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Histone modification, an important epigenetic mechanism, is related to the carcinogenesis of hepatocellular carcinoma (HCC). In
three datasets, we screened 88 epigenetic-dysregulated PCGs (epi-PCGs) , which were significantly associated with HCC survival
and could cluster HCC into three molecular subtypes. /ese subtypes were associated with prognosis, immunomodulatory
alterations, and response to different treatment strategies. Based on 88 epi-PCGs in the TCGA training set, a risk predictionmodel
composed of 4 epi-PCGs was established. /e model was closely related to the clinicopathological features and showed a strong
predictive ability in different clinical subgroups. In addition, the risk prediction model was an independent prognostic factor for
patients with HCC. /e significance of epi-PCGs in HCC is revealed by our data analysis.

1. Introduction

Epigenetics refers to heritable traits that are not attributable
to changes in the DNA sequence [1]. Cancer is considered a
multietiological disease and it is difficult to disentangle the
contribution of a single risk factor [2]. Genetically related
regulatory molecules and mechanisms have been a major
concern in cancer for many years [3–5]. In recent years,
there has been growing evidence supporting that epigenetic
disorders, including histone modification, DNA methyla-
tion, chromatin remodeling, and the expression of non-
coding RNA, play an important role in proliferation,
invasion, metastasis, initiation, progression, and develop-
ment inmany types of humanmalignant tumors [6, 7]. As an
important epigenetic mechanism, histone modification is a
covalent posttranslational modification of histone proteins,
which are comprised of methylation, phosphorylation,
acetylation, ubiquitylation, and sumoylation, resulting in
changes in the gene expression and cell behavior by affecting
genome stability, transcription, DNA repair, and chromatin
structure and function in cells [6, 8]. Abnormal gene

expression and cellular behavior are the basis and main
characteristics of cancer development.

Hepatocellular carcinoma originating from hepatocytes
is the most common type of liver cancer and accounts for
90% of primary liver cancer. By 2030, more than 1 million
people will die of this cancer [9]. A retrospective study
concluded that posttranslational histone modification in
HCC changes and revealed the significance of histone
modification in predicting the prognosis of human cancer
[10]. It was reported that low H3K9me3 expression is related
to poor prognosis in patients with distal common bile duct
cancer [11]. David. Seligson et al. have demonstrated in their
study that lower cell levels of H3K4me2 and H3K18ac can
predict adverse clinical outcomes in patients with lung and
renal cell carcinoma and that lower cellular levels of
H3K9me2 is also prognostic factor indicative of poorer
outcome for individuals with either prostate or kidney
cancers [12]. /e expression of H3K9me3, H3K36me3, and
H4K20me3 as epigenetic markers is linked to the survival of
patients with esophageal squamous cell carcinoma [13].
Several studies have also reported histone modifications
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associated with HCC. An enhanced H3K4me3 level was
associated with reduced overall survival of HCC [14]. /e
study of Kusakabe et al. showed that the H3K27me3 levels
function as a prognostic marker for HCC survival [15].
/erefore, alterations in histone marks may be widespread,
indicating that an integrative approach should be taken to
analyze the role of histone modifications in regulating HCC.

/e discovery of tumor markers is an important part of
precision medicine, especially the identification of molecular
subtypes, which is conducive to stratified treatment of pa-
tients. A large number of previous studies have reported the
prognostic markers in a variety of liver cancers. Li et al. [16]
identified 9 key genes from liver cancer based on the ex-
pression of cell death related genes, which can be used to
predict the prognosis of liver cancer. Xu et al. [17] combined
iron apoptosis and liver cirrhosis to construct a prognostic
classifier to predict the immune prospect, chemotherapy
efficacy, and immunosuppressive molecules of hepatocellular
carcinoma. Huang et al. [18] integrated the epigenome and
transcriptome of hepatocellular carcinoma to identify sys-
temic enhancer aberrations and establish abnormal enhancer-
related prognostic features. Xie et al. [19] identified four gene
markers based on the expression of m6A-related genes and
integrated multiomics data, which can be used to predict the
prognosis of liver cancer. /ese results suggest that integrated
research based on multiomics is effective in mining prog-
nostic markers. However, these prognostic features are not
used in clinical practice, especially based on the discovery of
epigenetic- and transcriptomic-related markers. /is means
that more research is needed for clinical and experimental
scientists. Integrating multiple epigenetic parameters is a
powerful tool for identifying the drivers of epigenetic regu-
lation of HCC and elucidating how epigenetic disorders lead
to HCC [20]. In this study, to comprehensively analyze the
role of histone modifications in HCC, we described and
compared the changes of seven types of histone modifications
(histone H3 trimethylated at lysine 9 (H3K9me3), histone H3
trimethylated at lysine 36 (H3K36me3), histone H3 trime-
thylated at lysine 27 (H3K27me3), histone H3 acetylated at
lysine 9 (H3K9ac), histone H3 acetylated at lysine 27
(H3K27ac), histone H3 monomethylated at lysine 4
(H3K4me1) and histone H3 trimethylated at lysine 4
(H3K4me3)) at the promoter and enhancer elements of
protein-coding genes (PCGs). Based on the epigenetic-dys-
regulated PCGs (epi-PCGs), HCC was divided into three
subtypes, and the immune microenvironment characteristics
of the three subtypes and their relationship with the response
to HCC treatment were evaluated, which may provide a new
insight for subtype-specific therapy. Finally, a new prognostic
prediction model related to epi-PCGs was proposed with a
high predictive accuracy in predicting clinical results of HCC.
Figure 1(a) shows the whole workflow of this study.

