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Abstract
Background
The genomic sequences of mycobacteriophages, phages infecting
mycobacterial hosts, are diverse and mosaic. Mycobacteriophages often share
little nucleotide similarity, but most of them have been grouped into lettered
clusters and further into subclusters. Traditionally, mycobacteriophage
genomes are analyzed based on sequence alignment or knowledge of gene
content. However, these approaches are computationally expensive and can
be ineffective for significantly diverged sequences. As an alternative to
alignment-based genome analysis, we evaluated tetranucleotide usage in
mycobacteriophage genomes. These methods make it easier to characterize
features of the mycobacteriophage population at many scales.
Description
We computed tetranucleotide usage deviation (TUD), the ratio of observed
counts of 4-mers in a genome to the expected count under a null model. TUD
values are comparable between members of a phage subcluster and distinct
between subclusters. With few exceptions, neighbor joining phylogenetic trees
and hierarchical clustering dendrograms constructed using TUD values place
phages in a monophyletic clade with members of the same subcluster. Regions
in a genome with exceptional TUD values can point to interesting features of
genomic architecture. Finally, we found that subcluster B3
mycobacteriophages contain significantly overrepresented 4-mers and 6-mers
that are atypical of phage genomes.
Conclusions
Statistics based on tetranucleotide usage support established clustering of
mycobacteriophages and can uncover interesting relationships within and
between sequenced phage genomes. These methods are efficient to compute
and do not require sequence alignment or knowledge of gene content. The
code to download mycobacteriophage genome sequences and reproduce our
analysis is freely available at .https://github.com/bsiranosian/tango_final
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Introduction
Mycobacteriophages, phages infecting mycobacterial hosts, are 
a subset of the estimated 1031 phage particles present globally. 
Mycobacteriophages infect a number of bacterial hosts from 
the genus Mycobacterium, and they are broadly classified into 
Siphoviridae and Myoviridae. Mycobacteriophages are present in 
both land and aquatic environments and play a large ecological 
role in the turnover and evolution of bacteria (Bohannan & Lenski, 
2000; Chibani-Chennoufi et al., 2004; Hendrix, 2002). The recent 
rise of antimicrobial-resistant pathogenic bacteria has renewed 
interest in mycobacteriophages and the potential for phage ther-
apy of Mycobacterium tuberculosis infections. Although in vivo 
experiments have not yet yielded promising clinical results, myco-
bacteriophages are still powerful diagnostic tools for the investi-
gation of mycobacterial pathogenesis (Danelishvili et al., 2006; 
Hatfull, 2014;  McNerney, 1999).

The genomic sequences of mycobacteriophages are mosaic and 
diverse. As of April 2014, 663 distinct mycobacteriophage genomes 
were available on the database PhagesDB.org; most were isolated 
on Mycobacterium smegmatis MC2155. Global Guanine + Cyto-
sine (GC) content ranges from 50.3% to 70% (mean of 63.9%), and 
genome lengths range from 41kb to 165kb (mean of 67kb). In total, 
more than 50,000 distinct genes are found within the population. 
The majority of these genes are of unknown function and do not 
have homologs in other types of phages or bacteria (Hatfull et al., 
2010). However, many genes are shared between closely related 
mycobacteriophages. Similar genes have been grouped into almost 
4,000 phamilies (or phams, a play on gene families) based on 
shared amino acid sequence. Phams have been used to investigate 
horizontal gene transfer within the mycobacteriophage population 
and to create phylogenetic trees.

Despite the high levels of diversity, mycobacteriophages can be 
grouped into distinct clusters based on their morphologic and 
genetic features. Some clusters are large and further divided into 
subclusters (cluster A, for example, with 11 subclusters and 246 
members), while other are small and undivided (cluster S with two 
members and no subclusters). Some phages have no nearest neigh-
bor to establish a cluster and are classified as singletons. Clusters are 
defined using four methods: dot-plot comparisons, pairwise aver-
age nucleotide identities, pairwise genome map comparisons and 
gene content analysis (Hatfull et al., 2010). However, it should be 
noted that the clustering scheme proposed for mycobacteriophages 
mainly serves to identify similarities in genome architecture. This 
clustering scheme, and our proposed methods of grouping based 

on tetranucleotide usage described below, are not true taxonomic 
representations of the mycobacteriophage population. Extensive 
horizontal gene transfer prevents accurate reconstruction of evo-
lutionary history from purely phylogenetic information (Lawrence 
et al., 2002).

