REVIEW OPEN ACCESS

# The Effectiveness of Curcumin, Resveratrol, and Silymarin on MASLD: A Systematic Review and Meta-Analysis

Qian Huang<sup>1,2</sup> | Ziming An<sup>1</sup> | Xin Xin<sup>1</sup> | Xiaojun Gou<sup>3</sup> | Xiaoting Tian<sup>4</sup> | Yiyang Hu<sup>1</sup> | Zubing Mei<sup>5</sup> | Qin Feng<sup>1,6,7,8</sup>

<sup>1</sup>Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China | <sup>2</sup>School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China | <sup>3</sup>Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China | <sup>4</sup>Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China | <sup>5</sup>Institute of Anorectal Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China | <sup>6</sup>Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China | <sup>7</sup>Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China | <sup>8</sup>Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China

Correspondence: Zubing Mei (herrmayor@shutcm.edu.cn) | Qin Feng (fengqin@shutcm.edu.cn)

Received: 2 October 2023 | Revised: 25 September 2024 | Accepted: 25 October 2024

**Funding:** This work was supported by the Shanghai Shenkang 3-year action plan (SHDC2020CR4051 to Q.F.), the National Natural Science Foundation of China (82174040 to Q.F., 81973456 to X.T.T.), the District level Medical and Health Key Project of Shanghai Baoshan District Science (21-E-63 to X.J.G.), and the excellent doctoral projects in key fields of Shanghai University of Traditional Chinese Medicine (2-082 to Q.H.).

Keywords: curcumin | meta-analysis | metabolic dysfunction-associated steatotic liver disease | resveratrol | silymarin

### ABSTRACT

Polyphenols, known for their potent antioxidant and anti-inflammatory properties, have emerged as promising, natural, and safe complementary treatment options for metabolic-associated steatotic liver disease (MASLD). Among these, curcumin, resveratrol, and silymarin are the most extensively studied; however, their differential effects on MASLD outcomes remain inconclusive. This systematic review and meta-analysis of RCTs aimed to evaluate the efficacy of curcumin, resveratrol, and silymarin in patients with MASLD. A comprehensive search of seven databases was conducted up to September 2024. Odds ratios (OR), mean differences (MD), and standardized MD (SMD) with 95% confidence intervals (CI) were used to assess treatment effects. Primary outcomes included improvement in hepatic steatosis and ALT activity, while secondary outcomes included changes in AST activity, blood lipids, glucose, BMI, blood pressure, and TNF- $\alpha$ . Twenty-seven studies involving 1691 participants were included. Curcumin significantly improved hepatic steatosis compared to placebo (OR: 4.39, 95% CI: 1.45 to 13.27, p = 0.009), followed by resveratrol (OR: 3.18, 95% CI: 1.20 to 8.42, p = 0.02). Silymarin exhibited the strongest effect in reducing ALT levels (MD: -6.44 U/L, 95% CI: -10.03 to -2.85, p=0.0004), with curcumin (MD: -5.88 U/L, 95% CI: -9.05 to -2.72, p=0.0003) also showing significant reductions. A marked reduction in AST was observed with silymarin (MD: -6.99 U/L, 95% CI: -8.56 to -5.42, p < 0.00001), followed by curcumin (MD: -3.36 U/L, 95% CI: -5.35 to -1.36, p = 0.001). Furthermore, curcumin intake significantly improved metabolic indicators (TG, FBG, HOMA-IR, and BMI). Resveratrol reduced FBG and DBP. Curcumin had the strongest effect on hepatic steatosis and improved both transaminase levels and metabolic markers. Silymarin demonstrated the greatest reduction in transaminase levels, while resveratrol showed modest benefits in steatosis and metabolic improvements. The three polyphenols appear as promising therapeutics for the treatment of MASLD.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Author(s). Food Science & Nutrition published by Wiley Periodicals LLC.

### 1 | Introduction

With the global rise in type 2 diabetes mellitus (T2DM) and obesity, nonalcoholic fatty liver disease (NAFLD), now referred to as metabolic dysfunction-associated steatotic liver disease (MASLD) (Rinella et al. 2023), has emerged as the leading cause of hepatocellular carcinoma (HCC) (Talamantes et al. 2023). MASLD represents a spectrum of disease that ranges from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), previously known as non-alcoholic steatohepatitis (NASH), and may ultimately progress to fibrosis (Calzadilla Bertot and Adams 2016). Despite the increasing prevalence and severity of this condition, only one drug has been approved by the FDA for the treatment of NASH in the past 40 years, which is insufficient to address the substantial clinical need (Harrison et al. 2024). Consequently, there is an urgent need for the development of safe and effective therapeutic strategies to manage MASLD.

Polyphenols are a group of phytochemicals that share a common phenolic structure (Alberdi et al. 2013), such as curcumin and resveratrol, and have a long history of being used as functional foods, nutraceuticals, and pharmaceutical products. Enormous studies indicated that polyphenols are safe to be used in a variety of populations. A review summarized that they could alleviate oxidative stress, promote fatty acid beta-oxidation, and modulate insulin resistance (Larussa et al. 2019; Williamson and Sheedy 2020). Furthermore, polyphenols can also protect liver (Khan and Mukhtar 2018). In animal studies, they improved liver steatogenesis, oxidative stress, and inflammation (Rodriguez-Ramiro, Vauzour, and Minihane 2016; Van De Wier et al. 2017). Several clinical trials have evaluated several polyphenolic active ingredients that can affect MASLD (Jalali et al. 2020; Zeraattalab-Motlagh, Jayedi, and Shab-Bidar 2021).

In the current study, curcumin, resveratrol, and silymarin were the most investigated polyphenolic compounds for the treatment of MASLD. However, the studies were limited by relatively small sample sizes and inconsistent outcomes (Asghari et al. 2018; Panahi et al. 2017). Moreover, the efficacy of these three compounds has not been directly compared, making it difficult to draw definitive conclusions about their relative effectiveness.

Given the gaps in the current evidence, particularly the lack of comprehensive evaluation of curcumin, resveratrol, and silymarin in treating MASLD, a systematic review and metaanalysis are warranted. Such an analysis would provide a more robust and evidence-based understanding of their therapeutic potential in MASLD management.