2. Methods

2.1. Transcriptome and Histone Modification Data of HCC.
/e transcriptome data and clinicopathological informa-
tion data with HCC came from the common data set the
Cancer Genome Atlas (TCGA)-LIHC. All HCC

transcriptome data and clinicopathological information
data were derived from public data sets, including the
Cancer Genome Atlas (TCGA)-LIHC (https://portal.gdc.
cancer.gov/) downloaded using TCGAbiolinks package
[21]), HCCDB (http://lifeome.net/database/hccdb) and
Gene Expression Omnibus (GEO (GSE14520) (http://
www.ncbi.nlm.nih.gov/geo/). TCGA-LIHC contained 365
HCC samples, HCCDB18 contained 203 HCC samples, and
GSE14520 contained 221 HCC samples. In addition, the
seven histone modifications explored in this study were
H3K9me3, H3K36me3, H3K27me3, H3K9ac, H3K27ac,
H3K4me1, and H3K4me3 of human hepatoma cell lines
HepG2 and normal liver tissues. Among them, H3K4me3,
H3K4me1, H3K36me3, H3K9ac, and H3K27ac were as-
sociated with transcriptional activation, while H3K27me3
and H3K9me3 were associated with transcriptional inhi-
bition. /eir replicated narrowPeak data were downloaded
from the Encyclopedia of DNA Elements (ENCODE)
portal (https://www.encodeproject.org/).

2.2. Identification of Epigenetic Dysregulation Protein-Coding
Genes (PCGs). To understand the epigenetic changes in
HCC, PCGs differentially expressed between HCC samples
and normal liver samples were identified by Limma. Each p

value was adjusted to FDR using the Benjamini–Hochberg
(BH) method. /e PCGs conforming to FDR <0.05 and |
logFC |> 1 were considered to have significant statistical
significance. MACS2 was used for peak detection and
specific peaks of HCC were screened according to the
physical location of histone-modified peaks. Peaks within
p< 0.05 were regarded as peaks of difference. In each cell
line, the upstream 2kb and downstream 0.5kb of the tran-
scription initiation site (TSS) were defined as promoters and
were recognized by ChIPseeker [22]./e enhancer data were
obtained from FANTOM5 [23] and the active enhancer was
determined by the H3K27ac peak. PCGs with a differential
expression between normal and tumor and promoter or
enhancer of them covered by at least one differential histone-
modified regions (DHMR) were considered as epigenetically
dysregulated PCGs.

2.3. Functional Annotation of Epi-PCGs. Enrichment of
Gene Ontology (GO) biological process terms in epi-PCGs
was assessed by computing a hypergeometric p value with
the BH correction (FDR ≤0.05). Moreover, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis was
conducted to study the tumor-related biological mecha-
nisms of the epi-PCGs./ese analyses were performed using
the clusterProfiler package [24] in R.

2.4. Identification ofMolecular Subtypes Related to Epi-PCGs.
To establish molecular subsets related to epi-PCGs, the R
packet ‘ConsensusClusterPlus’ [25] was used to carry out
consensus clustering analysis. Specifically, univariate Cox
analysis was performed on epi-PCGs in TCGA-LIHC,
HCCDB18, and GSE14520, respectively. Moreover, the
threshold value was p< 0.05, which indicated that epi-PCGs
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Figure 1: Epigenetic dysregulation of PCGs in HCC. (a): /e whole workflow of the study. (b): Comparison of the number of epi-PCGs
and non-epi-PCGs transcripts. (c): Wilcoxon rank sum test was used to analyze the transcript length of epi-PCGs and non-epi-PCGs.
(d): Comparison of exon number between epi-PCGs and non-epi-PCGs. (e): Wilcoxon rank sum test of exon length for epi-PCGs and
non-epi-PCGs. (f ): Landscape of epi-PCGs with different histone modifications. (g): Distribution of apparent epi-PCGs in HCC.
∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001.
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were significantly linked to the prognosis of HCC. Further
consensus clustering was performed for HCC samples in
each dataset based on prognostic epi-PCGs in the three
datasets. e. In the clustering process performed by Con-
sensusClusterPlus, the minimum and maximum evaluated k
(max k) were set to 2 and 10, respectively, and other pa-
rameters were set to default. Moreover, the cluster number
of the total HCC samples was defined by the consensus
cumulative distribution function (CDF) Plot.