Methods traditionally used to analyze mycobacteriophage genomes 
require sequence alignment or genome annotation. These ana-
lytical tasks can be effective, but they are not without draw-
backs. Alignment-based methods can be biased by the choice of 
score parameters (Frith et al., 2010), and genome annotation may 
require significant manual input, including by-hand verification of 
automated gene calls before a mycobacteriophage genome is 
submitted to GenBank. It is especially difficult to build multiple-
sequence alignment based phylogenetic trees from mycobacteri-
ophage genomes because phages lack a common genetic element, 
such as 16S rRNA in bacteria (Doolittle, 1999). Alignment-free 
methods avoid many of the disadvantages associated with align-
ment-based inference. These methods typically use statistics based 
on the oligonucleotide composition of a sequence and are com-
pletely independent of alignment or annotation. Several methods 
have been developed for different applications; most are covered 
in the excellent review by Vinga (2007). Alignment-free methods 
are also less computationally intensive than multiple sequence 
alignment. While the complexity of sequence alignment algorithms 
scales at least as fast as the square of the number of sequences (at 
least O(n2) complexity), alignment free methods typically fall below 
O(n2) (Chan & Ragan, 2013).

Even so, there are drawbacks to alignment-free methods for analyz-
ing genomes, mostly related to the interpretation of statistics in an 
evolutionary context. It can be difficult to understand how oligonu-
cleotide frequencies are modified in a population over time when 
selection usually takes place at the level of genes. Oligonucleotide 
frequencies can also be subject to convergent evolution: if two 
distantly related phages slowly converge to similar usage frequen-
cies, these methods can give a false indication of common ancestry 
(Pride et al., 2003).

Alignment-free methods have been used to study phage and bac-
terial genomes in a variety of contexts. For example, Pride et al. 
(2006) found tetranucleotide usage to carry a strong phylogenetic 
signal in bacteriophages and showed that tetranucleotide composi-
tion was similar among phages with common hosts. More recently, 
Ogilvie et al. (2013) surveyed metagenomic sequencing datasets 
using a tetranucleotide usage-based method and discovered sev-
eral novel Bacteroidales-like phages which could not be identified 
with alignment-based methods. Oligonucleotide composition vec-
tors have also been proposed as a method to root viral phylogenies 
(Simmons, 2008).

Statistics based on nucleotide composition in a sliding window can 
theoretically be used to uncover horizontal gene transfer (HGT), 
based on the assumption that genomes have self-similar nucleotide 
composition and outlier regions could represent recent horizontal 
transfer events (Lawrence & Ochman, 1997). Guanine + Cytosine 
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(GC) content in a sliding window was first used to look for patho-
genicity islands within a genome (Hacker & Kaper, 2000). More 
recent methods have used nucleotide composition and Naïve 
Bayesian classifiers (Sandberg et al., 2001) or hidden Markov mod-
els (Waack et al., 2006). However, if horizontally transferred seg-
ments change in oligonucleotide composition to be more similar to 
the resident genome, a process known as amelioration, it can obscure 
truly horizontally transferred segments (Koski et al., 2001).

The number of sequenced mycobacteriophages has grown imm-
ensely in the past few years thanks to the Howard Hughes Medi-
cal Institute (HHMI) Science Education Alliance Phage Hunters  
Advancing Genomics and Evolutionary Science (SEA-PHAGES) 
course (Jordan et al., 2014). This program allows first year under-
graduate students to isolate and characterize novel mycobacte-
riophages from the environment. It has also provided excellent 
opportunities for collaborative projects between undergraduates, 
resulting in the work presented here Siranosian et al. (2015a).

As the number of sequenced mycobacteriophages continues to 
increase, researchers need new methods to quickly make compari-
sons at many scales. Alignment-free methods are one possibility: 
they are independent of sequence alignment or genome annotation, 
less computationally complex than alignment-based methods and 
applicable to genomes without a common subsequence. We inves-
tigated tetranucleotide usage in mycobacteriophage genomes as an 
alignment-free alternative to traditional methods for genome com-
parison. Our findings support what is known about mycobacteri-
ophage biology: phages form identifiable groups and subgroups, 
known as clusters, but have extensive differences between clusters. 
Tetranucleotide usage also highlights outliers in the population and 
can describe unique genomic features. All of the analyses here can 
be done in minutes on a personal laptop. Tetranucleotide usage is a 
powerful tool to quickly investigate features of the growing myco-
bacteriophage population.

Methods
We obtained the genomic sequences of all 663 sequenced myco-
bacteriophages publicly available on the website PhagesDB.org 
as of April 2014. This dataset contains both unpublished genomes 
and genomes available on GenBank. There is not an easy way to 
download the mycobacteriophage database in its entirety, so we 
automated the process with a Python script available in the code 
accompanying this manuscript.

