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Background: Accurate incidence prediction of sexually transmitted diseases

(STDs) is critical for early prevention and better government strategic planning.

In this paper, four di�erent forecasting models were presented to predict the

incidence of AIDS, gonorrhea, and syphilis.

Methods: The annual percentage changes in the incidence of AIDS,

gonorrhea, and syphilis were estimated by using joinpoint regression. The

performance of four methods, namely, the autoregressive integrated moving

average (ARIMA) model, Elman neural network (ERNN) model, ARIMA-ERNN

hybrid model and long short-term memory (LSTM) model, were assessed and

compared. For 1-year prediction, the collected data from 2011 to 2020 were

used for modeling to predict the incidence in 2021. For 5-year prediction,

the collected data from 2011 to 2016 were used for modeling to predict

the incidence from 2017 to 2021. The performance was evaluated based on

four indices: mean square error (MSE), mean absolute error (MAE), and mean

absolute percentage error (MAPE).

Results: The morbidities of AIDS and syphilis are on the rise, and the

morbidity of gonorrhea has declined in recent years. The optimal ARIMA

models were determined: ARIMA(2,1,2)(0,1,1)12, ARIMA(1,1,2)(0,1,2)12,

and ARIMA(3,1,2)(1,1,2)12 for AIDS, gonorrhea, and syphilis 1-year

prediction, respectively; ARIMA (2,1,2)(0,1,1)12, ARIMA(1,1,2)(0,1,2)12, and

ARIMA(2,1,1)(0,1,0)12 for AIDS, gonorrhea and syphilis 5-year prediction,

respectively. For 1-year prediction, the MAPEs of ARIMA, ERNN, ARIMA-ERNN,

and LSTM for AIDS are 23.26, 20.24, 18.34, and 18.63, respectively; For

gonorrhea, the MAPEs are 19.44, 18.03, 17.77, and 5.09, respectively; For

syphilis, the MAPEs are 9.80, 9.55, 8.67, and 5.79, respectively. For 5-year

prediction, the MAPEs of ARIMA, ERNN, ARIMA-ERNN, and LSTM for AIDS are

12.86, 23.54, 14.74, and 25.43, respectively; For gonorrhea, the MAPEs are

17.07, 17.95, 16.46, and 15.13, respectively; For syphilis, the MAPEs are 21.88,

24.00, 20.18 and 11.20, respectively. In general, the performance ranking of

the four models from high to low is LSTM, ARIMA-ERNN, ERNN, and ARIMA.
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Conclusion: The time series predictive models show their powerful

performance in forecasting STDs incidence and can be applied by relevant

authorities in the prevention and control of STDs.

KEYWORDS

time series predictive models, sexually transmitted diseases, ARIMA, ERNN, ARIMA-

ERNN, LSTM

Introduction

In recent years, the attention to sexually transmitted diseases

(STDs) has decreased. However, as the main three STDs, AIDS,

gonorrhea, and syphilis still cause a severe disease burden

globally. AIDS is a highly dangerous infectious disease caused by

the human immunodeficiency virus (HIV) attacking the human

immune system (1). In 2020, WHO estimated that 1.5 million

people acquired HIV and there were an estimated 37.7 million

people living with HIV at the end of 2020 (2).

Gonorrhea and syphilis are curable STDs caused

by Neisseria gonorrhoeae and treponema pallidum,

respectively (3). According to WHO, 82 million new

gonorrhea cases and 7.1 million syphilis occurred worldwide

in 2020 (4).

In China, the incidence of HIV infection increased annually

by 16.3% with 95% confidence interval (CI) of 11.5 to 21.2, and

syphilis incidence increased by 16.3% (95% CI: 13.8–18.8), and

gonorrhea incidence decreased by 8.5% (95% CI: 11.7–5.1) from

2004 to 2013 (5). AIDS, gonorrhea and syphilis are notifiable

diseases according to the Law of the People’s Republic of China

on Prevention and Control of Infectious Diseases and must be

reported to the national infectious disease surveillance system in

China once diagnosed (6).

It is of particular importance to actively monitor the

morbidity of AIDS, gonorrhea and syphilis, and forecast

them accurately. From an ecological research perspective, the

most commonly used method for the prediction of trends

in infectious disease prevalence is the time-series prediction

model. Traditional time series prediction methods realize linear

modeling and prediction based on the self-law of time sequence,

including the autoregressive integrated moving average model

(ARIMA) model (7), gray prediction model (8), exponential

smoothing method (9), and Markov model (10). The most

representative of these is the ARIMA model, which processes

noise and is suitable for short-term prediction of time series,

but may result in less than expected prediction accuracy due

to its poor non-linear mapping ability. At present, the artificial

neural network (ANN) has been applied to epidemic trends

prediction of infectious diseases. The widely used feedforward

neural network, such as the backpropagation neural network

(BPNN) (11, 12), can’t well fit the epidemic trend of infectious

diseases due to the outbreak, aggregation and variation of

infectious diseases.