2.5. Characteristics of the ImmuneMicroenvironment between
Subgroups. To characterize the immune microenviron-
ment of each subgroup, we analyzed the expression of
chemokines, chemokine receptors, and immune check-
points using the Kruskal–Wallis test. By uploading TCGA-
LIHC gene expression data to CIBERSORT [26], immune
cell scores for 22 immune cells were inferred from the gene
signatures provided by CIBERSORT. In addition, single-
sample gene set enrichment analysis (ssGSEA), which
calculates enrichment scores to quantify the relative
abundance of each immune cell in each HCC sample, was
used to predict immune infiltration. Moreover, two other
algorithms, microenvironment cell populations-counter
(MCP-counter) and Tumor Immune Estimation Resource
(TIMER), were also employed to estimate the immune cell
infiltration.

2.6.PredictionofResponse to Immuno/Chemotherapy forEach
Subtype. To predict the efficacy of immunotherapy in dif-
ferent subtypes, we ran Tumor Immune Dysfunction and
Exclusion (TIDE) algorithms and unsupervised subclass
mapping method SubMap [27]. Also, the publicly available
pharmacogenomics database Pharmaceutical Sensitivity
Genomics in Cancer (GDSC) using the R-envelope tic was
applied assess the chemotherapy response of each HCC
sample as determined by the half-maximal inhibitory con-
centration (IC50).

2.7. Generation of the Risk Score Model. /e samples in
TCGA-LIHC were split into a training set (n� 182) and
verification set (n� 183) (Table S1). In the training set, the
coxph function in Survival package was used for univariate
Cox analysis of prognostically related EPI-PCGs in tcGA-
LIHC, HCCDB18, and GSE14520. Lasso regression analysis
was performed to improve the performance parameters and
decrease the false positives in variables due to overfitting.
Furthermore, a two-step multivariate Cox regression anal-
ysis was used to screen for epi-PCGs significantly associated
with HCC overall survival (OS). Moreover, the risk coeffi-
cients of the signature scores of the categories of genes in
each sample were obtained.

2.8. Robustness Evaluation of Risk ScoringModels. /e same
risk calculation method was verified in the TCGA
training dataset, TCGA validation dataset, all TCGA data
sets, and two independent external datasets HCCDB18
and GSE14520. /e OS was calculated using

Kaplan–Meier curves, and the statistical difference was
measured by the log-rank test. Moreover, “timeROC” R
package was used to conduct a time-dependent receiver-
operating characteristic (ROC) curve analysis in the
training set and external and internal validation sets to
evaluate the prediction accuracy of the prognostic
scoring model.

2.9. Gene Set Variation Analysis. Gene set variation analysis
(GSVA) is a method to analyze the changes of gene en-
richment in a sample population in a nonparametric and
unsupervised way [28]. Here, the ssGSEA method of the
‘GSVA’ R package was used to calculate the scores of each
sample for different functions for evaluating the association
of risk scores with different functions.

2.10. StatisticalAnalysis. /e R software (version 3.6.1) was
used for statistical analysis. Clinical features and uni-
variate and multivariate univariate and multivariate Cox
survival analyses of clinical features and risk scores were
used to assess the independence of the risk score model.
Subgroup analysis was also carried out according to age,
sex, recurrence, AJCC stage, T stage, N stage,M stage, and
tumor grade stratification. Standard tests used include
Student’s t-test, Wilcoxon, Kruskal–Wallis test, one-way
ANNOVA, and Fisher’s exact test. All statistical tests
were two-sided, two-tailed p< 0.05 was considered sig-
nificant, which was represented by ∗, with the more ∗
showing a stronger statistical significance.

3. Results

3.1. Identification of Epigenetically Dysregulated PCGs and
%eir Genomic Landscape. To identify epigenetic disorders
of PCGs, differences between HCC samples and normal liver
samples were analyzed and a total of 2866 differential PCGs
were found. We then analyzed the differential histone
modification regions between HCC and normal samples and
found a total of 1007 epi-PCGs and 18,435 non-epi-PCGs.
/eWilcoxon rank sum test was used to analyze the number
and length of exons and transcripts between epi-PCGs and
non-epi-PCGs. It was found that compared with non-epi-
PCGs, epi-PCGs had significantly more exons and signifi-
cantly shorter transcripts (Figure 1(b), 1(c)). In terms of
exons, epi-PCGs were significantly higher than non-epi-
PCGs, but the length was shorter than that of non-epi-PCGs
(Figure 1(d), 1I.