To compare mycobacteriophage genomes independently of 
sequence alignment, we investigated the usage of k-mers, substrings 
of DNA of length k, in each genome. Given a value for k, there are 
4k possible substrings. For example, the 16 possible ways to com-
bine {A, T, C, G} in substrings of length two are {AA, AT, AC, AG, 
TA, TT, TC, TG, CA, CT, CC, CG, GA, GT, GC, GG}. Different 
values for k are used throughout this paper, but we focus mainly 
on results from k=4 and k=6. In the following section, a substring 
of length k is called a word, abbreviated by W. Before computing 
k-mer usage, each genome is extended by the reverse complement 
to account for biases from transcriptional start orientation.

With a chosen value of k, we first compute the number of times 
each substring occurs in the genome. This gives a vector N of length 
4k, where each entry N(W) is the number of times word W occurs 
in the genome sequence. Next, we normalized the k-mer frequen-
cies using a zero-order Markov model, which removes biases from 
the background nucleotide composition and can be effective for 
analysis of prokaryotic genomes (Pride et al., 2003; Pride et al., 
2006). Normalization accounts for the fact that GC-rich genomes 
are expected to have more GC-rich k-mers simply because of the 
available nucleotide composition. Dividing the observed counts of 
k-mers by the expected counts highlights k-mer usage that can dif-
ferentiate between mycobacteriophage genomes.

The expected number of a k-mer W given the background nucle-
otide distribution is calculated by:

E(W) = [(Aa * T t * Cc * Gg) * N]

where A,T,C,G are the frequency of each nucleotide in the genome, 
a,t,c,g are the number of each nucleotide in the k-mer W, and N is 
the length of the genome. 

The normalized value for a word W is calculated by dividing the 
observed counts by the expected counts. This is the usage deviation 
vector for a genome, and in the case of k=4, tetranucleotide usage 
deviation (TUD):

                                 TUD(W) = N(W)/E(W)

An example of calculating TUD values for a short sequence is given 
in Figure 1. This is equivalent to the “tetranucleotide usage depar-
tures from expectation” measure proposed by Pride et al. (2003). 
For a given 4-mer, a TUD value of one corresponds to the expected 
usage, while a value of two corresponds to usage twice as frequently 
as expected.

Data filtering
Phage genomic sequences are extended by the reverse complement 
before calculation, leading to redundant values for a given tetranu-
cleotide and its reverse complement. One of the redundant tetranu-
cleotides was removed before distance calculations and Principal 
Components Analysis (PCA). We also removed tetranucleotides 
that were not present at least once in all phage genomes. Only ATAT 
and AATT were removed by this filter.

Comparison of phage genomes
To compare phage genomes in an alignment-free way, we calcu-
lated the Euclidean distance between usage deviation vectors. In the 
case of k=4 for a pair of TUD vectors from genomes x and y:

( )
44 2

,
1

( ) ( )x y x y
W

d TUD W TUD W
=

= −∑

Where individual 4-mers are indexed by integers ranging from 1 
to 44.
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Figure 1. Example of calculating TUD for an input sequence of 10 bases.
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Computing pairwise distances between all usage deviation vec-
tors produced a distance matrix used for tree building. For analy-
sis of the subset of 60 phage in Hatful et al. (2010), we used the 
SplitsTree program (Huson & Bryant, 2006) to construct neighbor 
joining phylogenetic trees. This was done to facilitate easy compar-
isons between previously published figures and our alignment-free 
trees. Hierarchical clustering using the “average” method within 
the statistical programming language R (version 3.1.0) was used to 
construct dendrograms for analyzing the entire phage database.

Principal components analysis
PCA was used to visualize relationships between phage genomes in 
lower- dimensional space. PCA was done on log-transformed data 
in R using the ‘prcomp’ function and results were plotted using the 
‘ggbiplot’ package.

Within-genome comparisons
To compare tetranucleotide usage within a phage genome, we used 
a sliding window of 2000bp (500bp step size). This window size 
was selected to balance two factors: a short window can detect dif-
ferences in small regions, while a longer window is necessary to 

encounter the majority of tetranucleotides. 4-mers were counted 
and normalized to the nucleotide composition of a given window. A 
distance matrix was constructed from pairwise Euclidean distances 
of all windows and used to build heatmaps. Parts of the heatmap 
where windows overlapped were removed before plotting, leading 
to the white section along the diagonal in Figure 5.