### 2 | Materials and Methods

We systematically identified relevant articles published before Sep. 2024 by searching PubMed, Cochrane Library, Embase, China Biology Medicine, Web of Science, China National Knowledge Internet, and Wanfang databases. Search terms included the keywords: ("NAFLD," "non-alcoholic fatty liver disease," "non-alcoholic steatohepatitis," and "NASH") and ("active ingredient," "bioactive ingredients," "active compounds," "active components," "natural compounds," and "natural products"). To identify additional articles, we also manually looked for the references of reviews and relevant original studies.

This meta-analysis was conducted using a random/fixedeffect model, and the quality of articles was assessed using the Cochrane Risk of Bias 2.0. The manuscript was written according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) harm checklist. This study was registered in PROSPERO (CRD42022335681).

### 2.1 | Selection Criteria

1. *Population*: individuals diagnosed with MASLD according to liver biopsy or noninvasive imaging modalities (Fibroscan or B-ultrasound). Inclusion criteria included hepatic histology, B-ultrasound, and Fibroscan. They are as follows: (1) Biopsy-verified MASLD with a steatosis score  $\geq 1$ , (2) B-ultrasound indicated steatosis, and (3) controlled attenuation parameter (CAP) value > 263 dB/m (Petroff et al. 2021; Siddiqui et al. 2019).

The grades of hepatic steatosis are according to B-ultrasound and biopsy: (i) based on B-ultrasound: hepatic steatosis was graded as 0 (lack of fat accumulation), 1 (mild fat deposits), 2 (moderate fat deposits), and 3 (severe fat deposits) (Saadeh et al. 2002), (ii) based on liver biopsy: the distribution of steatosis for stages 0, 1, 2, and 3 was < 5%, 5%–33%, 33%–67%, and > 67%, respectively (Faghihzadeh et al. 2014).

All MASLD patients were  $\geq$  18 years old and had no primary systemic diseases or primary malignant tumors.

- 2. *Intervention*: Curcumin, resveratrol, and silymarin were administered at any form and dosage, with an intervention duration of  $\geq$  4 weeks.
- 3. Comparison: placebo.
- 4. Outcomes: (i) Primary outcomes were liver parameters: hepatic steatosis, alanine transaminase (ALT) activity. (ii) Secondary outcomes were aspartate aminotransferase (AST) activity, blood lipid indices [total cholesterol (TC), total glyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), blood glucose indicators [fasting plasma glucose (FPG), homeostasis model assessment-insulin resistance (HOMA-IR)], body mass index (BMI), blood pressure [systolic blood pressure (SBP), diastolic blood pressure (DBP)], and inflammatory factor [tumor necrosis factor-α (TNF-α)].

Among studies that assessed change in hepatic steatosis by ultrasound grading and categorization (0/1/2/3; none/mild/moderate/severe), the number of patients with mild/moderate/severe steatosis (1/2/3), at baseline who experienced improvement by  $\geq 1$  grade at the end of the trial was analyzed.

# 3 | Study: Randomized Controlled Clinical Trials

# 3.1 | Exclusion Criteria

1. The type of study was not specified.

2. Experiments conducted on animals or cells.

3. No valid outcome data could be extracted from the article.

### 3.2 | Quality Assessment

Each included study was evaluated for random sequence generation, allocation hiding, blinded participants and studies, blinded outcome evaluation, incomplete outcome indicators, selective reporting, and other possible biases and classified as low risk, unclear risk, or high risk according to the Cochrane tools (Higgins 2011). Quality assessment was performed independently by Q.H. and Z.M.A., and inconsistencies were resolved through discussion by Q.F.

### 3.3 | Data Extraction and Statistical Analysis

For all included outcomes, the combined effect size was expressed as odds ratio (OR), standardized mean difference (SMD), mean difference (MD), and 95% confidence interval (CI). When the measurement methods and units were identical, WMD was preferred to combine statistics. Instead, chose SMD. The classification variables were selected as risk differences and 95% CI for analysis. Data represented in medians and quartiles were converted to mean and standard deviation, which was recommended by Hozo et al. For studies that did not show changes before and after the treatment, Mean<sub>Change</sub> and SD<sub>Change</sub> were calculated by the method provided in the Cochrane Handbook Chapter 6.5.2 (Higgins, Li, and Deeks 2021). A correlation coefficient (Corr) of 0.5 was used in our calculations. The formula used to calculate the  $Mean_{Change}$  and  $SD_{Change}$  of the observed indicators before and after the intervention is as follows:

$$Mean_{Change} = Mean_{Final} - Mean_{Baseline}.$$
 (1)

SDChange

$$= \sqrt{\text{SDFinal}^2 + \text{SDBaseline}^2 - 2 \times \text{Corr} \times \text{SDFinal} \times \text{SDBaseline.}}$$
(2)

Cochrane Q and  $I^2$  tests were used to evaluate the heterogeneity. The fixed-effects model was chosen if  $I^2 < 50\%$  or p > 0.1; if not, the random-effects model was selected. Subgroup analysis was conducted to explore the sources of heterogeneity, with  $I^2 > 50\%$ . A sensitivity analysis was used to verify the stability of the results. Subgroup analyses were performed based on different polyphenols (curcumin, resveratrol, and silymarin) and different intervention durations (<12 and  $\geq 12$  weeks). A sensitivity analysis was performed using the "one-studyremoved" strategy to investigate the influence of each study on the effect size. The software for the meta-analysis is Revman 5.3. A two-tailed p < 0.05 was considered statistically significant.

# 4 | Results

# 4.1 | Characteristics of Included Studies and Quality Assessment

The RCTs included in this study involved three polyphenols: curcumin, resveratrol, and silymarin. Twenty seven eligible studies met the inclusion and exclusion criteria and were included in the study (Anushiravani et al. 2019; Beheshti Namdar et al. 2023; Chachay et al. 2014; Chen et al. 2015; Cicero et al. 2020; Faghihzadeh et al. 2014; Farzin et al. 2020; Hashemi, Eskandar, and Sardabi 2009; Ghaffari et al. 2019; He et al. 2024; Heeboll et al. 2016; Jarhahzadeh et al. 2021; Jazayeri-Tehrani et al. 2019; Kalhori et al. 2022; Kantartzis et al. 2018; Loguercio et al. 2012; Masoodi, Panahian, and Vojdanian 2013; Mirhafez, Azimi-Nezhad, et al. 2021; Mirhafez, Dehabeh, et al. 2021; Moradi Kelardeh et al. 2020; Navarro et al. 2019; Navekar et al. 2017; Panahi et al. 2017; Panahi et al. 2019; Rahmani et al. 2016; Saadati et al. 2019; Saberi-Karimian et al. 2020; Safari et al. 2023; Solhi et al. 2014; Wah Kheong, Nik Mustapha, and Mahadeva 2017). Some records are merged because they belong to the same RCTs. The study characteristics are listed in Table 1. The flow diagram of these studies' selection process is shown in Figure 1. There were 27 RCTs, detailed bias results are shown in Figure S1. The funnel plot generated for the reported outcomes is symmetrical. Publication bias was assessed using Egger's regression test and funnel plots when there were  $\geq 10$  data points (Sterne, Gavaghan, and Egger 2000).