Next, the landscape of epigenetically dysregulated
PCGs was visualized by R packages “Rcircos”. /e circos
plot showed that most of the epigenetic disorders of PCGs
were usually accompanied by a variety of histone mod-
ification abnormalities and that these abnormal histone
modification regions were mainly concentrated in the
promoter region. /e epi-PCGs of HCC were mainly
regulated by H3K36me3, H3K4me1, H3K9ac, and
H3K27ac of the promoter (Figure 1(f ), 1(g)).
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3.2. Biological Significance of Epigenetic Dysregulation of
PCGs. To further study the function of epigenetic dys-
functional PCGs in HCC, we estimated and compared the
enrichment scores of seven kinds of histone-modified PCGs
in normal tissues and HCC tissues in a promoter or en-
hancer by ssGSEA. We observed that H3K27ac, H3K36me3,
H3K4me1, and H3K9ac in the promoter and enhancer re-
gions of epi-PCGs were significantly increased in tumor
tissues compared with normal tissues. /ese four histone
modifications positively regulate the gene expression, so
gross epi-PCGs may exhibit significantly higher expression
levels in tumor tissues. (Figure 2(a)). Based on the KEGG
score of each sample, the relationship between epi-PCGs and
different KEGG pathways was analyzed. A total of 44
pathways were associated with most histone-modified
promoters and enhancers, which affected a large number of
cancer pathological functions, including macromolecular
biosynthesis and metabolism, cell cycle, and proliferation,
etc. (Figure 2(b)). GO analysis of all epi-PCGs showed that
these epi-PCGs were related to cell division and proliferation
(Figure 2(c)). KEGG analysis demonstrated that epi-PCGs
was significantly enriched in DNA replication, drug meta-
bolism, cell cycle, and other biological processes
(Figure 2(d)).

3.3. Identification and Histone Modification Analysis of
Overlapping Epi-PCGs in %ree Datasets. Univariate Cox
regression analysis was performed on the epi-PCGs in
TCGA-LIHC, HCCDB18, and GSE14520 to obtain the epi-
PCGs significantly associated with HCC survival from each
data set, and the intersection was shown by a Venn diagram.
/e overlap contained 88 genes (Figure 3(a))./e expression
of 88 epi-PCGs in normal and HCC tissues was significantly
higher than that in normal tissues (Figure 3(b), Figure S1).
We examined several epi-PCGs for 7 histone markers in
HepG2 by UCSC genome browser. We observed that in
HepG2 cells, AC131944.1 was marked with H3K4me1,
H3K4me3, H3K9ac, and H3K27ac, and H3K4me1 broadly
distributed both 5′ and 3′ of the TSS (Figure 3(c)). Moreover,
UCK2 had obvious H3K27ac and H3K4me1 markers in
HepG2 cells (Figure 3(d)).

3.4. Identification of %ree Subtypes Based on Epi-PCGs.
To explore the histone modification pattern of HCC, un-
supervised consensus clustering of 88 epi-PCGs shared by
three data sets was conducted. According to the cumulative
distribution function (CDF) and the area under the CDF
curve, the optimal k value was 3, indicating that HCC could
be divided into three subtypes (Figure 4(a) and 4(b)).
Consensus matrix of HCC samples in three data sets
showed that the three subgroups were arranged into three
well-defined regions with internal uniqueness
(Figure 4(c)). /e relative changes of CDF and area under
CDF curve under different k values of the two external data
sets HCCDB18 and GSE14520 and consensus matrix when
k� 3 are shown in Figure S2. Survival analysis revealed
significant OS differences among the three subtypes in each
dataset. /e survival rate from high to low was

C1 >C2 >C3 (Figures 4(d)–4(f )). Moreover, we also ana-
lyzed the expression of epi-PCG-defined HCC subtypes.
/e results were displayed by a heatmap. /ere was a
significant lack of highly expressed epi-PCGs in C1, and
quite a number of EPI-PCGs were significantly overex-
pressed in C3 (Figures 4(g)–4(i)).

We compared the expression differences of epi-PCGs
between different subtypes. 288 epi-PCGs were differentially
expressed between C1 and C2, including 277 downregulated
epi-PCGs in C1 that related to cell cycle and 11 upregulated
epi-PCGs that enriched in GO terms and KEGG pathways
related to immune (Figure S3). 876 epi-PCGs were differ-
entially expressed between C1 and C3, including 844
downregulated epi-PCGs in C1 that enriched in GO terms
and KEGG pathways related to cell cycle and metabolism
and 32 upregulated epi-PCGs that related to metabolism
(Figure S4). 463 epi-PCGs were differentially expressed
between C2 and C3, including 429 downregulated epi-PCGs
in C2 that enriched in GO terms and KEGG pathways re-
lated to cell proliferation and 34 upregulated epi-PCGs that
related to catabolic and metabolic process (Figure S5).