Results
Mycobacteriophage genomes have heterogeneous, yet 
clustered tetranucleotide usage
First, we investigated if TUD reflected relationships described from 
alignment-based analysis of phage genomes. In particular, does a 
grouping scheme based on tetranucleotide usage agree with previ-
ously assigned phage clusters? To test this hypothesis, we exam-
ined a subset of 60 mycobacteriophages first analyzed by Hatfull 
et al. (2010), where the authors propose a clustering scheme based 
on dot-plot comparisons, pairwise average nucleotide identi-
ties, pairwise genome maps and gene content analysis. We calcu-
lated the pairwise Euclidean distances between TUD vectors for 
the subset of 60 phages and used the SplitsTree program (Huson 
& Bryant, 2006) to construct a neighbor joining tree (Figure 2a). 

Figure 2. TUD captures similarity within mycobacteriophage subclusters. a) Neighbor joining phylogenetic tree constructed from pairwise 
Euclidean distances between TUD vectors for 60 mycobacteriophage genomes. Phage names are colored based on previously assigned 
cluster information. b) Neighbor joining phylogenetic tree constructed from gene presence data in mycobacteriophage genomes. Reproduced 
with permission from Figure 3 in Hatful et al. (2010). The TUD tree is similar to the alignment-based tree. Phages from the same subcluster 
form monophyletic clades. In clusters C, F and H, subclusters from the same parent cluster form monophyletic clades.
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Figure 3. Changing k does not change the structure of the tree. Neighbor joining phylogenetic trees constructed from pairwise Euclidean 
distances between oligonucleotide usage deviation vectors for 60 mycobacteriophage genomes. Trees from k equal to two, five and seven are 
shown here. Trees show a high degree of similarity regardless of the k used. Trends observed in the tetranucleotide usage based tree (Figure 2), 
such as grouping of subcluster members into monophyletic clades, are conserved in these trees.
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Our alignment-free tree has a striking resemblance to the tree from 
Hatfull et al. (2010), which is constructed from similarities in 
genomic architecture (Figure 2b). In every case, phages are placed 
in a monophyletic clade with members of their subcluster.

Hierarchically grouping phages into clusters and subclusters rep-
resents heterogeneity within the mycobacteriophage population. 
In the alignment-free tree, subclusters from parent clusters C, H 
and F are placed in a monophyletic clade. However, in some cases, 
tetranucleotide usage was vastly different between subclusters of 
a parent cluster. For example, subcluster B3 phages are most simi-
lar to cluster A phages in terms of tetranucleotide usage, but they 
are similar to other cluster B genomes when compared on genetic 
elements (Figure 2). We investigate this relationship further in a 
following section. Importantly, the relationships between the sub-
set of 60 phages are consistent for varying values of k (Figure 3).

Hundreds of mycobacteriophages have been sequenced in the 
past few years, bringing the total to 663 genomes (PhagesDB.org 
as of April 2014), 21 clusters and 48 subclusters. We next exam-
ined TUD patterns in the entire database to see if the relationships 
observed for the subset of 60 phages were conserved. We used 
hierarchical clustering within R to analyze this larger dataset (see 
Methods). As observed for the subset of 60, almost all phages are 
grouped closely with members of their subcluster. Subclusters of 
cluster F, C, D, M and L form a monophyletic clade (Supplemen-
tary Figure 1). The relationships for cluster B genomes are also 
conserved – genomes within a given B subcluster are similar, but 

the subclusters themselves are different and placed in separate sec-
tions of the dendrogram.

Principal components analysis captures variation in 
tetranucleotide usage
We further investigated the ability of TUD to differentiate between 
predetermined phage clusters using PCA. PCA is useful for visual-
izing TUD, a 256-dimensional vector, in intuitive 2D space. PCA 
was applied to log-transformed TUD vectors for all 663 genomes. 
The first three principal components captured 29.3%, 15.6% and 
12.9% of the variance, respectively. Comparing PC1 and PC2 high-
lighted groups of phage that corresponded well with assigned clus-
ters (Figure 4a). Clusters that were similar in PC1/PC2 space could 
be separated further by including additional PCs.

PCA was also useful to compare phages within a single cluster. 
When comparing cluster B phages, the first three components cap-
tured 44.6%, 31.4% and 10.3% of the variance present, respec-
tively. Phage subclusters typically group tightly with each other in 
PC-space, which makes it easy to detect outliers in terms of TUD. 
A single member of B4, KayaCho, is placed far from the other 
genomes of that subcluster (Figure 4b). This indicates that KayaCho 
is dissimilar from other B4 phages, a finding that is supported 
through other methods of comparison. For example, KayaCho has 
a similar global genome architecture to other members of B4, but 
pairwise nucleotide identity is low in relation to other comparisons 
within the subcluster. TUD provides a quick and alignment-free 
way to detect genomes that are outliers within a subcluster.
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Figure 4. PCA differentiates between clusters and subclusters. a) Principal components analysis of all 663 mycobacteriophage genomes. 
Individual clusters of phages are well separated by PC1 and PC2 in most cases. Further separation can be achieved by incorporating 
additional principal components. b) Principal components analysis of cluster B phages. Individual subclusters are well separated. The outlier 
in B4 is KayaCho, a phage with different tetranucleotide usage but similar genome architecture when compared with other B4 phages.
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Mycobacteriophage genomes have self-similar 
tetranucleotide usage, but some regions are outliers
Mycobacteriophage genomes are mosaic and heavily influenced by 
horizontal gene transfer (HGT) (Pedulla et al., 2003). We looked for 
sections within a phage genome that stood out in TUD as potential 
candidates for HGT events. Tetranucleotide usage was calculated 
in a 2000bp window with a 500bp step size. Heatmaps of pairwise 
Euclidean distances between all windows were plotted.