Elman neural network (ERNN), which has one more

acceptor layer than the feed-forward neural network in

structure, stores the output state of feedback through a time-

delay operator to achieve dynamic memory and internal

feedback, which can better fit the epidemic trend of infectious

diseases (13). Long short-term memory model (LSTM) is

modeled on recurrent neural network (RNN), which avoids

the occurrence of RNN’s gradient disappearance or gradient

explosion. LSTM network is suitable for classifying, processing

and predicting time series data. The low requirement for time

interval length is an advantage of LSTM over other neural

networks (14).

The occurrence of most infectious diseases has a periodic

nature. Traditional time series prediction models take the

characteristics of periodicity into account, but modeling and

prediction are mainly achieved by extracting linear information,

and the accuracy needs to be improved. Although performing

well in non-linear mapping (15), ANN could not accurately

reflect the period of infectious diseases as well as the seasonal

variation rules. Both classes of time series prediction models

suffer from the issue on incomplete information extraction.

Some studies have proposed to combine the above two classes of

models to construct hybrid models, such as ARIMA-BPNN (16),

ARIMA-GRNN (17), and ARIMA-NAR (18), to simultaneously

analyze the characteristics of periodicity and non-linearity of

infectious diseases to improve prediction accuracy.

Few studies have explored predictive models for the

incidence of STDs in China. In the present study, ARIMA,

ERNN, LSTM and ARIMA-ERNN hybrid models were modeled

based on the monthly incidence data of AIDS, gonorrhea and

syphilis in China from 2011 to 2021 and the performance of each

model was compared, to provide a quantitative theoretical basis

for STDs prediction and monitoring efforts, and to improve the

efficacy in preventing and controlling STDs.
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Materials and methods

Materials

The monthly incident cases data of AIDS, gonorrhea

and syphilis in mainland China reported by the Chinese

Center for Disease Prevention and Control from 2011 to 2021

were collected (https://www.phsciencedata.cn/Share/en/). Total

number of population at the beginning of the year and total

population size at the end of the year in 2011-2021 were

collected from Chinese Statistical Yearbook to calculate the

average population per year (http://www.stats.gov.cn/tjsj/ndsj/).

Data analysis

For 1-year prediction, data on AIDS, gonorrhea and syphilis

from January 2011 to December 2020 were used as training

sets to model respectively, and data from January to December

2021 were used as prediction set. For 5-year prediction, data

from 2011 to 2016 were modeled to forecast the incidence

from 2017 to 2021. Trend charts were drawn with Excel 2020

and heatmaps were drawn using R 4.2.0 software. Joinpoint

Regression Program 4.9.1 software was applied to estimate the

annual percentage change (APC). The establishment of the

ARIMAmodel was performed using Eviews 10 software, and the

establishment of the ERNN, ARIMA-ERNN, and LSTM model

were conducted using Matlab 2022a software. P-value ≤ 0.05

was considered statistically significant in this study.

Methods

Trend analysis

The annual percentage change (APC) was estimated by

joinpoint regression which focused on estimating the annual

changes in the incidence of AIDS, gonorrhea, and syphilis (19).

Trend charts and heatmaps were also used to describe the

temporal distribution, peak incidence, and periodic variation in

the incidence of AIDS, gonorrhea, and syphilis.

ARIMA model

The time series model adopted in this study is seasonal time

series model ARIMA (p, d, q) (P, D, Q)s, and can be expressed

as (20).

∇d∇D
S Yt =

θq (B)2Q
(

BS
)

ϕp (B)8P
(

BS
)εt (1)

ϕp (B) = 1− ϕ1B− ϕ2B
2 − . . . ϕpB

p (2)

θq (B) = 1− θ1B− θ2B
2 − · · · θqBq (3)

8P
(

Bs
)

= 1− 81B
s − 82B

2s − . . . 8PB
Ps (4)

2Q
(

Bs
)

= 1− 21B
s − 22B

2s − . . . 2QB
Qs (5)

Where, p and q are the non-seasonal autoregressive and

moving average order. P and Q are the seasonal autoregressive

and moving average order. d is the order of regular differencing

and D is the order of seasonal differencing. s is the length of the

seasonal period, defined as 12 in present study (21, 22). B denotes

the backward shift operator, Yt represents the morbidity of STDs

at time t, and εt are the estimated residuals. In the formula,

ϕp (B) is the p order autoregressive coefficient polynomial, θq (B)

is the q order moving average coefficient polynomial, 8P
(

Bs
)

and 2Q
(

Bs
)

are the seasonal polynomial functions of order P

and Q, respectively.