3.5. Characterization of the Immune Microenvironment in
%ree Histone-Modified Isoforms. In TME, chemokines are
produced by tumor cells, mesenchymal stem cells (MSC),
endothelial cells, neutrophils, cancer-associated fibroblasts,
and bone marrow cells, providing a very rich “soil” to fa-
cilitate the recruitment of immune cells into the TME [29].
Tumor cell-associated immune checkpoint molecules, whose
primary function is thought to be mediating immune eva-
sion, also play an important role in maintaining many
malignant behaviors, including self-renewal, anti-apoptosis,
angiogenesis, epithelial-mesenchymal transformation, and
metastasis [30]. To confirm the TME-related molecules
characteristics of each subtype, the expression of chemo-
kines, chemokine receptors, and immune checkpoint genes
were detected. /e expression of 41 chemokines in TCGA-
LIHC in three subtypes was analyzed. It was found that 30
chemokines were significantly differentially expressed in the
three subtypes (Figure 5(a)). Among the 18 chemokine
receptors detected, 16 showed significant differences in
expression among the three subtypes except KIR3DL1 and
TMIGD2 (Figure 5(b)). In addition, expression analysis of
47 immune checkpoint gene [31] demonstrated that almost
all of the immune checkpoints had significantly different
levels of expression in the three subtypes (Figure 5(c)). /e
expression of most of these chemokines, chemokine re-
ceptors, and immune checkpoints were significantly higher
in C3 than in C2, and higher in C2 than in C1.

/e imbalance of immune-related molecules among
subtypes encouraged the further study of the characteristics
of immune infiltration in TME. According to the CIBER-
SORT algorithm, all cell subsets were distinguished and the
scores of 22 kinds of immune cells were calculated, and it
was found that significant intergroup differences was in 10
types of immune cell populations among the three subtypes.
C1 showed significantly higher activated memory CD4
T cells, resting NK cells, monocytes, M2 macrophages, and
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Figure 2: Biological significance of epigenetic dysregulation of PCGs. (a): Differences in enrichment scores of seven abnormal histone
modified PCGs in promoters or enhancers between normal tissues and HCC tissues. (b): Analysis of the correlation between epi-PCGs and
different HCC pathways based on the KEGG score of each KEGG sample. (c): /e bubble chart shows the result of GO analysis of epi-PCGs,
including top 10 pathways, cellular component, and molecular function of the biological process enrichment analysis. (d): /e bubble chart
shows the result of KEGG analysis in epi-PCGs. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001.
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Figure 3: Identification and histone modification analysis of overlapping epi-PCGs in three datasets. (a): Venn diagram of epi-PCGs in
TCGA-LIHC, HCCDB18 and GSE14520 that significantly related to HCC survival. (b): Wilcoxon test was used to analyze the differential
expression of 22 of 88 epi-PCG between normal tissues and HCC tissues. (c): Histone modification profile of epi-PCG AC131944.1 and
SPP1. (d): Histone modification profile of UCK2 and AL358115.1. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001.
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Figure 4: /ree subtypes based on epi-PCGS were identified by consensus clustering analysis. (a): /e CDF curve under different k values.
(b): Relationship between the relative changes in the area under CDF curve and different k values. (c): Consensus matrix of TCGA-LIHC
samples when k� 3. (d): Kaplan–Meier curves of OS among the three subgroups in TCGA-LIHC. (e): Kaplan–Meier curves among the three
subtypes in the HCCDB18 database. (f ): Survival curves among the three subtypes in the GSE14520 cohort. (g): Heatmap of 88 epi-PCGs
expression among three subtypes in TCGA-LIHC. (h): Heatmap showed the expression of 88 epi-PCGs among three subtypes in the
HCCDB18 cohort. (i): Expression heatmap of 88 epi-PCGs in three subtypes of the GSE14520 cohort.
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Figure 5: Continued.
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resting mast cell immune scores than C2 and C3. In contrast,
C3 showed significantly higher helper follicular T cells and
M0 macrophages and resting dendritic cells immune scores
than C1 and C2 (Figure 5(d), 5(e)). Moreover, ssGSEA was
used to estimate the infiltration of 28 immune cells and to
display intersubtype differences in immune cells by boxplots.
Half of the immune cell clusters showed significant differ-
ences in the scores of the three subtypes. /e scores of 11
kinds of immune cells in C2 and C3 were significantly higher
than those in the C1 subtype (Figure 5(f)). In the results of
MCP-counter analysis, the scores of T cells, CD8 T cells,
cytotoxic lymphocytes, B cells, NK cells, myeloid dendritic
cells, and fibroblasts in C2 and C3 were significantly

upregulated compared with those of C1 (Figure 5(g)). We
also observed high infiltration of B cell, CD4 T cell, CD8
T cell, neutrophil, macrophage, and dendritic in C3 in the
results of TIMER evaluation (Figure 5(h)). /ese results
indicated the heterogeneity of immune infiltration among
the three subtypes.