Observation of these heatmaps revealed several interesting features. 
The last 5kb of cluster E phage “244” is self-similar, but differ-
ent than the rest of the genome in terms of TUD (Figure 5a). This 
self-similar segment is present with >97% nucleotide identity in 
all cluster E phage and could represent a HGT event from a dif-
ferent phage cluster or organism. To search for potential transfer 
sources of this segment, we compared TUD in the region with other 
mycobacteriophages and searched for nucleotide similarity with 
BLAST (nr/nt database, blastn algorithm) (Altschul et al., 1997). 
However, we were unable to find regions of considerable homology 
with either method.

Cluster L1 phages contain two small self-similar yet genome-different 
regions at the end of the genome (Figure 5b). We examined the 
genome of “UPIE” with the Repfind program (Betley et al., 2002) 
to search for repetitive sequences that could be driving the change 
in TUD. There are two blocks of repetitive GC-rich k-mers, from 
68650-69050bp and 71100-71900bp, which match the regions in 

the heatmap (Figure 6). As the sliding window moves through each 
of these blocks, the TUD signal becomes dominated by the repeti-
tive sequence and makes the regions appear self-similar yet genome 
different. The repetitive features don’t preclude the possibility of 
HGT in the region, but they do likely obscure a HGT signal car-
ried by TUD. We found other self-similar yet genome-different 
repetitive regions in phages from clusters F1, H and O. Although 
the regions highlighted here have variations in GC content, TUD 
removes biases from the nucleotide composition using a zero-order 
Markov model (see Methods). Differences in TUD are not a result 
of variations in the underlying GC content.

B3 phages contain overrepresented 4-mers and 6-mers
Finally, we examined why B3 phages are not placed with other 
members of cluster B in the hierarchical clustering dendrogram, 
while most of the other clusters show this relationship. B3 genomes 
share greater than 60% average nucleotide identity with other mem-
bers of cluster B. This is comparable with the relationship between 
B2 and B4 phages, which are placed close to each other in the den-
drogram. The difference in TUD is not likely to be driven solely 
by differences in pairwise nucleotide identity. We investigated the 
individual k-mers making up the TUD vector to examine this rela-
tionship further.

B3 phages used the 4-mer GATC four times more than expected 
by chance, greater than all other B subclusters (Figure 7a). The 
high abundance of GATC could be driven by a global increase in 

Figure 5. TUD highlights putative horizontally  transferred segments. Comparing tetranucleotide usage in a sliding window (2000bp 
window, 500bp step size) across phage genomes. Each entry in the heatmap is the Euclidean distance between windows. a) 244, a cluster 
E phage, is relatively self-similar with low distance values (red) between most windows. The last 5kb of the genome is an exception: it is 
self-similar but different than the rest of the genome. This signature is not driven by repetitive sequences, and represents a putative HGT 
event. b) UPIE, a cluster L1 phage, also has a self-similar signature at the end of the genome. However, the difference in TUD in this window 
is driven by two cluster of repetitive k-mers (Figure 6).
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Figure 7. GATC and GGATCC are overrepresented in B3 phages. a) Density plot of TUD values for the 4-mer GATC. Individual subclusters 
form well-defined groups. B3 phages have GATC usage four times what is expected, much higher than other B subclusters. b) Repeat of (a) 
with the 6-mer GGATCC. B3 phages use this 6-mer greater than four times what is expected. c) GATC usage deviation in a sliding window 
(5kb, 1kb step size). Each line represents the mean value in the specified subcluster. The increase in GATC usage is genome-wide, indicative 
of a global change in usage frequency. d) Repeat of (c) with the 6-mer GGATCC. Increased usage is also genome-wide.
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Figure 6. L1 phages contain two clusters of repetitive k-mers. Two clusters of GC-rich repetitive sequences at the end of the genome of 
UPIE (cluster L1). The repetitive sequences drive the differences in TUD and correspond with the self-similar yet genome-different sections 
in the within-genome heatmap (Figure 5). This image was reconstructed from the output of Repfind (Betley et al., 2002).
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frequency or by discrete regions with very high usage of the 
4-mer. To address this point, we compared normalized GATC usage 
in a sliding window across all cluster B genomes. GATC usage 
was increased genome-wide in B3 phages, refuting the hypoth-
esis that the deviation was caused by a single genomic region 
(Figure 7c). This points to a genome-wide amelioration of GATC 
usage in cluster B3 genomes. Interestingly, some local peaks and 
valleys in GATC usage are persistent across all cluster B genomes, 
even though these genomes are unaligned.

