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A B S T R A C T

Identifying vulnerable levels of eco-environment over a global scale is critical for environmental management
and ecological conservation. We present the method to optimize the use of freely assessable datasets to derive 16
factors for a proposed assessment framework (Nguyen and Liou, 2019; Liou et al., 2017; Nguyen et al., 2016) [1–3].
Results show that the datasets are suitable for evaluating global eco-environmental vulnerability (GEV). PM2.5

that is a hazardous substance in environment and an anthropogenic disturbance associated with nature and
human-made influence is selected to validate the GEV map. The GEV map well correlates with PM2.5 distribution
patterns with correlation coefficient of approximately 0.82. All datasets and mapping procedures are processed in
ArcGIS 10.3/QGIS 2.16.3 software. Advantages of our method include three aspects:

� The analysis procedure is simple but powerful, while dealing with various complex environmental issues.

� The framework is flexible to adjust influential indicators subject to the conditions of concerned regions and
purposes of decision makers.

� The framework can be easily applied for different concerned regions over various scales.

Our findings include GEV mapping and eco-protection zoning that provide key hotspots of eco-environmental
vulnerability levels over a global scale for the decision makers and people to take further actions to lessen
disturbances and achieve environmental sustainability.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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Specifications Table
Subject Area: � Earth and Planetary Sciences

� Environmental Science

More specific subject area: Describe narrower subject area
Environment is disturbed by anthropogenic stress and natural variation

Method name: GIS framework for mapping eco-environmental vulnerability
Name and reference of
original method:

If applicable, include full bibliographic details of the main reference(s) describing the
original method from which the new method was derived.
The current method [1] can be considered as an extended work of our previous research
outcomes [2,3] where we performed eco-environmental vulnerability assessment
(EVA) at a provincial scale of Vietnam. The innovation in our current research [1] is to
provide the first global-scale map of eco-environmental vulnerability. The six global
environmental vulnerability  (GEV) categories and their map of global “hotspots” are
novel and will be proven highly useful to researchers and decision makers around the
world working on the issues of sustainability, conservation, development, and
vulnerability.
Subsequently, three eco-environmental zones are introduced with functions and
advices for activities and planning for the regions of concern. Considering both natural
and manmade disturbances, GEV analysis can be of significant value in (i) Enriching the
guidance of global and regional planning and construction, and protection of the
ecological environment; (ii) Harmonizing information from the reports that employ
different approaches or definitions; (iii) Providing a feasible framework template of
EVA, which benefits environmental education; and (iv) Conveying information to the
public for enhancing the role of communities in solving environmental problems.
[1] Nguyen, K.A, Y.-A. Liou*, 2019. Global mapping of eco-environmental vulnerability
from human and nature disturbances. Science of the Total Environment, 664 (2019)
995–1004. doi.org/10.1016/j.scitotenv.2019.01.407
[2] Y.A. Liou, K.A Nguyen*, and M.H. Li., 2017. Assessing spatiotemporal eco-
environmental vulnerability  by Landsat data, Ecological Indicators. Volume 80,
September 2017, Pages 52–65. DOI.org/10.1016/j.ecolind.2017.04.055.
[3] Nguyen, K.A, Y.A. Liou*, M.H. Li, and T.A. Tran., 2016. Zoning eco-environmental
vulnerability for environmental management and protection. Ecological Indicators, Vol
69, Pages 100–117. DOI: 10.1016/j.ecolind.2016.03.026

Resource availability: If applicable, include links to resources necessary to reproduce the method (e.g. data,
software, hardware, reagent)

Materials

Materials used in the study including (1) soil moisture, (2) precipitation, (3) temperature, (4)
hydrological network, (5) population, (6) income, (7) land use/land cover, (8) Normalized Difference
Vegetation Index (NDVI), (9) natural hazards (tropical cyclones, landslides, flood, drought), (10) Digital
Elevation Model (DEM), and (11) PM2.5 for validation. All details of these materials are described in
Table 1 and data preparation step 1. Software packages used include ArcGIS and QGIS.

Method details

We propose a framework for evaluation of eco-environmental vulnerability at global scale by using
GIS techniques and freely accessible datasets. However, our method and framework can be applied not
only to any environmental issues due to any specific natural stresses such as forest fire, typhoon,
flooding, drought or anthropogenic disturbances such as pollution, industrialization, urbanization, but
also to any region of concern. There are many influential factors that can affect eco-environment.
Choosing the right set of indicator and mapping procedure are crucial for achieving meaningful and
reliable quantitative results.