The modeling procedure of ARIMA (p, d, q) (P, D, Q)s

model consists of three iterative steps. Firstly, since the time

series data are required to be stationary, the stationarity of the

time series should be checked by serial plots or the Augmented

Dickey-Fuller (ADF) tests (23). For non-stationary data, the

stationarity should first be achieved by transformation such as

log transformation, and non-seasonal and seasonal differences.

Secondly, the autocorrelation function (ACF) graph and partial

autocorrelation (PACF) graph were used to determine the

possible values of p, d, P, D, and s (24). Subsequently, some

unqualified models were removed according to the parametric

and residual tests: the parametric test must be statistical

significance (P ≤ 0.05) and the residual must prove to be a

white noise sequence using the ACF and PACF graph of the

residual and the Box-Jenkins Q-test. Finally, the model with

the lowest Akaike information criterion (AIC) and Schwarz

Bayesian information criterion (SBC) values was considered the

best model (25).

ERNN model

Elman neural network is a kind of typical feedback neural

network model that has been widely used. It is generally divided

into four layers: input layer, hidden layer, recurrent layer and

output layer (26). The topology of the ERNN model could be

seen in Supplementary Figure 1. Themathematical expression of

its network can be expressed as follows:

y
(

k
)

= g
[

w3x
(

k
)]

(6)

x
(

k
)

= f
{

w1xc
(

k
)

+ w2
[

u
(

k− 1
)]}

(7)

xc
(

k
)

= x
(

k− 1
)

(8)

Where, y is the output node vector; x is the hidden layer node

unit vector; u is the input vector; xc is the feedback state vector;

The w1, w2, and w3 are the corresponding weights.

Major steps to establish ERNN: (1) The “mapminmax”

function in Matlab was used to normalize the raw data. (2)

The maximum training iterations number and the minimum
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validation error were set as 1,000 and 10−6, respectively. (3) This

study chose the following empirical formula for the problem of

choosing the number of neurons in the hidden layer:

Nk =
√
n+m+ a (9)

where m is the number of neurons in the input layer, n is

the number of neurons in the output layer, and a is a constant

between 1 and 10. (4) The number of hidden layer neurons with

the smallest mean square error (MSE) was selected to construct

the ERNN model. (5) The neural network was trained and used

to predict and analyze, and the results were back normalized.

ARIMA-ERNN model

The model was modeled in a similar way to ERNN, with

the core idea of taking the predicted value of ARIMA (p, d, q)

(P, D, Q)s model as the input value for ERNN: (1) The optimal

ARIMA (p, d, q) (P, D, Q)s model was modeled based on the

raw data. (2) The predicted values of the ARIMA (p, d, q) (P,

D, Q)s model and the temporal information corresponding to

them were normalized together as input datasets. (3) The true

values after normalization were taken as the output dataset.

(4) Developing an ERNN model for two-dimensional input,

and one-dimensional output. (5) The ERNN worked best by

continuously learning and training, when the MSE was the

smallest. (6) The predictive values of the combined model were

back normalized.

LSTM model

The input of LSTM is related not only to the current input,

but also to the state of the unit. The state of the unit is an

accumulation process. LSTM neural network can effectively

avoid the disappearance of gradient or gradient explosion.

Compared with other neural networks, LSTM is more suitable

for time series data prediction. The LSTM unit includes an input

gate, a forget gate, and an output gate (Supplementary Figure 2)

(27). The LSTMmodel can be expressed as (28, 29):

ft = σ

[

Wf ×
(

ht−1, xt
)

+ bf

]

(10)

it = σ
[

Wi ×
(

ht−1, xt
)

+ bi
]

(11)

C̃t = tanh
[

WC ×
(

ht−1, xt
)

+ bC
]

(12)

Ct = ft × Ct−1 + it × C̃t (13)

ot = σ
[

Wo ×
(

ht−1, xt
)

+ bo
]

(14)

ht = ot × tanh (Ct) (15)

where, xt and ht are input and output vectors, respectively,

ft is a forget gate vector, Ct represents the cell state vector and it

is the input gate vector. ot is the output gate vector, and W and

b show the parameter matrices. RMSE was used to evaluate the

loss of function.