### 4.2 | Effect of Polyphenols on Primary Outcomes

### 4.2.1 | Hepatic Steatosis

The effect of curcumin, resveratrol, and silymarin on improvement in hepatic steatosis, as graded by liver ultrasound or histology, was examined across 11 studies involving a total of 819 participants (408 in the polyphenol group and 411 in the placebo group). The combined effect of three specific polyphenols-curcumin, resveratrol, and silymarin-on hepatic steatosis improvement was statistically significant (OR: 4.52, 95% CI: 2.03 to 10.06, p = 0.0002,  $I^2 = 61\%$ ). Subgroup analysis revealed that curcumin exhibited the most pronounced effect in enhancing the odds of improvement from mild, moderate, or severe hepatic steatosis compared to placebo (OR: 4.39, 95% CI: 1.45 to 13.27, p = 0.009) followed by resveratrol (OR: 3.18, 95% CI: 1.20 to 8.42, p = 0.02) (Figure 2). Further analysis indicated that polyphenols were particularly effective in improving hepatic steatosis when the intervention period was less than 12 weeks (OR: 7.94, 95% CI: 3.48 to 18.10, p < 0.00001) (Figure S2A). Sensitivity analysis confirmed the robustness of the overall effect size.

### 4.2.2 | Alanine Aminotransferase Activity (ALT)

A total of 23 studies, involving 1537 participants (768 in the polyphenol group and 769 in the placebo group), were included to evaluate the impact of curcumin, resveratrol, and silymarin on ALT, and heterogeneity tests (p < 0.01,  $I^2 = 79\%$ ) suggested statistical

**TABLE 1** | Characteristics of the included studies.

|             |                                           |         | Simple size                | Mean age          | age                       | NAFLD                    |                     |                          |                                                                                                      |
|-------------|-------------------------------------------|---------|----------------------------|-------------------|---------------------------|--------------------------|---------------------|--------------------------|------------------------------------------------------------------------------------------------------|
| Polyphenols | Study                                     | Country | (experimental/<br>placebo) | Experimental      | Placebo                   | diagnosis<br>method      | Duration<br>(weeks) | Daily dosage<br>(mg/day) | Outcome                                                                                              |
| Curcumin    | Cicero et al. (2020)                      | Iran    | 40/40                      | 54±3              | 53±5                      | Ultrasound               | œ                   | 200                      | 1.TC, TG, HDL-C, LDL-C 2.FBG,<br>HOMA-IR 3.BMI 4.SBP, DBP                                            |
|             | Kalhori et al. (2022)                     | Iran    | 21/21                      | 40.38 ± 9.26      | 42.09±7.23                | Ultrasound               | 12                  | 3000                     | 1.Grade of hepatic steatosis 2.ALT,<br>AST 3.TC, TG, HDL-C, LDL-C 4.FBG,<br>HOMA-IR 5.BMI 6.SBP, DBP |
|             | Mirhafez, Azimi-<br>Nezhad, et al. (2021) | Iran    | 35/37                      | <b>45.0</b> ±11.1 | <b>43.1</b> ± <b>11.6</b> | Ultrasound               | ∞                   | 250                      | 1.Grade of hepatic steatosis 2.ALT, AST<br>3.TC, TG, HDL-C, LDL-C 4.FBG 5.BMI                        |
|             | Moradi Kelardeh<br>et al. (2020)          | Iran    | 22/23                      | $66.72 \pm 3.03$  | 64.36±2.97                | Ultrasound               | 12                  | 80                       | BMI                                                                                                  |
|             | Panahi et al. (2017)                      | Iran    | 44/43                      | 44.98±12.59       | 47.21±10.29               | Ultrasound               | ∞                   | 1000                     | 1.Grade of hepatic steatosis 2.ALT,<br>AST 3.TC, TG, HDL-C, LDL-C 4,<br>HOMA-IR 5.BMI 6.SBP, DBP     |
|             | Panahi et al. (2019)                      | Iran    | 35/35                      | $46.63 \pm 2.21$  | $47.51 \pm 2.45$          | Ultrasound               | 12                  | 500                      | 1.ALT, AST 2.TC, TG, HDL-C, LDL-C                                                                    |
|             | Rahmani et al. (2016)                     | Iran    | 37/40                      | $46.37 \pm 11.57$ | 48.95±9.78                | Ultrasound               | ×                   | 500                      | 1.Grade of hepatic steatosis 2.ALT, AST<br>3.TC, TG, HDL-C, LDL-C 4.FBG 5.BMI                        |
|             | Saberi-Karimian<br>et al. (2020)          | Iran    | 27/28                      | 18-70             | 70                        | Ultrasound               | ∞                   | 500                      | 1.Grade of hepatic steatosis 2.ALT, AST 3.TC,<br>HDL-C, LDL-C 4.FBG 5.BMI 6.SBP, DBP                 |
|             | Saadati et al. (2019)                     | Iran    | 27/23                      | 46.19±11.5        | $45.13 \pm 10.9$          | Ultrasound/<br>fibroscan | 12                  | 1500                     | 1.ALT, AST 2.TC, TG, HDL-C, LDL-C<br>3.FBG, HOMA-IR 4.BMI 5.TNF-α                                    |
|             | Jarhahzadeh et al. (2021)                 | Iran    | 32/32                      | 44.12±8.35        | $38.56 \pm 10.43$         | Ultrasound               | 12                  | 2000                     | 1.Grade of hepatic steatosis 2.ALT, AST<br>3.TC, TG, HDL-C, LDL-C 4.FBG                              |
|             | Jazayeri-Tehrani et al. (2019)            | Iran    | 42/42                      | $41.8 \pm 5.6$    | $42.5 \pm 6.2$            | Ultrasound               | 12                  | 80                       | 1.ALT, AST 2.TC, TG, HDL-C, LDL-C 3.FBG,<br>HOMA-IR 4.BMI 5.SBP, DBP 6.TNF-α                         |
|             | Beheshti Namdar<br>et al. (2023)          | Iran    | 27/29                      | 15-60             | 60                        | Ultrasound               | ∞                   | 160                      | ALT, AST                                                                                             |
|             | Safari et al. (2023)                      | Iran    | 28/28                      | 43.92±8.74        | $50.35 \pm 9.44$          | Ultrasound               | 12                  | 250                      | 1.ALT, AST 2. TC, TG, HDL-<br>C, LDL-C 3. FBG 4.BMI                                                  |
|             | He et al. (2024)                          | China   | 40/40                      | 42±10.0           | 40 ± 9.8                  | Fibro-Touch              | 24                  | 500                      | 1.ALT, AST 2.TC, TG, HDL-C, LDL-C<br>3.FBG, HOMA-IR 4.BMI 5.SBP, DBP                                 |
|             |                                           |         |                            |                   |                           |                          |                     |                          |                                                                                                      |