In this study we extend our previous works conducted over a regional scale at Thua Thien-Hue
Province of Vietnam [2,3] by upscaling the assessment framework. The upscaling was performed by
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Table 1
Indicators used to evaluate GEV including their sources, data description, and preparation, and a brief explanation of their roles.

Major disturbance
determinants

Indicators Role in environment profile Sources

Hydrometeorology
(B1)

Soil moisture
(C1)

Soil moisture is vitally important in controlling the
exchange of water and heat energy between land
surface and atmosphere through evapotranspiration
and as a key variable to define flood control, soil
erosion, and slope failure.

Moran et al., (2007)
[4]

Precipitation
(C2)

Precipitation is important for soil and plant growth and
useful for determination of weather patterns regarding
to early warning of drought and flood.

Ficka and Hijmans
(2017) [5]

Temperature
(C3)

Average global air temperature is useful to classify
weather patterns in combination with precipitation
and soil moisture.

Ficka and Hijmans
(2017) [5]

Distance from
hydrological
network
(C4)

Availability of surface water is important for
environment especially in urban cities for cooling heat
island effect.

http://wp.geog.
mcgill.ca/hydrolab/
[6]

Socioeconomics
(B2)

Population
(C5)

Population plays an important role in eco-
environmental vulnerability assessment since it
contributes to determine human pressure on eco-
environment. In general, more people and higher
population density likely cause heavier pressure on
environment resulting in higher vulnerability.

https://data.
worldbank.org [7]

Income
(C6)

This indicator shows average income of each country
from high to low income (highly-developed countries
to developing countries). In general, in the developing
countries, the eco-environment is likely to be disturbed
more than developed countries since they are on the
fast growing processes of urbanization and
industrialization. Income also reflects the education
level as well as public awareness of eco-environmental
protection.

https://data.
worldbank.org [7]

Distance from
urbanized areas
(C7)

This indicator determines the influence from the urban
by spatial distance. Exposure from urban affected the
eco-environment by the stress from the city like
pollution from vehicles and air-condition, and trash
from households, and wastewater. It is likely that the
farther from the urban the better the eco-environment.

http://preview.grid.
unep.ch [8]

Land resource (B3) Land use/land cover
(LULC)
(C8)

LULC is an important determinant of eco-
environmental vulnerability due to its contribution to
and general influence on environmental quality. The
areas without or with less vegetation cover are more
vulnerable than the dense vegetation areas. Impervious
surface materials conserve more heat during the day
and release it more slowly at night than natural
materials like soil or vegetation.

https://reverb.echo.
nasa.gov [9]
https://landcover.
usgs.gov/glc/ [10]

Normalized
Difference
Vegetation Index
(NDVI)
(C9)

NDVI is a crucial indicator to measure the greenness of
vegetation and vegetation plays an important role in
maintaining good eco-environment. Regions that are
less or without vegetation may cope with higher
vulnerability.

https://reverb.echo.
nasa.gov [9]

Natural hazards
(B4)

Drought (C10) These indicators determine the areas constantly
affected by natural hazards resulting in environmental
decline.

Global Risk Data
Platform
http://preview.grid.
unep.ch [8]

Tropical cyclones
(C11)
Landslides (C12)
Flood
(C13)

Topography (B5) DEM
(C14)

DEM plays an important role in defining topographic
condition, determining the features of land surface
such as incoming solar radiation, tree types, and
potential exposure to hazards like landslide, and
drought.