TABLE 1 Trends in the incidence of STDs from 2011 to 2021.

STDs Trend APC (95%CI) t-value P-value

Total Increase 2.72 (1.63–3.83) 5.67 <0.001

AIDS Increase 4.22 (2.37–6.10) 5.21 0.001

gonorrhoeae Increase 2.56 (0.24–4.93) 2.50 0.034

Syphilis Increase 2.58 (1.56–3.61) 5.78 <0.001

APC, annual percentage change.

Model evaluation indices

The accuracy of the four prediction methods used in this

study was determined by the comparison between the original

observed data and the predicted data obtained by the four

methods. In this study, we mainly applied the mean absolute

error (MAE), the root mean square error (RMSE), and the mean

absolute percentage error (MAPE) to evaluate the fitting and

prediction accuracy of the four models. The relative error (RE)

reflecting the predictive accuracy of individual month data was

calculated as a reference indicator. The equations are as follows:

RE =
∣

∣ŷt − yt
∣

∣

yt
× 100% (16)

MAE =
∑n

t=1

∣

∣ŷt − yt
∣

∣

n
(17)

RMSE =

√

√

√

√

1

n

n
∑

t=1

(

ŷt − yt
)2

(18)

MAPE =
n

∑

t=1

∣

∣

∣

∣

ŷt − yt

yt

∣

∣

∣

∣

× 100%

n
(19)

where, ŷt is estimate, yt is actual value and n is sample size.

Results

Trend analysis

Table 1 presents that in general, the incidence rates of AIDS,

gonorrhea and syphilis were on the rise from 2011 to 2021. The

APC was 4.22% (95% CI: 2.37–6.10%), 2.56% (95% CI: 0.24–

4.93%), and 2.58% (95% CI: 1.56–3.61%) for AIDS, gonorrhea,

and syphilis, respectively, which indicates the incidence rate of

AIDS has increased faster than the other two diseases from 2011

to 2021.

Trend charts and heatmaps reflect the overall development

trend and periodicity of AIDS, gonorrhea and syphilis incidence,

and the incidence rate of gonorrhea has declined in recent years

(Figure 1). According to the heat maps, the peak period of AIDS

is from November to December, and the peak period of syphilis

and gonorrhea is from July to September. The lowest peak
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FIGURE 1

Descriptive analysis of monthly reported incidence of the three STDs: (A) Trend chart of AIDS; (B) Heat map of AIDS; (C) Trend chart of

gonorrhea; (D) Heat map of gonorrhea. (E) Trend chart of syphilis; (F) Heat map of syphilis.

periods of the three are all from January to February. All three

diseases have seasonality, with a cycle of 12 months.

ARIMA model

For 1-year prediction, the monthly incidence data of the

three STDs from January 2011 to December 2020 in China

was used for model fitting. For 5-year prediction, the monthly

incidence data of the three STDs from January 2011 toDecember

2016 in China was used for model fitting. Because of the non-

stationarity of the original sequence, a log transformation,

non-seasonal (d = 1) and seasonal difference (D = 1) were

made to eliminate numerical instabilities. After these steps,

the result of the ADF test was statistically significant (), which

showed that the time sequence was stationary. The ACF graphs

and PACF graphs were used to explore the parameters of the

ARIMA (p, d, q) (P,D,Q)smodel for 1-year predictionmodeling

(Supplementary Figures 3A–C) and 5-year prediction modeling

(Supplementary Figures 4A–C). The optimal ARIMA models

of the three STDs were determined: ARIMA(2,1,2)(0,1,1)12,

ARIMA(1,1,2)(0,1,2)12, and ARIMA(3,1,2)(1,1,2)12 for AIDS,

gonorrhea and syphilis 1-year prediction, respectively;

ARIMA (2,1,2)(0,1,1)12, ARIMA(1,1,2)(0,1,2)12, and

ARIMA(2,1,1)(0,1,0)12 for AIDS, gonorrhea and syphilis

5-year prediction, respectively. Parameters in the ARIMA (p, d,

q) (P, D, Q)s model(s) were estimated with the conditional least

squares method (30). The parameter estimates and test results

were showed in Table 2. The ACF graphs and PACF graphs

of the residual series (Supplementary Figures 3D–F, 4D–F)
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TABLE 2 Estimate parameters of the ARIMA models for STDs.