(Continues)

TABLE 1 | (Continued)

|             |                                                     |           | azis aiduic                | Mean age          | 1 450              | NAFLD               |                     |                          |                                                                                                                |
|-------------|-----------------------------------------------------|-----------|----------------------------|-------------------|--------------------|---------------------|---------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|
| Polyphenols | Study                                               | Country   | (experimental/<br>placebo) | Experimental      | Placebo            | diagnosis<br>method | Duration<br>(weeks) | Daily dosage<br>(mg/day) | Outcome                                                                                                        |
| Resveratrol | Chen et al. (2015)                                  | China     | 30/30                      | 45.2±10.0         | <b>43.5</b> ±11.0  | Ultrasound          | ×                   | 300                      | 1.Grade of hepatic steatosis 2.ALT, AST 3.TC, TG, HDL-C, LDL-C 4.FBG, HOMA-IR 5.BMI 6.SBP, DBP 7.TNF- $\alpha$ |
|             | Chachay et al. (2014)                               | Australia | 10/10                      | 48.8±12.2         | $47.5 \pm 11.2$    | MRI                 | ∞                   | 3000                     | 1.ALT, AST 2.TC, TG, HDL-C, LDL-C 3.FBG, HOMA-IR 4.BMI 5.SBP, DBP 6.TNF- $\alpha$                              |
|             | Farzin et al. (2020)                                | Iran      | 25/25                      | 39.78±8.09        | $38.71 \pm 5.76$   | Ultrasound          | 12                  | 600                      | 1.Grade of hepatic steatosis 2.ALT,<br>AST 3.FBG, HOMA-IR 4.BMI                                                |
|             | Faghihzadeh et al. (2014)                           | Iran      | 25/25                      | $44.04 \pm 10.10$ | <b>46.28</b> ±9.52 | Ultrasound          | 12                  | 500                      | 1.Grade of hepatic steatosis 2.ALT,<br>AST 3.TC, TG, HDL-C, LDL-C 4.FBG,<br>HOMA-IR 5.BMI 6.SBP, DBP 7.TNF-α   |
|             | Heeboll et al. (2016)                               | Denmark   | 13/13                      | 18-70             | -70                | Biopsy              | 24                  | 1500                     | 1.ALT, AST 2.TG, HDL-C, LDL-C 3.<br>HOMA-IR 4.BMI 5.SBP, DBP 6.TNF- $\alpha$                                   |
|             | Kantartzis et al. (2018)                            | Denmark   | 53/52                      | 18-70             | 70                 | MRI                 | 12                  | 150                      | 1.ALT, AST 2.TC, TG, HDL-C,<br>LDL-C 3. HOMA-IR 4.SBP, DBP                                                     |
| Silymarin   | Anushiravani et al. (2019)                          | Iran      | 30/30                      | 47.0±9.1          | ± 9.1              | Ultrasound          | 12                  | 140                      | 1.ALT, AST 2.TC, TG, HDL-<br>C, LDL-C3.FBG 4.BMI                                                               |
|             | Hashemi, Eskandar,<br>and Sardabi (2009)            | Iran      | 50/50                      | $39.28 \pm 11.12$ | $39.0 \pm 10.70$   | Ultrasound          | 24                  | 280                      | 1.ALT, AST 2.TC, TG, HDL-<br>C, LDL-C 3.FBG 4.BMI                                                              |
|             | Loguercio et al. (2012)                             | Italy     | 100/100                    | $40.8\pm10.3$     | 44.2±9.5           | Biopsy              | 48                  | 94                       | Grade of hepatic steatosis                                                                                     |
|             | Masoodi, Panahian,<br>and Vojdanian (2013)          | Iran      | 50/50                      | 48.42±6.75        | 48.32±5.45         | Ultrasound          | 12                  | 280                      | 1.ALT, AST 2.BMI                                                                                               |
|             | Navarro et al. (2019)                               | Italy     | 27/25                      | $48.2 \pm 11.4$   | $49.5\pm10.9$      | Biopsy              | 48                  | 700                      | Grade of hepatic steatosis                                                                                     |
|             | Solhi et al. (2014)                                 | Iran      | 33/31                      | $43.6 \pm 8.3$    | $39.36\pm10.5$     | Ultrasound          | 8                   | 210                      | ALT, AST                                                                                                       |
|             | Wah Kheong, Nik<br>Mustapha, and<br>Mahadeva (2017) | Malaysia  | 49/50                      | 49.6±12.7         | $50.1 \pm 10.2$    | Biopsy              | 48                  | 2100                     | 1.ALT, AST 2.TC, TG, HDL-C,<br>LDL-C 3.FBG, HOMA-IR                                                            |



FIGURE 1 | Flow diagram of the literature research.

heterogeneity among studies. The findings demonstrated that curcumin, resveratrol, and silymarin notably reduced ALT levels (MD: -5.61 U/L, 95% CI: -7.93, -3.29, p < 0.00001), as analyzed using a random-effects model (Figure 3A). Subgroup analysis indicated that silymarin had the most substantial effect in lowering ALT levels (MD: -6.44 U/L, 95% CI: -10.03 to -2.85, p = 0.0004) followed by curcumin (MD: -5.88 U/L, 95% CI: -9.05 to -2.72, p = 0.0003) (Figure 3A). Additionally, subgroup analyses revealed that polyphenols significantly reduced liver enzyme levels whether the treatment duration exceeded 12 weeks or not (Figure S2B). Sensitivity analysis confirmed that the overall effect size remained largely consistent.

