp per 

kb region.

We used the nucleosome density signal map generated by Mnase-seq from ENCODE/

Stanford/BYU on GM12878 cell lines. Then signal in each 10 bp bin within the 1 kb 

upstream and downstream regions of the breakpoints was aggregated. To normalize the plot, 

we divided the signal for each bin by the average signal for each breakpoint type.

Mapping template sites

The majority of micro-insertions are less than 10 bps in length (Fig. 4A). Some of these 

could be explained by the existence of base mismatches or indels close to deletion 

breakpoints in the aligned contig. Mismatches and indels are penalized and including them 

in the alignment decreases the overall alignment score, while aligning few bases between the 

mismatch/indel and breakpoints cannot compensate for the alignment score decrease. As 

such, an aligner chooses not to align those few bases and reports them as a micro-insertion. 

Given our alignment parameters (see Methods) it is possible that micro-insertions shorter 

than 10 bps arise due to such effect. An enrichment of point mutations close to deletion 

breakpoints has been previously described37 and was also observed in this study on a larger 

scale (Fig. 1). We therefore performed the following analyses for micro-insertions longer 

than 10 bps.

We first uniquely mapped MIs with up to one mismatch to the reference genome using 

Bowtie55 with the following options ‘-n 0 -l 5 -r --best --strata -v 0 -m 1’. Next, not mapped 

MIs of at least 20 bases in length were aligned to the reference genome by Blat57. We then 

manually examined alignments and selected only one, such that: i) MI is aligned almost full 

length with few mismatches and/or short indels; ii) the alignment has much better alignment 

score than other alignments. In total we mapped 133 template sites, of which 66 were 

mapped manually (Supplementary Data 3).
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Replication time analysis

We utilized data by Koren et al.38, which had average replication timing from 3 

experiments. Using the data we identified replication time to each breakpoint and template 

site. Difference in replication time can be calculated relative to each breakpoint. We use the 

difference that is smaller in absolute value.

Calculating association with recombination rates

Recombination rate data was derived from the Rutgers third generation genetic map. We 

used the sex-averaged genetic positions, ignoring the X and Y chromosomes. Genetic 

positions were divided by the difference in adjacent physical positions in the map in order to 

obtain values in terms of centimorgans per base pair (cM/Bp). Linear interpolation was 

performed to obtain recombination rate values for each base of each chromosome. 

Significance values were obtained by conducting a circular permutation experiment in the 

same fashion as for intersection with open/closed chromatin (see above). NAHR breakpoints 

in our set were strongly associated with higher recombination rates (enrichment of 1.4 with 

p-value < 10−3 Bonferroni Correction), while no significant association for breakpoints of 

other classes was observed (Supplementary Fig. 17).

BreakSeq2

The original BreakSeq approach demonstrated the proof of principle that SVs can be 

identified from mapping short reads to their breakpoint sequence junctions. In the 

BreakSeq2 we elaborated on this principle and developed functionality for breakpoint 

genotyping.

Substantial enhancements (Supplementary Fig. 4) of BreakSeq2 are i) utilization of a larger 

library, as compared to the original one (Supplementary Data 2); ii) utilization of more reads 

for mapping to breakpoint sequence junction (Supplementary Fig. 4); iii) leveraging the 

information content captured in the alignment to sequence junctions (Supplementary Fig. 4); 

iv) providing SV zygosity estimate. A new and larger breakpoint library utilized by 

BreakSeq2 was built by combining breakpoints analyzed here with extra non-redundant 

breakpoints from the pilot phase of the 1000 Genomes Project and from the original 

BreakSeq library (Supplementary Data 2). Breakpoints were considered as redundant if their 

SV events overlapped 50% reciprocally.

We benchmarked BreakSeq2 for its performance on deletion detection. Based on a high-

fidelity synthetic genome29, BreakSeq2, along with the new breakpoint library, increased the 

sensitivity by almost 15 folds to 85.14% (while maintaining a 98.17% precision), when 

compared to using the original breakpoint library (<2,000 SVs) with the original BreakSeq 

(Supplementary Data 2). With a deep-sequenced human genome of an individual30, 

BreakSeq2 attained an average sensitivity of 86.32%, when compared with a 3-way 

consensus call set detected by 3 other orthogonal SV detection methods (Supplementary 

Data 2). This is consistent with what we observed in simulation.

Overall, BreakSeq2 is highly accurate with the ability to rapidly detect SVs with predicted 

genotypes. BreakSeq2 is open-source and available at http://bioinform.github.io/breakseq2.
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Figure 1. 
Deriving confident set of breakpoints. A) Conceptual steps for the derivation. Breakpoints 

from local target assembly are filtered by mapping reads to putative junctions. B) Null 

model for breakpoint filtering. C) Comparison of different breakpoint sets. The pilot set17 

was included in the derivation as one of the call sets. Integrated set21 was biased toward 

large non-repetitive deletions for the purpose of reliable genotyping, resulting in the strong 

underrepresentation of mobile element insertions. The overlap between confident set and 

pilot/integrated sets was roughly 50% (Supplementary Fig. 3).
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Figure 2. 
Co-aggregation of SNPs with deletion breakpoints found in the analyzed samples. A) 

Normalized SNP densities increased while conservation decreased in 400 kbp regions 

around breakpoints of each class. B) Densities increase for substitutions of all types around 

NH and TEI breakpoints but this is not the case for NAHR breakpoints. Increase of C to T 

substitutions around NAHR breakpoints is driven by SNPs in CpG motifs as evident from 

red bars. Furthermore, this is solely due to enrichment of CpG motifs (Supplementary Fig. 

6). This is consistent with common knowledge that NAHR events are associated with sites 

of recombination.
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Figure 3. 
Relation of breakpoints of each class to epigenome and chromatin states. A) Overlap of 

breakpoints with hypomethylated regions in sperm. NAHR and TEI breakpoints show strong 

association. B) Breakpoint co-occurrence with chromatin states, defined by corresponding 

eigenvector of Hi-C data (upper panel). The genome wide co-occurrence is ordered by the 

value of the eigenvector (lower panel). Curves were smoothed using sliding window of 

3,000 bins. NAHR breakpoints are associated with open chromatin. This association cannot 

be explained by higher content of segmental duplications (SDs), repeats, or recombination 

rate (RR). C) Association with histone marks. NH breakpoints were depleted for all active 

marks and also for the H3K9me3 repressive mark (red lines). TEI breakpoints showed weak 

depletion of active marks. While the density of repressive H3K27me3 mark decreases close 

to NAHR breakpoints, the density of all active marks increases.
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Figure 4. 
Analysis of micro-insertions (MI) at deletion junctions. A) MIs up to 10 bps in length could 

arise from technical ambiguities in breakpoint reporting when there are SNPs or indels close 

to breakpoints. Larger MIs are typically found for NH deletions. B) Length of micro-

homology (MH) at deletion junction. For deletions with MIs and identified template site, 

MHs are calculated for 5′-ends/3′-ends of the deletion and the template site (panel insert). 

Both ends show MI longer than expected by chance and similar to the distribution for blunt 

deletions. C) The distribution of the nearest distance from template site breakpoints in log10 

scale. The distribution is almost symmetrical and exhibits distinct peaks between 20 to 60 

bps (adjacent sites) and between 2 to 6 kbps (distant sites). D) The difference in replication 

time between template site and breakpoints reveals later replication of template sites. For 

template sites outside the deletion the effect is significant (p-value < 0.03 by binomial test). 

The effect is even more significant (p-value < 0.01) when excluding difference of up to 

0.01, as such small values are comparable to measurement error.
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