STDs Variable Estimate Standard error t P-value AIC SBC

One-year prediction

AIDS −0.533 −0.383

AR(2) −0.721 0.159 −4.539 <0.001

AR(1) −0.231 0.106 −2.175 0.032

MA(2) 0.763 0.206 3.710 <0.001

SMA(1) −0.677 0.095 −7.111 <0.001

Constant 0.003 0.006 −0.449 0.655

Gonorrhea −1.376 −1.251

AR(1) −0.421 0.065 −6.506 <0.001

MA(2) −0.516 0.127 −4.050 <0.001

SMA(2) 0.273 0.118 2.306 0.023

Constant 0.001 0.006 0.233 0.816

Syphilis 0.207 0.331

AR(3) 0.279 0.138 2.017 0.046

MA(2) −0.985 0.119 −8.279 <0.001

SAR(1) −0.916 0.070 −13.081 <0.001

SMA(2) 0.314 0.128 2.465 0.015

Five−year prediction

AIDS −0.311 −0.010

AR(2) −0.689 0.191 −3.602 0.001

AR(1) −0.388 0.173 −2.244 0.029

MA(1) −0.646 0.163 −3.959 <0.001

SMA(2) 0.639 0.306 2.088 0.042

Constant −0.001 0.009 −0.124 0.902

Gonorrhea −2.089 −1.984

AR(3) 0.472 0.102 4.620 <0.001

AR(2) 0.380 0.092 4.117 <0.001

Syphilis −2.052 −1.876

AR(2) −0.454 0.140 −3.249 0.002

AR(1) −0.834 0.105 −7.949 <0.001

MA(1) −0.626 0.140 −4.490 <0.001

Constant −0.002 0.002 −0.775 0.442

SAR, seasonal AR lags; SMA, seasonal MA lags.

suggested the residual series is white noise, so the data was

fully modeled.

Basic ERNN model and ARIMA-ERNN
hybrid model

The training of ANNs for learning seasonality in the data

structure does not require any transformation of the original

incidence series (31). The period of change in the incidence of

the three STDs is 12 months, so the number of neurons in the

input and output layers of the ERNN model in this study was

12 and 1, respectively. The number of hidden layer neuronal

nodes was calculated according to empirical formula (9) and

was determined to range from 4 to 13, which were tested in the

network with an increment of 1. The number of hidden layer

neurons with minimumMSE was chosen as the optimal number

of nodes (Supplementary Table 1). The training target error was

10−6 and the learning rate was 10−3. Two thousand training

sessions were performed. After the training was completed and

the network structure was determined, it was used to forecast the

incidence iteratively.

For the ARIMA-ERNN model, the predicted values of the

ARIMA (p, d, q) (P, D, Q)smodel and the temporal information

were severed as the input and the actual incidence as the output.

The number of neurons in the input layers and in output layers

of the ARIMA-ERNNmodel was 2 and 1, respectively. Different
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numbers of hidden layer neuronal nodes were also tested

(Supplementary Table 1). The training target error, learning rate

and training sessions of the ARIMA-ERNNmodel were identical

to those of the ERNN model.

LSTM model

After many attempts, the optimal LSTM model parameters

were finally determined. For AIDS, the epochs, gradient

threshold and learning rating were set as 350, 1, and 0.01,

respectively. For gonorrhea, the epochs, gradient threshold and

learning rating were set as 300, 1, and 0.01, respectively. For

syphilis, the epochs, gradient threshold and learning rating

were set as 450, 2, and 0.05, respectively, and the optimizer

was Adam. The training effect of these models was shown in

Supplementary Figure 5. The fact that the curves continue to

decline and RMSE drops to 0 before the end of trainingmanifests

the neural networks keep learning and achieve the best in the

training process.

Comparisons of the forecasting
performance

The fitting and the forecasting incidences of the four

methods were depicted in Figures 2–4. The REs corresponding

to each predicted value were listed in Supplementary Table 2.

Generally, the fitting values and predicated values obtained by

all the four methods reasonably match the actual incidence of

the STDs.

Table 3 showed the modeling and prediction performances

of the four models.

MAPE was used as the primary model performance measure

for STDs, because it is a relative index among the three

evaluation indices. For 1-year prediction, for AIDS, there is no

significant difference between the performances of the models.