### 4.3 | Effect of Polyphenols on Secondary Outcomes

## 4.3.1 | Aspartate Aminotransferase Activity (AST)

The same 23 studies as ALT, evaluated the impact of curcumin, resveratrol, and silymarin on AST levels, revealing considerable inter-study heterogeneity (p < 0.01,  $I^2 = 90\%$ ). Our analysis, using a random-effects model, demonstrated that polyphenols significantly lowered AST levels (MD: -3.84 U/L, 95% CI: -5.49 to -2.20, p < 0.00001) (Figure 3B). Subgroup analyses further

indicated a marked reduction in AST with silymarin (MD: -6.99 U/L, 95% CI: -8.56 to -5.42, p < 0.00001), followed by curcumin (MD: -3.36 U/L, 95% CI: -5.35 to -1.36, p < 0.00001). In contrast, resveratrol did not show a statistically significant effect (MD: -2.14 U/L, 95% CI: -5.63 to 1.34, p = 0.23) (Figure 3B). Furthermore, the results suggested significant differences in the magnitude of AST reduction across varying intervention durations (Figure S2C). Sensitivity analysis confirmed the stability of the overall effect size.

### 4.3.2 | Blood Lipid Indices (TC, TG, HDL-C, and LDL-C)

A total of 20 studies, encompassing 1371 participants (685 receiving polyphenols and 686 on placebo), examined the effects of curcumin, resveratrol, and silymarin on TC in individuals with MASLD. The analysis indicated that polyphenol intake had no significant impact on TC levels (SMD: -0.13, 95% CI: -0.43 to -0.17) (p=0.40,  $I^2=86\%$ ) (Figure 4A). Another subgroup analysis showed that polyphenols significantly reduced TC when the intervention period was less than 12 weeks (SMD: -0.57, 95% CI: -1.00 to -0.14, p=0.009) (Figure S2D). Moreover, sensitivity analysis demonstrated that excluding any individual study had minimal impact on the overall heterogeneity.





FIGURE 2 | Forest plots of the effect of polyphenols on improvement in hepatic steatosis.

Twenty studies, including 1342 participants (671 polyphenols users and 671 placebo users), reported the effects of three polyphenols (curcumin, resveratrol, and silymarin) on TG. Subgroup analysis indicated that curcumin supplementation significantly reduced TG levels (SMD: -0.51, 95% CI: -0.92 to  $-0.10, p = 0.01, I^2 = 87\%$ ) based on the random-effects model (Figure 4B). Furthermore, the significant differences were observed in TG level changes while intervention durations less than 12weeks (Figure S2E). Sensitivity analysis showed that excluding any reference had little effect on overall heterogeneity (Figure S4).

A total of 21 studies, involving 1397 participants (698 in the polyphenol group and 699 in the placebo group), provided data on HDL-C levels. The analysis showed that curcumin, resveratrol, and silymarin did not result in significant improvements in HDL-C (SMD: 0.15, 95% CI: -0.04 to 0.35, p=0.12) according to the random-effects model (p < 0.01,  $I^2 = 70\%$ ) (Figure 4C). The effect of different polyphenols and intervention durations on HDL-C levels in MASLD patients was similarly insignificant (Figure S2F). Sensitivity analysis revealed that the effect of silymarin on HDL-C levels in MASLD patients became significant (SMD: 0.28, 95% CI: 0.00 to 0.56, p=0.05) after excluding the study by (Anushiravani et al. 2019).

Similarly, in the same population as the HDL-C analysis, it was found that curcumin, resveratrol, and silymarin had no significant effect on LDL-C levels (SMD: -0.15, 95% CI: -0.51 to 0.21, p = 0.41) using the random-effects model (p < 0.01,  $I^2 = 90\%$ ) (Figure 4D). However, subgroup analysis indicated that polyphenols significantly reduced LDL-C levels when the intervention period was less than 12 weeks (Figure S2G). Sensitivity analysis further demonstrated that, upon removing the study by Panahi et al. curcumin significantly lowered LDL-C levels in MASLD patients (SMD: -0.50, 95% CI: -0.92 to -0.07, p = 0.02).

### 4.3.3 | Blood Glucose Indicators (FBG and HOMA-IR)

Based on the analysis of 18 effect sizes from studies involving 1214 participants (606 in the polyphenol group and 608 in the placebo group), changes in fasting blood glucose (FBG) were assessed using a fixed-effects model, in accordance with the results of the heterogeneity test (p < 0.01,  $I^2 = 75\%$ ). The findings indicated that curcumin, resveratrol, and silymarin significantly reduced FBG levels in patients with MASLD (SMD: -0.31, 95% CI: -0.43 to -0.20, p < 0.0001) (Figure 5A). Subgroup

