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Editorial on the Research Topic

Timetrees: Incorporating fossils and molecules

Calibrating phylogenies to time is central to addressing many questions in

evolutionary biology and macroevolution, such as the timing and dynamics of

evolutionary radiations (e.g., Brocklehurst, 2017; Ascarrunz et al., 2019; Didier and

Laurin, 2020) and of mass extinction events and their possible environmental causes

(e.g., Allen et al., 2019; Didier and Laurin, 2021). The fossil record once provided our

only source for establishing a timeline for evolution (Romer, 1966), but the

incompleteness of this record and its non-uniformity in space and time limit the

precision of divergence time estimates (Laurin, 2012; Heath et al., 2014; Warnock

et al., 2017; Didier and Laurin, 2020). Molecular dating, which combines evidence

from the geological and molecular records, can generate a much more complete and

precise timeline of events (e.g., Sauquet, 2013; Magallón, 2020). This Research Topic

focuses on recent advances in methodology, outstanding challenges, and the

application of molecular and paleontological dating methods to empirical case

studies across the Tree of Life.

Marshall reviews paleontological approaches to estimate divergence times,

pointing out the many difficulties arising from this task. Though minimum ages

are quite straightforward to infer from the fossil record, maximum age constraints

are not so easy to establish. A first point to keep in mind is that the fossil record

informs only about the first (fossilized) apomorphy and not the actual divergence

time. Other major issues arise from the fact that the fossil recovery rate is not

homogeneous and varies substantially over time and space. Marshall discusses

various approaches to deal with these difficulties and shows some examples of

paleontological dating.

Matschiner performs simulations in order to assess the influence of selective

sampling of fossils or extant species on the accuracy of divergence times inferred

under the Fossilized Birth-Death (FBD) model. He observes that non-uniform sampling

of fossils or extant taxa leads to biased estimates of node ages obtained from the FBD

model, notably in the case where the fossil record is reduced to the oldest fossil of each
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branch. Another node dating approach, called CladeAge

(Matschiner et al., 2016), shows better behavior in the

presence of selective sampling of taxa in simulated data (but

see Zhang et al., 2016).

Barido-Sottani et al. use simulations to examine the impact of

fossil age uncertainty on trees recovered using the FBD model

for fully extinct clades. They show that fixing fossil ages to a

point age within the known range of stratigraphic age

uncertainty produces incorrect estimates of both topology

and divergence times. They also illustrate the impact of

different approaches to handling fossil age uncertainty on

parameter estimates among a group of Paleozoic crinoids.

They further demonstrate that best solution is to explicitly

model fossil age uncertainty.

Guindon provides a general presentation of molecular

dating methods based on various assumptions (namely,

strict, not-so-strict, uncorrelated and autocorrelated, relaxed

clock models). He next reviews several approaches to

calibrate clock models, mainly based on fossil records. After

a brief presentation of how to process fossil for use in this

context, he presents and discusses various model-based

calibration methods, pointing out some issues in using the

FBD model.

Powell et al. assess the advantages and drawbacks of

secondary calibrations (which are molecular estimates of

divergence times obtained in previous studies) compared to

more distant primary (i.e., paleontological or geological)

calibrations. This is timely because for many taxa with a poor

fossil record (typically those containing organisms lacking a

mineralized skeleton), calibration can be performed only

through one of these alternatives. They find that distant

primary calibrations provide better precision, but note that

secondary calibrations remain useful.

Lozano-Fernandez et al. explore hypotheses about the

geological context surrounding the colonization of land by

arachnids. They generate a large dated tree of arachnids based

genome-scale sequence data and a suite of rigorously assessed

node calibrations. The origin of arachnids is dated to the

Cambrian or Early Ordovician, indicating that

terrestrialization occurred within this interval. This is followed

by a rapid radiation of the group, coincident with elevated rates of

molecular evolution. The authors suggest that the outstanding

discrepancy between molecular estimates for the origin of crown

group arachnids and the first appearance of body fossils

belonging to this group can be attributed to incompleteness of

the early terrestrial record.

Marjanović highlights problems associated with obtaining

reliable time calibrations for node dating, caused by rapid

progress in paleontology, thus rendering the few compilations

(e.g., Benton et al., 2015) of such calibration constraints soon out

of date, as more fossils are discovered or the information is

updated. But worse, some molecular studies copy such

constraints from previous molecular studies that had not

necessarily used the most recent paleontological literature.

These problems are illustrated through a detailed analysis of

the 30 calibrations used to produce the largest available

vertebrate timetree (Irisarri et al., 2017).

Pardo et al. assess the problems in obtaining reliable ages for

three main crown-clades of limbed vertebrates (Tetrapoda,

Lissamphibia and Amniota) to calibrate molecular clocks.

They show that whereas much emphasis has been placed

recently on documenting the age of fossils and providing

synapomorphies that prove that they belong to a given clade

(Parham et al., 2012), the main problem with deep tetrapod

nodes is that the phylogeny is controversial and that various

alternatives imply different ages for these clades.

Springer et al. review evolutionary models for the

diversification of placental mammals, which differ from each

other in the proposed timing of the evolutionary radiation of

crown-placentals relative to the K/Pg boundary. At one

extreme, this whole radiation may have started soon after

the K/Pg boundary and proceeded very quickly, whereas at

the other end of the spectrum, this radiation started around the

mid-Cretaceous. Many problems (e.g., establishing homology

of molecular sequences, taxonomic affinities of fossils and

validity of the morphological clock) affect some or all of the

three main dating methods (node-, tip-, and fossilized birth-

death dating).

Celik and Phillips examine incongruence in the phylogeny of

mammals based on different anatomical regions. This

incongruence is attributed to convergent and correlated

character evolution within ecologically similar but

phylogenetically distinct groups. The authors develop a

metric (the maximum parsimony disadvantage score) that

allows us to identify homoplasy within anatomical partitions.

They find that within mammals, cheek teeth and shoulder girdle

characters have high potential to mislead phylogenetic

inference due to non-phylogenetic covariance within these

regions. These results have implications for assessing the

placement of mammal fossils and consequently their

inclusion in molecular dating studies.

Finally, Paterson et al. re-examine the monophyly of

pinnipeds, which were widely believed to be diphyletic from

the 1960s to the 1980s, and to assess parallel evolution within

the group. Their Bayesian (as well as parsimony) analyses

confirm pinniped monophyly but also demonstrate a

surprising amount of parallel evolution in characters that had

previously been interpreted as pinniped synapomorphies. These
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include dental and limb bone characters relating to homodonty

and aquatic locomotion, respectively. New tip-dating analyses

date the divergence between pinnipeds and musteloids to about

45 Ma.

Together, these studies illustrate the utility of timetrees in

addressing fundamental questions about evolution, as well as

underscoring the need to apply a rigorous approach to select

calibrations, models and prior parameters.
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