It can be seen that the MAPE in ARIMA-ERNN model is the

lowest among the four models in predicting (18.3%), and the

MAE and RMSE are also relatively low; LSTM has a good

predicting performance (18.6%) while its modeling performance

is relatively poor (23.4%). For gonorrhea, the performance

of LSTM is significantly better than other models, with the

lowest MAPE, MAE and RMSE for both modeling (1.4%) and

predicting data (5.1%); ARIMA-ERNN is the second-best among

these models, and ERNN and ARIMA (p, d, q) (P,D,Q)smodels

performed almost equally. For syphilis, LSTM performs well

in predicting (5.8%), and ARIMA-ERNN has better modeling

performance (6.1%). Compared with 1-year prediction, the

performance of 5-year prediction is slightly worse, mainly in the

prediction of syphilis.

In general, these models have good performance both in

long-term prediction and short-term prediction. For modeling

performance, the MAPEs of these models are close to or less

than 10%, indicating that the fitting effect is good and there is no

underfitting. For prediction performance, the MAPEs are close

to or less than 20%, which is not much different from theMAPEs

for modeling performance, indicating that the prediction effect

is good and there is no overfitting. In terms of prediction, the

MAPEs of LSTM are smaller than those of the other models,

and the overall performance of the four models was ranked in

descending order as follows: LSTM, ARIMA-ERNN, ERNN, and

ARIMA (p, d, q) (P, D, Q)s.

Discussion

STDs are the most common infectious diseases in the world.

Although STDs are largely preventable, they continue to cause

serious incidence rate and mortality. STDs surveillance remains

a key component of global surveillance and response. Through

the analysis of reliable monitoring information, the planning of

prevention and treatment strategies can be evaluated in time,

so that the project adjustment, advocacy, strategic planning and

resource mobilization will be optimized (32).

The factors associated with the prevalence of STDs include

engagement in unsafe sexual practices, especially among some

special populations, such as men who have sex with men,

and female sex workers and their clients (33, 34). STDs

are not seasonal infectious diseases, but this study reveals a

periodicity pattern for the incidence of the three STDs in

China, this phenomena can be related to sexual behaviors

in Chinese populations, the impact of seasonal migration in

China, and the patients’ clinical attendance (35). Previous

studies have also shown that rural-to-urban migration, social

stigma, and lack of healthcare-seeking behavior expand the

spread of HIV/AIDS and syphilis (34, 36–38). Since AIDS,

gonorrhea and syphilis share similar risk factors and can be

co-transmitted, it is reasonable to analyze their epidemiological

characteristics together and take combined interventions to

control the prevalence of them (39, 40).

The incidence of AIDS, gonorrhea and syphilis reached their

lowest during the January and February of each year but then

quickly rose to a relatively high level. This may be due to the

unique effects of the annual Chinese New Year which generally

falls in late January or early February, during which national and

provincial CDCs are not fully functional and most hospital labs

run on limited capacity, resulting in the artificial drops in STDs

incidence records (22). It was observed that the incidence of the

currently studied STDs decreased dramatically in January 2020,

when the COVID-19 pandemic just broke out. A previous study

found that the sharp decline in STDs incidence was maintained

almost 5 months after the lockdown started because of the

COVID-19 pandemic (41). But according to the trend charts in

this study, the COVID-19 pandemic seemed to have no influence
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FIGURE 2

AIDS incidence and fitting values predicted by the four methods (A) in 2011–2021, (B) in 2021, and (C) in 2017–2021.
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FIGURE 3

Gonorrhea incidence and fitting values predicted by the four methods (A) in 2011–2021, (B) in 2021, and (C) in 2017–2021.
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FIGURE 4

Syphilis incidence and fitting values predicted by the four methods (A) in 2011–2021, (B) in 2021, and (C) in 2017–2021.
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TABLE 3 Comparison of the performances of the four di�erent modelsa.

STDs Model Modeling performance Predicting performance

MAE RMSE MAPE (%) MAE RMSE MAPE (%)