| ٨ |                                                                                 | Exp                    | eriment    | al       | 0          | ontrol                |       |        | Mean Difference         | Mean Difference      | Risk of Bias                                                  |
|---|---------------------------------------------------------------------------------|------------------------|------------|----------|------------|-----------------------|-------|--------|-------------------------|----------------------|---------------------------------------------------------------|
| А | Study or Subgroup                                                               | Mean                   |            |          | Mean       |                       | Total | Weight | IV. Random, 95% C       |                      | ABCDEFG                                                       |
|   | Curcumin                                                                        | moun                   |            | 10101    | moun       |                       |       | mangin |                         |                      |                                                               |
|   | Jarhahzadeh et al. 2021                                                         | 30.51                  | 12.61      | 32       | 39.5       | 21.15                 | 32    | 4.1%   | -8.99 [-17.52, -0.46]   |                      | ??                                                            |
|   | Jazayeri-Tehrani et al. 2019                                                    | 32.6                   | 9.9        | 42       | 39.6       | 7.5                   | 42    | 7.3%   | -7.00 [-10.76, -3.24]   |                      |                                                               |
|   | Kalhori et al. 2017                                                             |                        |            | 21       |            | 11.91                 | 21    | 5.0%   | -4.14 [-11.03, 2.75]    | -+                   | ĂĂĂĂĂĂĂĂ                                                      |
|   | Mirhafez et al. 2021                                                            | -6.12                  |            | 35       |            | 15.96                 | 37    | 3.3%   | -7.34 [-17.54, 2.86]    |                      | <b>AAAAAAA</b>                                                |
|   | Panahi et al.2017                                                               | -10.61                 |            | 44       | 4.51       | 7.4                   | 43    | 6.3%   | -15.12 [-20.20, -10.04] | ~                    | ??                                                            |
|   | Panahi et al.2019                                                               | -12.63                 | 5.05       | 35       | -1.27      | 6.19                  | 35    | 8.1%   | -11.36 [-14.01, -8.71]  | -                    |                                                               |
|   | Rahmani et al. 2016                                                             |                        |            | 37       | -1.62      | 12.3                  | 40    | 1.7%   | -1.37 [-17.11, 14.37]   |                      | <b>? ? @ @ ? @ @</b>                                          |
|   | Saadati et al. 2019                                                             | -5.63                  | 14.5       | 27       |            | 15.83                 | 23    | 4.1%   | 1.19 [-7.28, 9.66]      | +                    |                                                               |
|   | Saberi-Karimian et al. 2020                                                     |                        |            | 27       |            | 10.74                 | 28    | 5.5%   | 4.54 [-1.70, 10.78]     |                      | <b></b>                                                       |
|   | Beheshti-Namdar et al. 2023                                                     |                        | 23.76      | 27       | 48.44      |                       | 29    | 2.3%   | -5.82 [-19.21, 7.57]    | -+                   | <b></b>                                                       |
|   | He et al. 2024                                                                  | -0.88                  | 1.22       | 40       | 7.1        | 3.6                   | 40    | 8.8%   | -7.98 [-9.16, -6.80]    |                      | <u>āāāāāā</u>                                                 |
|   | Safari et al. 2023                                                              | -5.67                  | 3.52       | 28       | -4.33      | 2.3                   | 28    | 8.7%   | -1.34 [-2.90, 0.22]     |                      | ĂĂĂĂĂĂĂĂ                                                      |
|   | Subtotal (95% CI)                                                               | -5.07                  | 0.02       | 395      | -4.55      | 2.0                   | 398   | 65.0%  | -5.88 [-9.05, -2.72]    | •                    |                                                               |
|   | Heterogeneity: Tau <sup>2</sup> = 20.24; C                                      | hi2 - 99               | 25 df -    |          | - 0 0000   | 1). 12 - 1            |       | 00.070 | -0.00[-0.00, -1.11]     |                      |                                                               |
|   | Test for overall effect: Z = 3.64                                               |                        |            | 11 (F 3  | 0.0000     | 1), 1 – 1             | 00 /0 |        |                         |                      |                                                               |
|   | Resveratrol                                                                     |                        |            |          |            |                       |       |        |                         |                      |                                                               |
|   | Faghihzadeh et al. 2014                                                         | -24.45                 | 34.08      | 25       | -11.16     | 19.6                  | 25    | 1.8%   | -13.29 [-28.70, 2.12]   |                      | <b>??</b> €€€€€                                               |
|   | Chen et al. 2016                                                                | -6.82                  | 6.62       | 30       | -0.96      | 9.73                  | 30    | 6.9%   | -5.86 [-10.07, -1.65]   | ~                    | $\bullet$ ? $\bullet$ $\bullet$ $\bullet$ $\bullet$           |
|   | Heebøll et al. 2016                                                             | -31.29                 | 47.22      | 13       | -22.85     | 55.08                 | 13    | 0.3%   | -8.44 [-47.88, 31.00]   |                      | <b>? ? ?</b>                                                  |
|   | Chachay et al. 2014                                                             | 68.17                  | 22.36      | 10       | 63.15      | 50.74                 | 10    | 0.4%   | 5.02 [-29.35, 39.39]    |                      |                                                               |
|   | Farzin et al. 2020                                                              | 46.2                   | 25.19      | 30       | 40.94      | 28.81                 | 30    | 2.2%   | 5.26 [-8.43, 18.95]     |                      |                                                               |
|   | Kantartzis et al. 2018                                                          | 4.01                   | 6.14       | 53       | 0.95       | 23.49                 | 52    | 5.2%   | 3.06 [-3.54, 9.66]      | <u>t</u>             |                                                               |
|   | Subtotal (95% CI)                                                               |                        |            | 161      |            |                       | 160   | 16.9%  | -2.22 [-8.10, 3.66]     | •                    |                                                               |
|   | Heterogeneity: Tau <sup>2</sup> = 18.08; C<br>Test for overall effect: Z = 0.74 |                        |            | (P = 0   | .14); l² = | 40%                   |       |        |                         |                      |                                                               |
|   | Sılymarın                                                                       |                        |            |          |            |                       |       |        |                         |                      |                                                               |
|   | Wah-Kheong et al. 2017                                                          | -20                    | 51.69      | 49       | -21        | 43.77                 | 50    | 1.3%   | 1.00 [-17.89, 19.89]    |                      | $\bullet \bullet \bullet \bullet \circ ? \bullet \bullet$     |
|   | Anushiravani et al. 2019                                                        | -9.3                   | 15.91      | 30       | -0.6       | 14.6                  | 30    | 4.5%   | -8.70 [-16.43, -0.97]   | ~                    |                                                               |
|   | Hashemi et al. 2009                                                             | 73.14                  | 62.44      | 50       | 89.92      | 41.83                 | 50    | 1.1%   | -16.78 [-37.61, 4.05]   |                      | ••••                                                          |
|   | Masoodi et al. 2013                                                             | 68.54                  | 5.54       | 50       | 73.32      | 5.58                  | 50    | 8.3%   | -4.78 [-6.96, -2.60]    | -                    | ••••                                                          |
|   | Solhi et al. 2014                                                               | 38.4                   | 11.8       | 33       | 52.3       | 29.9                  | 31    | 2.9%   | -13.90 [-25.17, -2.63]  |                      | $\bullet \bullet \bullet \bullet \circ \circ \bullet \bullet$ |
|   | Subtotal (95% CI)                                                               |                        |            | 212      |            |                       | 211   | 18.1%  | -6.44 [-10.03, -2.85]   | •                    |                                                               |
|   | Heterogeneity: Tau <sup>2</sup> = 3.76; Ch<br>Test for overall effect: Z = 3.51 |                        |            | (P = 0.3 | 81); l² =  | 16%                   |       |        |                         |                      |                                                               |
|   | Total (95% CI)                                                                  |                        |            | 768      |            |                       | 769   | 100.0% | -5.61 [-7.93, -3.29]    | •                    |                                                               |
|   | Heterogeneity: Tau <sup>2</sup> = 15.54; C                                      | Chi <sup>2</sup> = 104 | 1.74. df = |          | < 0.000    | 01): l <sup>2</sup> = |       |        |                         | H H H                |                                                               |
|   | Test for overall effect: $Z = 4.74$                                             |                        |            | (·       | 0.000      | .,,.                  |       |        |                         | -100 -50 0 50 10     | 00                                                            |
|   | Test for subgroup differences:                                                  |                        |            | 2 (P =   | 0.47), l²  | = 0%                  |       |        |                         | experimental control |                                                               |
|   | Risk of bias legend                                                             |                        |            |          | ,          |                       |       |        |                         |                      |                                                               |
|   | (A) Random sequence general                                                     |                        |            | is)      |            |                       |       |        |                         |                      |                                                               |
|   | (B) Allocation concealment (se                                                  |                        |            |          |            |                       |       |        |                         |                      |                                                               |
|   | (C) Blinding of participants and                                                |                        |            |          | e bias)    |                       |       |        |                         |                      |                                                               |
|   | (D) Blinding of outcome assess                                                  |                        |            | dias)    |            |                       |       |        |                         |                      |                                                               |
|   | (E) Incomplete outcome data (                                                   |                        | ias)       |          |            |                       |       |        |                         |                      |                                                               |
|   | (F) Selective reporting (reporting                                              | ng bias)               |            |          |            |                       |       |        |                         |                      |                                                               |
|   | (G) Other bias                                                                  |                        |            |          |            |                       |       |        |                         |                      |                                                               |
| _ |                                                                                 |                        |            |          |            |                       |       |        |                         |                      |                                                               |
| В |                                                                                 | Exp                    | eriment    | al       | с          | ontrol                |       |        | Mean Difference         | Mean Difference      | Risk of Bias                                                  |