http://glcf.umd.edu/
data/srtm/ [11]
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considering influential factors retrieved from global datasets across five domains (natural hazards,
society-economics, hydrometeorology, and topography and land resource) that aim to visualize the
nature and human disturbances on eco-environmental vulnerability. Nguyen et al. (2016) proposed an
assessment framework to evaluate the eco-environmental vulnerability in association with
16 variables with six of them constructed from Landsat 8 satellite image products. 16 variables
were taken into account and organized into four domains: (1) hydro-meteorology, (2) social-
economics, (3) land resource, and (4) topography. This framework is relied on remote sensing data,
digital maps and in situ measurements with aid of AHP and GIS. In this framework, the weights are
stressed on society-economics and topography (0.329) followed by hydrometeorology (0.2) and land
resource (0.142). Details of weights and applied AHP process were given in Table 1 and appendix of
Nguyen et al. (2016). From a long-term point of view to monitor spatiotemporal eco-environment, it
often becomes a barrier by using in situ measurements because of their limited spatiotemporal
resolution and insufficient historical data. Thus, Liou et al. (2017) revised the assessment framework
that mainly relied on variables, which can be retrieved from time-series Landsat satellite images. This
improved framework is more suitable for long-term eco-environmental monitoring and resolved the
difficulties in obtaining long-term in situ measurement. In addition, the framework proposed by Liou
et al. (2017) allowed to capture both natural and manmade attributes to some extent given place and
time, such as the impacts of land use, land cover change and urbanization on eco-environment. In
these works of regional scale, all variables/factors were converted into a grid format with resolution of
100 m � 100 m and set up in the coordinate of WGS 84, zone 48 north in the ArcGIS version 10.2.

Globally speaking, it is almost infeasible to process all the data and variables at uniformed 100 m of
resolution when, in particular, input variables cannot be derived from one kind of dataset or single satellite
image as Liou et al. (2017) did. Thus, for a study over a globe scale, we further improved the assessment
framework. Totally, 16 indicators were derived from ten global datasets (Table 1) and one global dataset of
PM2.5 was used for validation. In the global improved framework, we considered one more domain, i.e.,
natural hazards. In this domain, we took into consideration of four kinds of dominated hazards, including
flood, drought, landslide and cyclones. The influence of the four kinds hazards were considered equally with
weight of 0.25. Thus, the global weight was revised in comparisonwith the previous framework with criteria
that can capture natural and human disturbance, as presented inTable 3 with summarygiven in the diagram
in Fig.2. All indicators arecomputed orconvertedandresampled tobeof sameGEOtiff format and resolution
of a pixel size 0.0833 � 0.0833�. The size of the globe for this resolution contains approximately
4320 columns and 1673 rows. All GEOtiff raster files were projected to spatial reference of WGS-84.
Processing steps were mainly performed in ArcGIS 10.3 environment.

The selection of influential factors and spatial data processing here are optimized to identify
vulnerability levels of eco-environment at global scale due to nature and human disturbances. The

Table 1 (Continued)

Major disturbance
determinants

Indicators Role in environment profile Sources

Slope constraint
(C15)

Slope constraint is a factor influencing land-use
decision and the item “Land utilization possibilities”.
The influence of terrain on erosion is great important.
Steeper slopes are also associated with shallower soils
in general and with a higher risk for soil degradation
and landslides [13–15].

http://www.fao.org/
geonetwork [12]

Slope aspect
(C16)

Slope aspect and topographic position contribute to
define annual mean temperature, potential energy
incoming and evapotranspiration. Resulting in
vegetation structure, ground moisture, snow retention,
plant communities and surface temperature are all
characteristics influenced by aspect [16].

SRTM DEM http://
glcf.umd.edu/data/
srtm/ [12]

Anthropogenic
stress and natural
influence

PM2.5 An independent variable PM2.5 that can be considered
as an anthropogenic disturbance associated with
nature and human-made influence is chosen to
validate the GEV map

http://sedac.ciesin.
columbia.edu [17]
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influential factors can be replaced and adjusted based on the condition of the region of interest. For
instance, for the region with dominated disturbance of forest fire or earthquake, the natural hazards can
be replaced by the named driving forces. The global weights are derived in detail steps as given in
Tables 3–6 with summary of weight results as given in Table 7. Class weights are given in Table A1 in
Appendix Supplementary material. Similarly, the local weights were derived with consideration of five
domains. Results of local and global weights are all summarized in diagram (Fig. 2). Data are downloaded
and processed in steps as depicted in Fig. 1 and detail processing steps are described in the following:

* Step 1: Data preparation
Details of data preparation is described one by one as seen below:
(C1) Soil moisture: Annual average soil moisture is retrieved from L-band microwave missions

SMOS (Soil Moisture and Ocean Salinity) as output in NETCDF format, further converted to GEOTIFF
format, and then mosaicked and classified into eight classes over a global scale of 0.25-degree grid. Soil
moisture is provided by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre
d’Etudes Spatiales de la BIOsphère). We interpolated the areas with insufficient data or data being
removed due to unsuitable values of shallow effects.