AIDS ARIMA 0.04/0.05 0.05/0.03 12.00/11.87 0.08/0.05 0.09/0.05 23.26/12.86

ERNN 0.04/0.04 0.05/0.05 12.36/14.42 0.07/0.09 0.08/0.11 20.24//23.54

ARIMA-ERNN 0.03/0.03 0.04/0.04 11.00/9.72 0.06/0.06 0.08/0.07 18.34/14.74

LSTM 0.07/0.03 0.09/0.04 23.39/11.00 0.06/0.08 0.07/0.11 18.63/25.43

Gonorrhea ARIMA 0.04/0.04 0.06/0.03 7.25/5.08 0.14/0.13 0.19/0.10 19.44/17.07

ERNN 0.05/0.05 0.07/0.06 8.50/8.23 0.14/0.12 0.19/0.14 18.03/17.95

ARIMA-ERNN 0.04/0.03 0.06/0.04 6.75/4.98 0.13/0.10 0.17/0.13 17.77/16.46

LSTM 0.01/0.33 0.02/0.06 1.38/5.95 0.04/0.09 0.05/0.12 5.09/15.13

Syphilis ARIMA 0.16/0.18 0.25/0.14 6.15/5.40 0.29/0.78 0.39/0.71 9.80/21.88

ERNN 0.18/0.26 0.25/0.30 6.775/9.744 0.30/0.78 0.13/0.87 9.55/24.00

ARIMA-ERNN 0.16/0.12 0.24/0.16 6.079/4.605 0.26/0.66 0.35/0.72 8.67/20.18

LSTM 0.23/0.21 0.12/0.31 8.571/8.932 0.17/0.35 0.25/0.44 5.79/11.20

aOne-year forecast performance/5-year forecast performance.

on the general trend and periodicity of AIDS, gonorrhea and

syphilis incidence, so it has little impact on our modeling effect.

A perfect surveillance system helps researchers to collect and

analyze infectious disease data. With high-quality surveillance

data, the epidemic behavior may be accurately detected and

forecasted. The data in this study were the latest and collected

from the Chinese Center for Disease Prevention and Control

which has the most authoritative infectious disease surveillance

system in China. So, the data quality and authenticity can

be guaranteed.

Several researches had been done to introduce different

approaches to forecasting epidemic incidence. The ARIMA (p, d,

q) (P, D, Q)s model was used to model and predict the incidence

of influenza and mumps in China and performed well (5, 7).

The ARIMA (p, d, q) (P, D, Q)s model is popular because of

its known statistical properties and the well-known Box–Jenkins

methodology in the modeling process, but it can only extract

linear relationships within the time series data andmay not work

well for the occurrence of an infectious disease which can be

affected by various factors. The ANN time series models capture

the historical information by non-linear functions. ERNNmodel

was reported to have a better performance than BPNN and

ARIMA (p, d, q) (P, D, Q)s model in forecasting typhoid fever

incidence in China (13). For hybrid models, the hybrid ARIMA-

GRNN model showed better hepatitis incidence forecasting in

Heng County than the single ARIMA (p, d, q) (P, D, Q)s model

and the basic generalized regression neural network (GRNN)

model (17). LSTM model has demonstrated better performance

than BPNN in forecasting hepatitis incidence in China (42),

and better than the recurrent neural network in forecasting

COVID-19 in Malaysia, Morocco and Saudi Arabia (43). The

different findings of these studies suggest that further studies

comparing different kinds of forecasting methods for different

kinds of diseases are necessary for the application in predicting

epidemic behavior.

The effectiveness of statistical models in forecasting future

STDs incidence has been recognized (44). Common prediction

models for STDs include ARIMAmodel, great predictionmodel,

exponential smooth model, BPNN model and GRNN model.

Similar to the ARIMAmodel, the exponential smoothing model

is also a linear statistical model. It assumes greater predictive

value for recent observations than for earlier ones and gives

greater weight to the former (45). Gray prediction model is

used to investigate a large amount of unknown information

using a small amount of information in a system containing

incomplete data, which is widely used due to its virtue of

“strong adaptability, simple model, easy parameter changes”

(46). Exponential smooth and gray models are generally good

for short-term predictions, but they tend to perform poorly

in long-term predictions (47). BPNN and GRNN models are

belong to artificial neural network, and their advantages are

that they have better non-linear mapping ability to obtain good

prediction accuracy, but the statistical significance of the models

is unclear, and the interpretability of the parameters is inferior to

some statistical models such as ARIMA model and exponential

smooth model (11). Several studies have developed predictive

models for the incidence of STDs are still rare. Wang et.al

concluded that the LSTM model was a better predictive model

than the ARIMA (p, d, q) (P, D, Q)s, GRNN and exponential

smoothing model in forecasting the HIV incidence in Guangxi,

China (47). Li et.al reported the BPNN model was a more

suitable method than the ARIMA (p, d, q) (P, D, Q)s model

to monitor and predict the changing trend and morbidity of

AIDS in China (48). But the data collected in the above two
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studies was relatively early. In Mao’s research, ARIMA (p, d, q)

(P, D, Q)s model had a good precision in predicting syphilis

incidence in China, but it only had short-term forecasts for 6

months (49). Though Xu et al. used ARIMA (p, d, q) (P, D, Q)s

to model both the incidence and mortality of AIDS, they didn’t

make a comparison between the effectiveness of different models

(22). Ye et al. comprehensively model the incidence of AIDS,

gonorrhea, and syphilis in China with a gray model, and made

a good prediction, yet they used annually rather than monthly

incidence (8).