|   |                                            | Eve                   | eriment   |           |                       | Control                |       |         | Mean Difference        | Mean Difference                         | Risk of Bias                                                      |
|---|--------------------------------------------|-----------------------|-----------|-----------|-----------------------|------------------------|-------|---------|------------------------|-----------------------------------------|-------------------------------------------------------------------|
|   | Study or Subaroup                          | Mean                  |           |           | Mean                  |                        | Total | Weight  |                        | IV. Random. 95% Cl                      | ABCDEFG                                                           |
| _ | Curcumin                                   | meun                  | 00        | TOTAL     | meun                  | 00                     | Totul | mengint | H. Hulldom, 50% Of     | N. Rundom. 30 / 01                      |                                                                   |
|   | Rahmani et al. 2016                        | -5.04                 | 6.49      | 37        | 2 02                  | 11.79                  | 40    | 4.7%    | -7.06 [-11.27, -2.85]  |                                         | ??                                                                |
|   | Panahi et al.2017                          | -6.95                 | 7.47      | 44        | 3.79                  | 6.43                   | 43    |         | -10.74 [-13.67, -7.81] |                                         | <b>?</b> ? <b>.</b>                                               |
|   | Saadati et al. 2019                        | -2.72                 | 7.68      | 27        | -3.46                 | 5.43                   | 23    | 5.1%    | 0.74 [-2.91, 4.39]     |                                         | <b>.</b>                                                          |
|   | Jazaveri-Tehrani et al. 2019               | 22.03                 | 5.9       |           | 25.63                 | 7.2                    | 42    | 5.7%    | -3.60 [-6.42, -0.78]   |                                         |                                                                   |
|   | Kalhori et al. 2017                        | 24.14                 | 8.9       | 21        |                       | 5.4                    | 21    | 4.6%    | 0.10 [-4.35, 4.55]     |                                         |                                                                   |
|   | Panahi et al.2019                          | -9.44                 | 4.45      | 35        |                       | 3.35                   | 35    | 6.3%    | -3.76 [-5.61, -1.91]   |                                         |                                                                   |
|   | Saberi-Karimian et al. 2020                | 0.13                  | 7.09      | 27        | -1.08                 | 5.19                   | 28    | 5.4%    | 1.21 [-2.08, 4.50]     | +                                       | ĂĂĂĂĂĂĂĂ                                                          |
|   | Mirhafez et al. 2021                       |                       | 14.33     | 35        | 2.44                  |                        | 37    | 3.6%    | -4.44 [-10.50, 1.62]   | +                                       | <b></b>                                                           |
|   | Jarhahzadeh et al. 2021                    | 21.19                 | 5.67      |           | 25.26                 | 9.66                   | 32    | 5.0%    | -4.07 [-7.95, -0.19]   |                                         | <b>? ? • • • • •</b>                                              |
|   | Beheshti-Namdar et al. 2023                | 31.72                 |           | 27        |                       |                        | 29    | 2.8%    | 0.13 [-7.41, 7.67]     |                                         | $\bullet \bullet \bullet \bullet ? \bullet \bullet$               |
|   | He et al. 2024                             | -0.82                 | 0.87      | 40        | 5                     | 4.06                   | 40    | 6.6%    | -5.82 [-7.11, -4.53]   | ~                                       | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
|   | Safari et al. 2023                         | -2.6                  | 2.51      | 28        | -1.67                 | 1.65                   | 28    | 6.7%    | -0.93 [-2.04, 0.18]    | -                                       | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
|   | Subtotal (95% CI)                          |                       |           | 395       |                       |                        | 398   | 62.1%   | -3.36 [-5.35, -1.36]   | ◆                                       |                                                                   |
|   | Heterogeneity: Tau <sup>2</sup> = 9.15; Ch | ni² = 75.5            | 7. df = 1 | 1 (P <    | 0.0000                | 1); l <sup>2</sup> = 8 | 5%    |         |                        |                                         |                                                                   |
|   | Test for overall effect: Z = 3.30          |                       |           | . (.      |                       | .,,                    |       |         |                        |                                         |                                                                   |
|   |                                            |                       | ,         |           |                       |                        |       |         |                        |                                         |                                                                   |
|   | Resveratrol                                |                       |           |           |                       |                        |       |         |                        |                                         |                                                                   |
|   | Faghihzadeh et al. 2014                    | -10.66                | 12.35     | 25        | -7.68                 | 8.24                   | 25    | 3.7%    | -2.98 [-8.80, 2.84]    | -+                                      | <b>??</b>                                                         |
|   | Chen et al. 2016                           | -6                    | 4.67      | 30        | -0.95                 | 5.25                   | 30    | 5.9%    | -5.05 [-7.56, -2.54]   |                                         | $\bullet$ ? $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$     |
|   | Heebøll et al. 2016                        | -33.1                 | 55.09     | 13        | -5.84                 | 24.59                  | 13    | 0.2%    | -27.26 [-60.05, 5.53]  | •                                       | <b>??</b> ? ● ● <b>?</b> ● ●                                      |
|   | Chachay et al. 2014                        | 45                    | 15        | 10        | 38                    | 15                     | 10    | 1.3%    | 7.00 [-6.15, 20.15]    |                                         | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
|   | Farzin et al. 2020                         | 32.52                 | 11.19     | 30        | 34.27                 | 21.06                  | 30    | 2.4%    | -1.75 [-10.28, 6.78]   |                                         | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
|   | Kantartzis et al. 2018                     | 1.62                  | 0.69      | 53        | 1.74                  | 1.08                   | 52    | 6.8%    | -0.12 [-0.47, 0.23]    | at                                      | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
|   | Subtotal (95% CI)                          |                       |           | 161       |                       |                        | 160   | 20.4%   | -2.14 [-5.63, 1.34]    | -                                       |                                                                   |