3.6. Evaluation of the Treatment Response of HCC Subtypes.
/e difference in TME among the three subtypes prompted
us to study the response of each subgroup to immuno-
therapy. A potential response to immunotherapy in samples
from the different subtypes was modeled on TIDE in-
structions, and T-cell dysfunction and rejection were used to
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Figure 5: Analysis of immune-related indexes among three subtypes. (a): /e relative expression of chemokines in each subtype. (b):
Relative expression of chemokine receptors among three subtypes. (c): Kruskal–Wallis test was used to compare the expression of immune
checkpoints among subgroups. (d): /e score of 22 infiltrating immune cells in each sample of each subtype of TCGA-LIHC. (e): /e score
of immune cells in HCC subtype TME based on the CIBERSORT algorithm. (f ): /e box diagram showed the enrichment fraction of 28
immune cell clusters in each subtype. (g): /e infiltration of immune cell predicted by MCP-counter in three subgroups. (h): Immune cell
infiltration among three subgroups was investigated via TIMER. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001.
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Figure 6: Continued.
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predict the performance of ICBs in the three subtypes. /ere
were significant differences in the TIDE score and T-cell
dysfunction score and exclusion score among the three
subgroups. Among the three subtypes, C1 had the lowest
TIDE score and T-cell exclusion score and the highest T-cell
dysfunction score. Different from C1, C3 had the highest
TIDE score and T-cell exclusion score and the lowest T-cell
dysfunction score. All three scores of C2 were in the middle
(Figure 6(a)-6(c)). Submap analysis data revealed that
samples of C3 subtype were resistant to immunotherapy
(Figure 6(d)). /e response of the sample to antineoplastic
drugs was evaluated in three subtypes, such as cisplatin,
vinorelbine, imatinib, pyrimethamine, and embelin. /e

sensitivity of the three subtypes to several drugs was dif-
ferent. Among the three subtypes, C3 was more sensitive to
cisplatin, vinorelbine, imatinib, pyrimethamine, or embelin.
C1 was not sensitive to the above five antineoplastic drugs
(Figure 6(e)).

3.7. Construction of a Prognostic Prediction Model Based on
Four Epi-PCGs. To develop a specific prognostic tool for
predicting HCC, we established a risk model based on the
expression data of epi-PCGs. During the training, 88 epi-
PCGs obtained by Figure 3(a) were included in univariate
Cox regression analysis and 71 epi-PCGs closely related to
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Figure 6: Evaluation of therapeutic response of HCC subtypes in TCGAPotential response to immunotherapy in samples from the different
subtypes was assessed by TIDE score (a), T-cell dysfunction score (b), and T-cell rejection score (c). (d): Submap analysis data revealed that
samples of C3 subtype were resistant to immunotherapy.SD: stable disease; PD: progressive disease; CR: complete response; PR: partial
response. (e): /e violin diagrams of predicted IC50 values of cisplatin cisplatin, vinorelbine, imatinib, pyrimethamine, and embelin based
on GDSC database drugs in three subtypes of TCGA-LIHC dataset. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001.
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the prognosis of HCC patients were identified. Six genes
significantly associated with the prognosis of HCC were
screened by the Lasso Cox analysis based on the optimal λ
value (λ� 0.0905) (Figure 7(a)). /e stepAIC based on
Akaike information criterion (AIC) further eliminated two
epi-PCGs, and the remaining four epi-PCGs were used to
construct risk score signature: Risk score� 0.361×UCK2+
0.064× SPP1 + 0.365×GMPS+ 0.321× SLC39A7. /e risk
score, life status, and expression level of four genes in the
training set showed that the number of HCC-specific death
in high-risk patients was higher than that in low-risk pa-
tients, and all four genes were high-risk genes, and the
expression increased with the increase of risk score
(Figure 7(b)). Similarly, survival analysis of the training set
showed significantly higher mortality rates among high-risk
patients than among low-risk patients (Figure 7(c)). /e
ROC curve showed that the AUC of 1-year, 3-year, and 5-
year survival of patients in the training group were 0.81, 0.76,
and 0.79, respectively (Figure 7(d)).