(C2) Precipitation: Global annual average precipitation (mm) with a resolution of 0.00833 � from a
GEOTIFF file is classified into eight classes. The precipitation data is interpolated using thin-plate
splines with covariates including elevation, distance to the coast. Weather station data are used
between 9000 and 60,000 stations with temporal range of 1970–2000 [5].

(C3) Temperature: Global average temperature with a resolution of 0.00833 � from a GEOTIFF file is
classified into eight classes. The data are processed by using the same weather station and method as
precipitation data [5].

(C4) Distance from hydrological network: By using shape file formatted inland water surface data,
we calculate the distances of interest by a Euclidean Distance tool in ArcGIS, which are then further
classified into eight classes.

(C5) Population: Population data are in excel file format, stored into a shape file, and further
converted to GEOTIFF format. Finally, population is classified into eight classes.

(C6) Income: Income data are in excel file format, stored into a shape file, and then further
converted to GEOTIFF format. Raster of income is classified into five classes.

(C7) Distance from urbanized areas: Urban areas are in shape file format. We calculate the
distance by a Euclidean distance tool in ArcGIS, which is further classified into eight classes from near
range to far range from the urbanized areas.

Fig.1. A framework for the global eco-environmental vulnerability assessment. LULC is land use/land cover; NDVI is normalized
difference vegetation index; and AHP is analytical hierarchy process.
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(C8) Land use/land cover (LULC): The MODIS Land Cover Type product in 2017 (Short Name:
MCD12Q1) of 500 m SIN Grid in HDF format is download and further processed such as mosaicked and
converted into GEOTIFF format and then classified into 16 classes following the legend and instruction
of providers. References include USGS’s website and following papers [18–19].

(C9) Normalized Difference Vegetation Index (NDVI): Global MODIS vegetation indices, NDVI
product Vegetation Indices 16-Day L3 Global 500 m are downloaded, mosaicked, and used to compute
mean value NDVI of the year 2017, and then further classified into five classes.

(C10) Drought; (C11) Tropical cyclones; (C12) Landslides; (C13) Flood: These indicators are
downloaded either in an excel file, shape file or raster GEOTIFF format, then further processed into
same format of GEOTIFF at resolution of 0.0833 � over a global scale, and aggregated by weighted sum
function in ArcGIS (each type of natural hazard has the same weight). Final raster of natural hazards is
classified into five classes.

(C14) DEM: SRTM DEM in GEOTIFF file is downloaded with a resolution of 0.00833 � and further
processing is conducted such as filling holes, and classification into eight classes.

(C15) Slope constraint: Slope constraint with 0.0833 � resolution is downloaded and converted into
GEOTIFF file and classified into 8 classes from low constraint to very frequent constraint.

(C16) Slope aspect: Slope aspects are computed by using ArcGIS function with input SRTM DEM and
then further classified into 10 classes.

PM2.5 - validation data: An annual global map of PM2.5 is derived from MODIS data [20–21].
*Step 2: Derivation of global weights
Analytical Hierarchy Process (AHP)
AHP is an effective tool for dealing with a larger number of influential variables for making

decisions in a structural way. Take for example risk, hazard, and eco-environmental impact in a multi-
indicator decision making process to derive vulnerability assessment [22–23], AHP offers the analysis

Fig. 2. Diagram of indicators and their weights for the global eco-environmental vulnerability assessment.
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of the spatial multi-indicator layers through the creation of a hierarchical structure by providing
weighting and ranking with the views of expert opinions and users [23–24]. Here a weighted overlay
technique is used to synthesize weighted and ranked spatial variables together. AHP has been widely
used for mapping hazards, vulnerability, and risk of various natural disasters such as floods, landslides.
Hence, it is considered suitable for global eco-environmental vulnerability assessment [25–26]. In this
study, for weighting the selected indicators of eco-environmental vulnerability, the individual
pairwise comparison matrix was established through the qualitative judgments of five experts, and a
user, each of whom considered the influential factors and alternatives, which were integrated with
every indicator. For prioritization of the indicators, experts were asked based on the pairwise
comparison 9 point scales (Table 2) developed by Saaty (2008) [22]. Five experts were selected at the
international and national levels. The expert selection was based on their related depth knowledge
and research experiences about the influential factors. The selected experts were from research
institutions, and governmental and academic sectors.

The consistency ration (CR) was calculated to justify the consistency of comparisons given by
experts and the user in the pairwise comparison matrix. The comparisons in the pairwise comparison

Table 2
Scale of relative importance (adapted from Saaty, 2008).