Given the genome-wide increase in B3 GATC usage, it is possible 
that a higher-order signal could be driving the trend. We searched for 
highly used 6-mers in B3 phages and found GGATCC had a usage 
deviation value greater than four, while all other B genomes had a 
value less than one (Figure 7b). This increase was also genome-
wide (Figure 7d). GATC and GGATCC are both palindromes, DNA 
sequences with identical reverse complements. Palindromes are 
typically underrepresented in bacteriophage and other prokaryotic 
genomes because they can be parts of recognition sites for restric-
tion enzymes (Gelfand & Koonin, 1997; Karlin et al., 1992; Sharp, 
1986).

GATC is recognized by Dam methylase in E. coli (Marinus & 
Morris, 1973), but Mycobacterium species do not encode Dam 
methylase (Hemavathy & Nagaraja, 1995). If B3 phages recently 
accessed a host with an active Dam methylase, it could lead to a 
change in GATC frequency. Several restriction enzymes recognize 
GATC, like MgoI in Mycobacterium gordonae (Shankar & Tyagi, 
1993), while others recognize GGATCC, such as BamHI in Bacil-
lus amyloliquefaciens. However, the presence of a restriction/modi-
fication system in a host would theoretically lead to a decrease in 
usage of the recognized site. The finding that GATC and GGATCC 
occur in B3 genomes four times more than expected and signifi-
cantly more frequently than in all other sequenced mycobacteri-
ophages bears further investigation.

Discussion
In 2010, there were 60 sequenced mycobacteriophages. There 
are more than 660 as of April 2014. Alignment-based methods 
have been used to investigate the mycobacteriophage popula-
tion, leading to interesting characterizations, such as hierarchical 
grouping into clusters and subclusters. However, as the number 
of published genomes continues to grow, there is a need for meth-
ods to quickly analyze the entire database of mycobacteriophage 
sequences.

Throughout this paper, we apply oligonucleotide usage methods to 
uncover relationships within the population of sequenced mycobac-
teriophages. These methods allow phage genomes to be compared 
independently of sequence alignment or genome annotation. The 
methods for counting k-mer usage and normalizing to expected 
counts are simple to implement and compute. A usage deviation 
value has a clear interpretation: a value of two corresponds to a 
k-mer occurring twice as frequently as expected in a randomized 

genome sequence. Usage deviation vectors are also well-suited to 
distance computation and PCA.

Our findings support what is known about mycobacteriophage biol-
ogy. Neighbor joining and hierarchical clustering from TUD place 
closely related phage in well-defined groups that correspond with 
assigned phage subclusters. In most cases, TUD supports grouping 
into larger clusters, such as cluster A, where all 246 members form a 
monophyletic clade in the hierarchical clustering dendrogram. The 
fact that members of cluster B do not form a clade in TUD-based 
comparisons does not invalidate grouping of phage into clusters, 
but rather serves as a way to highlight phages where TUD and gene 
or sequence comparisons capture different relationships.

Comparing TUD in a sliding window can highlight regions with 
dissimilar tetranucleotide composition and identify genomic seg-
ments that could have been horizontally transferred. We found self-
similar yet genome-different regions at the end of cluster E and L 
genomes. The new TUD ‘space’ occupied by these segments could 
be from HGT – a recently transferred genomic section that had not 
yet ameliorated to the average genome TUD profile. At least for 
cluster L, we can say that HGT is likely not the cause. Two groups 
of repetitive sequences at the end of the genome are driving the 
difference in TUD. However, we found neither repetitive sequences 
nor a putative transfer candidate for the segment in cluster E. An 
improvement on our method could potentially detect legitimate 
HGT events, but we note that the concept of phams (Hatful et al., 
2010) and the computer program Phamerator (Cresawn et al., 2011) 
are already efficient for detecting and visualizing these features.

TUD vectors are similar between subcluster B3 phages but different 
from other members of cluster B. We found that the 4-mer GATC and 
6-mer GGATCC were present over four times more than expected 
in B3 genomes. These sequences are palindromes and part recogni-
tion sites for restriction enzymes, two characteristics of sequences 
that are typically underrepresented in prokaryotic genomes. GATC 
and GGATCC are highly used in all sections of B3 genomes, point-
ing to genome-wide amelioration of usage frequencies.