Compared with previous studies, the current study has

several innovations and strengths. First, since the incidence

of AIDS, gonorrhea, and syphilis shared similar seasonal

patterns, it is feasible to analyze them together, develop

different prediction models and compare their performance

to obtain more generalizable optimal time series prediction

models that can be applied to STDs. Second, the performance

of four models with different features, namely, the ARIMA

model based on traditional linear statistical methods, the

traditional neural network ERNN model, the hybrid model,

and the burgeoning deep learning LSTM model, were

comprehensively analyzed and compared, which have their

own different advantages and are more representative. Finally,

both short-term (1-year) and long-term (5-year) forecasts were

conducted to comprehensively explore the performance of

these models.

Time series prediction models have their particular

advantages. First, they are able to make full use of the temporal

information of the original dataset to make accurate predictions.

Second, the modeling process is not complicated, so the

models can be generalized for use. Finally, model parameters

can be dynamically optimized by incorporating recently

reported data to facilitate timely disease prediction. Due to

the advantages and good performance of the models, the

time-series models studied in this research can be used to

predict peak incidence of AIDS, gonorrhea, and syphilis, so

that relevant authorities such as the CDC can prepare for

it as early as possible and take countermeasures, which will

optimize the prevention and control effects of STDs and

resource mobilization.

The limitations of the study should also be acknowledged.

First, we only collected national data on AIDS, gonorrhea and

syphilis, but did not collect data from different provinces and

cities. Therefore, we lacked analysis on this part. However,

this study is still informative for the modeling of STDs

incidence at the provincial and regional levels, because in

general, the temporal regularity of STDs incidence is similar.

Second, the findings based on a specific disease may not be

repeatable when used in other cases. Third, the epidemic of

STDs is influenced by many elements, such as environmental

changes, human behaviors and health interventions. The

single factor model may be not compatible with complex

epidemic problems.

Based on the above limitations, we make the following

suggestions for future research. First, some advanced

neural network algorithms such as arithmetic optimization

algorithm and genetic algorithm can be applied to optimize

neural network modeling. Second, it is possible to develop

ARIMAX model, panel data prediction model, and multi-

input layer neural network on the basis of ARIMA

model and traditional neural network model by adding

spatial information or other covariates, thus improving the

prediction accuracy.

Conclusion

With good performance, the ARIMA (p, d, q) (P,

D, Q)s model, ERNN model, ARIMA-ERNN model,

and LSTM model can be applied to forecast the

incidence of AIDS, gonorrhea, and syphilis and have

the potential to help the department concerned make

efficient decisions to significantly promote STDs control

and management.
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SUPPLEMENTARY FIGURE 1

Schematic of ERNN.

SUPPLEMENTARY FIGURE 2

Schematic of LSTM.

SUPPLEMENTARY FIGURE 3

ACF and PACF graphs of the post di�erential and residual sequences

from 2011 to 2020: (A) ACF and PACF graphs of the AIDS data (d = 1 and

D = 1), (B) ACF and PACF graphs of the gonorrhea data (d = 1 and D =
1), (C) ACF and PACF graphs of the syphilis data (d = 1 and D = 1), (D)

ACF and PACF graphs of the residential sequence from AIDS data, (E)

ACF and PACF graphs of the residential sequence from gonorrhea data,

and (F) ACF and PACF graphs of the residential sequence from syphilis

data.

SUPPLEMENTARY FIGURE 4

ACF and PACF graphs of the post di�erential and residual sequences

from 2011 to 2016. (A) ACF and PACF graphs of the AIDS data (d = 1 and

D = 1). (B) ACF and PACF graphs of the gonorrhea data (d = 1 and D =
1). (C) ACF and PACF graphs of the syphilis data (d = 1 and D = 1). (D)

ACF and PACF graphs of the residential sequence from AIDS data. (E)

ACF and PACF graphs of the residential sequence from gonorrhea data.

(F) ACF and PACF graphs of the residential sequence from syphilis data.

SUPPLEMENTARY FIGURE 5

Training charts of LSTM model. (A) One-year prediction for AIDS. (B)

Five-year prediction for AIDS. (C) One-year prediction for gonorrhea. (D)

Five-year prediction for gonorrhea. (E) One-year prediction for syphilis.

(F) Five-year prediction for syphilis.
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