Relative
importance

Definition Description

1 Equal importance Two indicators influence on objective equally
3 Moderate

importance
Experience and judgement slightly favor one indicator over another

5 Strong importance Experience and judgement strongly favor one indicator over another
7 Very strong

importance
One decision indicator is favored strongly over another and its supremacy is
established in practice

9 Extreme importance The evidence favoring one decision indicator over another is of the highest
possible order of validity

2, 4, 6, 8 Intermediate values
between the two
adjacent
judgements

Compromise is needed

Table 3
Pairwise comparison of group variables.

Group variables Natural hazards Social economics Topography Hydrometeorology Land resources

Natural hazards 1 3 2 3 4
Social economics 1/3 1 3 2 3
Topography 1/2 1/3 1 1 2
Hydrometeorology 1/3 1/2 2 1/2 3
Land resources 1/4 1/3 1/2 1/3 1

Table 4
Pairwise comparison matrix of group variables to derive global weights.

Group variables Natural
hazards

Social
economics

Topography Hydrometeorology Land
resources

5th Root of
index

Priority
vector

Natural hazards 1.000 3.000 2.000 3.000 4.000 2.352 0.377
Social economics 0.333 1.000 3.000 2.000 3.000 1.431 0.229
Topography 0.500 0.333 1.000 0.500 2.000 0.699 0.112
Hydrometeorology 0.333 0.500 2.000 1.000 3.000 1.000 0.160
Land resources 0.250 0.333 0.500 0.333 1.000 0.425 0.068
Column Sum 2.417 5.167 8.500 6.833 13.000 6.236 1.000
Priority row 0.912 1.186 0.953 1.096 0.886
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matrix are considered consistent if the CR is equal or less than 0.1. The CR is calculated using following
equation:

CR = Consistency Index/Random Index (1)

where Random Index (RI) represents the randomly generated average consistency index (CI), which is
defined as follows:

CI ¼ ðlmax � nÞ=ðn � 1Þ ð2Þ
where lmax refers to the largest eigenvalue of the matrix and n represents the order of the matrix (1).

In addition, the Natural Break Statistical method in ArcGIS environment was used during the spatial
analysis to classify the indicator layers where it was required. All the classification of indicator layers and
internal weights are explained in Table 7.

Table 5
Normalized pairwise comparison matrix, weights, and consistency ratio (CR).

Group variables Natural
hazards

Society-
economic

Topography Hydrological
network

Land
resources

Weight
(Average)

Row
totals

Row totals/
average

Natural hazards 0.414 0.581 0.235 0.439 0.308 0.395 2.157 5.456005
Social economics 0.138 0.194 0.353 0.293 0.231 0.242 1.293 5.353721
Topography 0.207 0.065 0.118 0.073 0.154 0.123 0.627 5.089405
Hydrometeorology 0.138 0.097 0.235 0.146 0.231 0.169 0.880 5.193529
Land resources 0.103 0.065 0.059 0.049 0.077 0.070 0.368 5.218952
Column Sum 1.000 1.000 1.000 1.000 1.000 1.000 5.325

Table 6
Checking consistency of judgments.

Checking methods Geometric mean method Row average method

lmax 5.032 5.262
Consistency index (CI) 0.008 0.066
n (number of variables) 5 5
Random index (RI) 1.110 1.110
Consistency ratio (CR) 0.007 0.059

Table 7
Weightings of group indicators and indicators used for the calculation of global eco-environmental vulnerability (modified and
adapted from (1,15). Consistency ratio of assessment is 0.007. Class weights and consistency ration of each indicator are
provided in Table 6.

Group variables/ Factors (Bi) Global weight (Wi) Variables/Factors (Cj) Local weight (wj)

B1. Hydrometeorology 0.169 C1 Soil moisture 0.384
C2 Precipitation 0.300
C3 Temperate 0.191
C4 Distances from hydrological network 0.125

B2. Society-economics 0.242 C5 Population 0.557
C6 Income 0.320
C7 Distances from urbanized areas 0.123

B3. Land resources 0.070 C8 LULC 0.667
C9 NDVI 0.333

B4. Natural hazards 0.395 C10 Drought 0.250
0.250
0.250
0.250

C11 Tropical cyclone
C12 Landslide
C13 Flood

B5. Topography 0.123 C14 DEM 0.557
C15 Slope constraint 0.320
C16 Slope aspect 0.123
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Derivation of global weights