3.8. Internal and External Verification of the Risk Model.
/e prognostic prediction model performance to predict OS
was validated in the internal validation set, the entire TCGA-
LIHC cohort, and two external cohorts. In each cohort, each
sample was assigned a risk score and arranged from low to
high. In both the TCGA-LIHC validation set and the entire
TCGA-LIHC cohort, increased risk scores were associated
with increased mortality and upregulated gene expression in
risk models (Figure 8(a)-8(b)). In the two external validation
cohorts HCCDB18 and GSE14520, the death rate of samples
in the high-risk group was much higher than that in the low-
risk group, and the expression of four genes in the riskmodel
was also significantly increased in the high-risk group
compared with the low-risk group (Figures 8(c)–8(d)). /e
relationship between the risk score and survival time and the
expression of four epi-PCGs in prognostic prediction model
in high and low-risk samples were summarized, and the
outcome trend was consistent with the training set (Fig-
ure 8). /e prognostic significance of the prediction model
was explored by collating the transcriptome data and sur-
vival information of each cohort. In all validation cohorts,
the 5-year survival rate in the low-risk group was signifi-
cantly higher than that in the low-risk group (Figure 9(a)–
9(d))./e 1-year AUCs for samples in the internal validation
set, the entire TCGA-LIHC cohort and the external vali-
dation sets HCCDB18 and GSE14520 were 0.74, 0.78, 0.69,
and 0.7, respectively. /e 3-year AUC value for samples in
the four cohorts was 0.65, 0.78, 0.77, and 0.68, respectively.
Moreover, the 5-year AUC for samples in the four cohorts
was 0.6, 0.7, 0.78, and 0.62, respectively (Figures 9(e)–9(h)).

3.9. Risk Model Had an Independent Prognostic Value for
HCC. To determine the relationship between prognostic
prediction model and clinical features, the risk score distri-
bution of clinicopathological information including age, sex,
recurrence, T stage, N stage,M stage, AJCC stage, and clinical
grade in the whole TCGA-LIHC data set was analyzed. /ese
results showed that patients with a high-risk score tended to

include those who had more advanced T stage, AJCC stage,
and clinical grade./ere was no statistical correlation between
the established prognostic prediction model and age, sex,
recurrence, N stage, and M stage (Figure 10(a)). Univariate
and multivariate Cox regression analyses were performed to
determine the independence of these clinicopathological
characteristics and risk score in predicting HCC prognosis.
Only the risk score was proved as an independent prognostic
factor for HCC (Figure 10(b), 10(c)).

3.10. Predictive Role of Survival by Risk Models in a Variety of
Clinical Features. Finally, the whole TCGA-LIHC sample
was stratified according to clinical parameters, including age
(age ≤60/> 60), Tstage (T1-T2/T3-T4), N stage (N0),M stage
(M0), AJCC stage (I-II/III-IV), clinical grade (G1-G2/G-
G4), and recurrence or nonrecurrence. /e results showed
that the 5-year OS of high-risk patients with age, sex, T stage,
AJCC stage, early N stage, early M stage, and clinal grade
stage was significantly shorter than that of low-risk patients
(Figure 11).

4. Discussion

HCC is one of the leading causes of cancer death worldwide.
HCC was closely related to the change of histone modifi-
cation [32]. It is still an important task to find the key genes
in the histone modification related to HCC. In this study, we
aimed to reveal different molecular subtypes of HCC by
identifying key genes related to histone modification and to
explore the key histone-modified gene signature affecting
the prognosis of HCC.

In this study, we identified 1007 epi-PCGs in HCC
samples that were different from normal samples. /e
landscape of epigenetically dysregulated PCGs revealed
different epigenetic patterns, which were mainly regulated
by promoters H3K36me3, H3K4me1, and H3K9ac, and they
also regulate key biological functions in the development of
HCC, such as metabolism, cell cycle, and proliferation. In
some past studies, several subtypes of HCC have been
identified based on transcriptomic abnormalities and genetic
alterations that are closely related to risk factors, patho-
logical features, and prognosis [33]. /e three HCC sub-
classes identified in this study were defined based on 88 of
1007 epigenetic-dysregulated PCGs. Among the three
subtypes, the OS of C1 was the best, the expression of
chemokine, its receptor, and immune checkpoint was the
lowest in C1, and activated memory CD4 Tcells, resting NK
cells, M2 macrophages, and resting mast cells were more
active. /us, C1 may be more inclined to inhibit tumori-
genesis [34]. /e prognosis of C3 was the worst, the ex-
pression of most immune-related molecular indicators was
the highest, and the immune scores of helper follicular Tcells
andM0macrophages and resting dendritic cells were higher.
/ese are the favorable characteristics to maintain the
malignant progression of the tumor [35]. It is speculated that
high levels of chemokines and their receptors and immune
checkpoints block their anti-tumor immune response,
resulting in poor prognosis of this subtype [36]. Although C3
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had the highest expression of immune checkpoint, it should
be noted that samples of C3 subtype were resistant to
immunotherapy.