Oligonucleotide composition methods do not require knowledge 
of sequence alignment or gene content. They are ideal to compare 
mycobacteriophage genomes, which lack a common subsequence 
on which to make alignment-based inference. Alignment-free 
methods are also valuable when a reference sequence is not avail-
able. Recently, methods based on tetranucleotide usage were used 
to investigate sequences from a gut microbiome and uncovered a 
population of Bacteroidales-like phage that was previously unrep-
resented in metagenomic sequencing datasets (Ogilive et al., 
2013). Statistics based on oligonucleotide usage are part of a 
broader class of alignment-free methods. These methods are easy 
to compute across large datasets: constructing the dendrogram in 
Supplementary Figure 1 from raw phage sequences takes less 
than two minutes on a personal laptop. Comparably, creating phy-
logenetic trees from pairwise global sequence alignment with the 
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Needleman-Wunsch algorithm (Needleman & Wunsch, 1970) takes 
over 24 hours on a computing cluster. We envision oligonucleotide 
usage methods to be used alongside alignment-based techniques. 
Highlighting large trends and outliers is easy with these methods, 
but sequence alignment and gene annotation need to be applied to 
extract biological insights from the data.
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Supplementary Figure 1. Hierarchical clustering of all 663 phage genomes. Hierarchical clustering dendrogram constructed on pairwise 
Euclidean distances between all 663 phages in the mycobacteriophage database. In almost every case, phages are placed in a monophyletic 
clade with members of their subcluster, highlighting the concordance between alignment-based and alignment-free methods for comparison 
for these genomes. Some clusters (F, C, D, M and L) form monophyletic clades, while others (B, for example) are grouped in different parts 
of the dendrogram. A larger version of this figure can be downloaded from here.
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The study provides an interesting approach to the evaluation of divergence between the phage genomes.
I'm not an expert in this area so come into it with a more general view. I found the revised paper clear and
well explained in terms of approach. I agree with the first reviewer that the authors have perhaps been
selective in just showing data from a select choice of mer values. Expanding the results to show thek-
deviation across the full range of  tested, even if just in summary, would be interesting, though therek
would be a disparity between odd and even values of as there are no palindormes with odd .  k  k

A minor issue with regard to the present publication, but which might be worth consideration for future
work, is over the TUD metric where the authors compare the observed frequencies to the expected. It is
not clear from the study as to the variation one might see in a null model. If TUD is the test statistic of
choice, a significance value for the deviation from expected should be deteminable empirically by
modelling TUD, e.g.where there is a randomly assigned sequence of nucleotides corresponding to the
 genome of the organism. This could be done by shuffling the whole genome, taking a large sliding
window and aggregating these scores (with or without shuffling etc.) A discussion of the significance of
the deviation from expected (or the lack of appreciation of it) is worth including into the paper.

It is nice to see the distance measures, but without an estimate of the significance of the deviation from
expected values, it becomes difficult to assess the significance of the deviation between genomes. It may
be the case that using a significance measure as the distance (a Z-score or equivalent) may produce a
different clustering.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 17 November 2015Referee Report

doi:10.5256/f1000research.7828.r11005

 Oliver Bonham-Carter
College of Information Science & Technology, School of Interdisciplinary Informatics, University of
Nebraska, Omaha, NE, USA
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My initial concerns have been addressed.

References
1. Bonham-Carter O, Steele J, Bastola D: Alignment-free genetic sequence comparisons: a review of
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1

 10 March 2015Referee Report

doi:10.5256/f1000research.6506.r7811

 Oliver Bonham-Carter
College of Information Science & Technology, School of Interdisciplinary Informatics, University of
Nebraska, Omaha, NE, USA

The article is nicely written but sadly, there are elements of discussion which are absent from the paper. If
added, the paper's research on mycobacteriophages using alignment-free analysis would have much
more support.

The choice of TUD's as statistics for the alignment-free analysis is not fully explained /justified, nor
is there much discussion about what algorithm or method is being employed by the analysis tools
of the paper. Are TUD's frequencies? How do these software tools work?
 
An simple example of how to calculate a TUD and apply it to a method is necessary to completely
understand what they are and to see how they are different from any other motif frequency
calculation applied to some other method.
 