For determining the weights of the global group variables, the individually pairwise comparison
matrix was established by using the 9-point scale (Table 2) of Saaty (2008) as shown in Table 3 that is
further processed to obtain the pairwise comparison matrix of group variables as shown in Table 3.
The table of normalized pairwise comparison matrix, weights, and consistency ratio (CR) is then given
in Table 5 followed by Table 6 showing the consistency of judgments. Two types of consistency

Fig. 3. Comparison of (a) the global eco-environmental vulnerability map with (b) annual PM2.5 distribution in 2016. (c)
Correlation coefficient between (a) and (b) is 0.82 for 100 randomly chosen checking points over the globe.

Fig. 4. Distribution of eco-environmental vulnerability with LULC.
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methods, including geometric mean method and row average method, are used to check the
consistency of our judgments, requiring the consistency ratio to be less than 0.1. From Table 6, it is seen
that our judgments are acceptable. Under such circumstance, the derived global weights are adopted
for further analysis.

*Step 3: Classification of indicators and derivation of class weights
Similarly, the class weights are derived as shown in Table 7.
*Step 4: Mapping four major determinants and final global eco-environmental vulnerability

maps

Fig. 5. Five major disturbance determinants of global eco-environmental vulnerability: (a) Natural hazards; (b)
Hydrometeorology; (c) Socioeconomics; (d) Land resource; and (e) Topography.

Fig. 6. Indicators of hydrometeorology include (a) mean soil moisture, (b) precipitation, (c) temperature, and (d) distance from
hydrological network.
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An analytical hierarchy process (AHP) and geographical information system (GIS) are implemented
to combine multi-indicators in groups and then further aggregated to become one final indicator of
GEV by using Eqs. (3) and (4):

Bi ¼
XnBi

1
Cj � wj ð3Þ

GEV ¼
X5

1

Bi � Wi ð4Þ

Fig. 7. Indicators of socioeconomics: (a) income; (b) population; and (c) distance from urbanized areas.

Fig. 8. Indicators of land resources: (a) LULC and (b) NDVI.

872 K.-A. Nguyen, Y.-A. Liou / MethodsX 6 (2019) 862–875



where GEV denotes the global eco-environmental vulnerability (the higher the GEV value, the greater
the vulnerability is likely to be), Bi is the ith group determinant factor, Wi is the weight of the ith group
determinant factor, CJ is the jth indicator, wj is the weight of the jth variable, and nBi is the number of
indicators in a group determinant factor Bi introduced in Table 1 and Step 1 data preparation. Weights
of 16 indicators and five groups are presented in the Table 7 and Figs. 3–7. To classify vulnerable
intensity, the GEV is standardized and compared. In this study, we use histograms to reveal the
statistical distribution corresponding to values of grid cells of eco-environmental vulnerability raster
to classify GEV assessment into six categories, namely very low (< 1.66), low (1.66–2.13), medium
(2.13–2.56), medium high (2.56–3.06), high (3.06–3.59), and very high (>3.59).

*Step 5: Analysis of the result and validation
After obtaining the maps of four major influential factors (Fig. 5) and global eco-environmental

vulnerability map, the spatial analysis distribution is necessary to understand how it exhibits across to
continents with influential factors. Spatial Analysis Tools including, Zonal Histogram, Tabulate Area
and Zonal Statistic in ArcGIS are applied to investigate the statistical features of these maps. For
example, Tabulate Area distribution of eco-environmental vulnerability over the land cover types is
shown in Fig. 4. Individual indicators are presented in Figs. 6–10.

Fig. 9. Indicators of natural hazards: (a) flood, (b) drought, (c) landslide, and (d) tropical cyclone frequency.

Fig. 10. Indicators of topography: (a) slope constraint, (b) DEM, and (c) slope aspect.
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Validation is crucial to check the reliability of the results. A global map of PM2.5 is derived from
MODIS data [21] and considered as an independent variable for validation with global eco-
environmental vulnerability map since it can be considered as an anthropogenic disturbance
associated with nature and human-made influence. We choose 100 points randomly distributed over
the globe by using the Random Points and Pixel Value to Points functions to get the attributing values
of global eco-environmental raster and PM2.5 raster. Analysis of correlations between EVA map results
and PM2.5 pollution distribution is conducted. It is found that the correlation coefficient reaches 0.82
as shown in Fig. 3.
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