Finally, a prognostic prediction model based on four epi-
PCGs (UCK2, SPP1, GMPS, and SLC39A7) was established
through a step-by-step bioinformatics analysis of over-
lapping epi-PCGs in three subtypes. We analyzed the cor-
relation between the methylation level of these four gene
promoter regions and gene expression. First, we can observe
that the methylation of SLC39A7, SPP1, and UCK2 pro-
moter regions was significantly negatively correlated with

gene expression, suggesting that the expression of these
genes may also be affected by methylation (Figure S6(a)-
S6(d)). Although the expression difference in the chemo-
therapy response group was not observed (Figure S6(e)), it
can be seen that SPP1 had significantly high expression in
the radiotherapy response group (Figure S6(f)). Some of
these epi-PCGs have been identified as risk factors for many
cancers. UCK2 is a carcinogenic driving gene in lung cancer.
It has high diagnostic accuracy and is associated with poor
clinicopathological features, including higher TandN stages,
as well as a higher probability of early recurrence [37].
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Figure 7:/e prognostic predictionmodel was constructed based on the analysis of epi-PCGs in the training set. (a): LASSO Cox regression
analysis was used to identify the prognosis of epi-PCGs, the best λ� 0.0905. (b):/e corresponding risk score, life status, and expression level
of 4 genes in the training set. (c): Kaplan–Meier survival curves of training set samples. (d): Time-dependent ROC curve of prognostic
prediction model.
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Recent studies have shown that UCK2 was a cancer-pro-
moting factor in HCC and was associated with adverse
clinical outcomes of HCC [38, 39]./e role of SPP1 has been
validated in several types of cancers, including in esophageal

cancer [40], ovarian cancer [41], lung cancer [42], gastric
cancer [43], and breast cancer [44]. Its cancer-promoting
effect and mechanism in HCC have also been widely studied
[45, 46]. A recent report showed that the inhibition of GMPS
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Figure 8: /e corresponding risk score of the samples in the four verification cohorts, the relationship between the survival time and the
expression level of 4 genes, including (a): TCGA internal validation set, (b): the whole TCGA-LIHC data set, (c): external validation cohort
HCCDB18, and (d): GSE14520.
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Figure 9: Prognostic validation of the risk prediction model. (a-d): K–M curves evaluating the prognostic prediction model between low-
and high-risk groups in the internal validation set, the entire TCGA-LIHC cohort, and the external validation independent cohort
HCCDB18 and GSE14520 cohorts. (e-f ): ROC curves of prognostic prediction model in the internal validation set, the entire TCGA-LIHC
cohort, the HCCDB18 cohort, and GSE14520 cohort.
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Figure 10: Independent prognostic performance assessment of risk models. (a): Relationship between risk scores and clinical features,
including risk score and age, risk score and gender，risk score and recurrence，risk score and Tstage, risk score and N stage, risk score and
M stage, risk score and AJCC stage, and risk score and clinical grade. (b): Univariate analysis and based on the risk score and clinical
manifestation. (c) Multivariate analysis based on the risk score and clinical features. Multivariate Cox regression analyses evaluated the
prognostic independence of the prognostic prediction model regarding OS in the entire TCGA-LIHC cohort.
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could block glutamine metabolism and the growth of
prostate cancer [47]. Kerstin Holzer et al. revealed that
GMPS was a target for p53 inhibition in hepatocellular
carcinoma by proteomic analysis [48]. Moreover, GMPS was
also reported to be a specific blood biomarker for the di-
agnosis of human HCC [49]. In addition, the role of
SLC39A7 in a variety of malignant tumors such as gastric
cancer [50], cervical cancer [51], colorectal cancer [52], and
prostate cancer [53] has also been studied, but these studies
on malignant tumors do not include liver cancer, but they
also increase the credibility of our results.

In our study, the abovementioned four epi-PCGs were
combined into a single panel, which could relatively
accurately distinguish the OS of patients with HCC of
different risks. Stratified survival analysis showed that the
risk model was closely related to clinicopathological
features. /erefore, our risk prediction model had great
potential in guiding personalized therapy for HCC
patients.

5. Conclusions

In summary, our study analyzed different epigenetic mod-
ifications of epi-PCGs and revealed three different molecular
subsets of HCC by identifying key genes related to histone
modification, which were related to prognosis, immuno-
modulatory changes, and responses to different treatment
strategies. Finally, a risk prediction model based on four epi-
PCGs was developed, which was an independent prognostic
factor of HCC and performed well in individual risk
stratification and survival prediction of HCC patients.

Data Availability

/e data used to support the results can be found in
the TCGA (https://portal.gdc.cancer.gov), HCCDB
(http://lifeome.net/database/hccdb), GEO (GSE14520,
http://www.ncbi.nlm.nih.gov/geo/), and ENCODE
(https://www.encodeproject.org/). /e codes used and/or
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Figure 11: Kaplan–Meier analysis of OS for HCC samples stratified by age (age≤ 60/> 60), T stage (T1-T2/T3-T4), N stage (N0), M stage
(M0), AJCC stage (I-II/III-IV), clinical grade(G1-G2/G-G4), and recurrence or not.
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