The assumptions of the methods are not discussed. Many methods from information theory,
statistics and other kinds of mathematics require that the input data meets specific requirements (is
normal, has a certain distribution, is a frequency, etc.). From the discussion in this paper, the
function of analysis tool (the exact algorithm or method) is never clear and so we cannot be sure
that the calculations from this work, as applied to these tools, is appropriate. For instance, many
tools in information theory require that frequencies be used for their analysis. These frequencies
must pass basic rules to be called as such (i.e., found on the scale of 0 to 1, all frequencies must
sum to 1, 0 = false, 1 = true). This discussion is not mentioned and if it were, then the choice to
used TUDs could be easily integrated into this discussion.
 
The manuscript mentioned that k-mers in the range of two to seven were calculated (Methods
Section). Where are the results for all these other values of k={2, 3, 5 and 7} which were not the
k={4 and 6} results of the article?
 

Although other sizes of motifs where apparently used in the analysis, the manuscript focuses on
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Although other sizes of motifs where apparently used in the analysis, the manuscript focuses on
the length-4 motifs. The choice of k=4 for the size of motifs to study is not a very interesting statistic
since the probability of a particular length-4 motif showing up randomly in a sequence not very high
(1/(4^4) = 1/256). Given that the frequency of mutations, and all the evolutionary time during which
to make changes to a sequence, these length=4 similar motifs are likely to randomly turn-up.
 
The authors should consider using the occurrence of motifs which are at least seven since these
frequencies begin to become less randomly placed. Length-4 words are already common in many
many bacteria as restriction sites for restriction enzymes. The authors will also find that there are
restriction sites of length-6 for the same purpose and so they will have to remove all restriction
enzyme palindromes from their sets of k=4 or 6 sized motifs if they cannot continue with a longer
motif length. However, if they are determining the level of conservation between organisms, then
having longer motifs should not hurt their results.

Once these issues are addressed, the manuscript will be much stronger.

I have read this submission. I believe that I have an appropriate level of expertise to state that I
do not consider it to be of an acceptable scientific standard, for reasons outlined above.

 No competing interests were disclosed.Competing Interests:

Author Response 23 Oct 2015
, Benjamin Siranosian

-Thank you for reviewing the manuscript. I have considered the points you raised, and responded
in order below. Changes to the manuscript are noted.

The usage deviation-based statistics chosen for this paper are similar to those based on the
composition vector of a sequence ( ). Usage deviationBonham-Carter ., 2013et al
(tetranucleotide usage deviation, TUD, in the case of k=4) is a vector of the counts of the
possible k-mers, normalized to the expected counts in a randomized genome with the same
nucleotide composition. I have made additions to the methods section and included a new
figure that makes the calculation of usage deviation more clear. The software tools used to
perform these calculations have a description at the github page linked in the paper.
 
I have added an example in the methods section that shows how to calculate TUD for a
small sequence. Although this example outlines the method, the results are not very
informative. The expected number of any 4-mer is very small in a short sequence, resulting
in high TUD values for any 4-mers that do occur.
 
We do not make any assumptions about the input data when calculating usage deviation or
performing statistics in the paper.
 
I showed trees constructed from other values of k in Figure 2. The relationships between
phage genomes were consistent regardless of the value chosen for k. Other analyses
mirrored this result, so we proceed exclusively with k={4, 6}.
 
I agree that length-4 motifs are not interesting to study in isolation. Usage deviation, where
values represent deviations from expected frequencies, overcome this point. Single

occurrences or counts of any 4-mer are uninteresting. Only when counts are normalized and
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7.  

occurrences or counts of any 4-mer are uninteresting. Only when counts are normalized and
compared in aggregate do the trends that observed in the paper become meaningful.
 
7-mers would be less randomly placed in the phage genomes analyzed. Similar to the point
above, however, the occurrences of singular k-mers are not considered. As k increases, the
resulting usage deviation vectors become sparse. Up to 43% of the (4^7=16384) 7-mers are
absent from individual genome sequences, and no 7-mer occurs at least once in every
genome analyzed. The sparse nature of the data for 7-mers would not be well-suited to
some of the analyses presented in this paper (PCA, searching for horizontally transferred
segments).
 
I acknowledge that many 4-mers and 6-mers are restriction sites. In fact, this makes the
substrings more interesting. B3 mycobacteriophages have 4 times the expected usage of
GATC, a restriction site in some bacteria. Biological sense dictates restriction sites would
occur infrequently, but the results say the opposite. I do not feel it is necessary to remove
restriction sites before the analysis, and doing so would be somewhat arbitrary. The set of
restriction sites in mycobacteria species is not entirely characterized, and the host range for
each mycobacteriophage has not been studied.

We hope you find the answers to the points you raised and the revisions to the paper acceptable.

References:
Bonham-Carter, O., Steele, J. & Bastola, D. Alignment-free genetic sequence comparisons: a
review of recent approaches by word analysis.   890–905 (2014). Brief Bioinform 15,
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