|   | Heterogeneity: Tau <sup>2</sup> = 9.09; Ch |                       |           | 5 (P = 0  | .002); l              | ² = 74%                |       |         |                        |                                         |                                                                   |
|   | Test for overall effect: Z = 1.20          | (P = 0.2              | 3)        |           |                       |                        |       |         |                        |                                         |                                                                   |
|   | Sılymarın                                  |                       |           |           |                       |                        |       |         |                        |                                         |                                                                   |
|   | Wah-Kheong et al. 2017                     | -13                   | 38.46     | 49        | -6                    | 26.23                  | 50    | 1.3%    | -7.00 [-19.99, 5.99]   |                                         | $\bullet \bullet \bullet \bullet \circ \circ \bullet \bullet$     |
|   | Anushiravani et al. 2019                   | -8.4                  | 7.88      | 30        |                       | 10.74                  | 30    | 4.4%    | -7.50 [-12.27, -2.73]  |                                         |                                                                   |
|   | Hashemi et al. 2009                        | 49.66                 | 33.26     | 50        | 66.16                 | 27.44                  | 50    | 1.5%    | -16.50 [-28.45, -4.55] |                                         | $\bullet \bullet \bullet \bullet ? \bullet \bullet$               |
|   | Masoodi et al. 2013                        | 54.7                  | 5.51      | 50        | 61.56                 | 3.39                   | 50    | 6.3%    | -6.86 [-8.65, -5.07]   |                                         | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
|   | Solhi et al. 2014                          | 30.5                  | 8.2       | 33        | 36.2                  | 12.4                   | 31    | 4.1%    | -5.70 [-10.88, -0.52]  |                                         | $\bullet \bullet \bullet \bullet ? \bullet \bullet$               |
|   | Subtotal (95% CI)                          |                       |           | 212       |                       |                        | 211   | 17.6%   | -6.99 [-8.56, -5.42]   | ◆                                       |                                                                   |
|   | Heterogeneity: Tau <sup>2</sup> = 0.00; Ch | ni² = 2.73            | df = 4    | (P = 0.6) | 50); l <sup>2</sup> = | 0%                     |       |         |                        |                                         |                                                                   |
|   | Test for overall effect: Z = 8.72          | (P < 0.0              | 0001)     |           |                       |                        |       |         |                        |                                         |                                                                   |
|   | Total (95% CI)                             |                       |           | 768       |                       |                        | 769   | 100.0%  | -3.84 [-5.49, -2.20]   | ◆                                       |                                                                   |
|   | Heterogeneity: Tau <sup>2</sup> = 10.29; C | chi² = 219            | 9.96, df  | = 22 (P   | < 0.00                | 001); l² :             | = 90% |         |                        |                                         |                                                                   |
|   | Test for overall effect: Z = 4.57          | (P < 0.0              | 0001)     |           |                       |                        |       |         |                        | -20 -10 0 10 20<br>experimental control |                                                                   |
|   | Test for subgroup differences:             | Chi <sup>2</sup> = 11 | .23, df   | = 2 (P =  | = 0.004               | ), l² = 82             | .2%   |         |                        | experimental control                    |                                                                   |
|   | Risk of bias legend                        |                       |           |           |                       |                        |       |         |                        |                                         |                                                                   |
|   | (A) Random sequence general                | tion (sele            | ction bia | as)       |                       |                        |       |         |                        |                                         |                                                                   |
|   | (B) Allocation concealment (se             |                       |           | ,         |                       |                        |       |         |                        |                                         |                                                                   |
|   | (C) Blinding of participants and           |                       |           | ormanc    | e bias)               |                        |       |         |                        |                                         |                                                                   |
|   | (D) Blinding of outcome assess             |                       |           |           |                       |                        |       |         |                        |                                         |                                                                   |
|   | (E) Incomplete outcome data (a             | attrition b           | ias)      | ,         |                       |                        |       |         |                        |                                         |                                                                   |
|   | (F) Selective reporting (reportin          | ng bias)              |           |           |                       |                        |       |         |                        |                                         |                                                                   |
|   | (G) Other bias                             |                       |           |           |                       |                        |       |         |                        |                                         |                                                                   |
|   |                                            |                       |           |           |                       |                        |       |         |                        |                                         |                                                                   |

FIGURE 3 | Forest plots of the effect of polyphenols on transaminase activity, including (A) ALT and (B) AST. ALT, alanine transaminase; AST, aspartate aminotransferase.

|                                           |                         | erimenta  |        |                         | ontrol     |       |         | Std. Mean Difference | Std. Mean Difference | Risk of Bias                                                              |
|-------------------------------------------|-------------------------|-----------|--------|-------------------------|------------|-------|---------|----------------------|----------------------|---------------------------------------------------------------------------|
| Study or Subgroup                         | Mean                    | SD        | Total  | Mean                    | SD         | Total | Weight  | IV. Random, 95% CI   | IV. Random. 95% CI   | ABCDEFG                                                                   |
| Curcumin                                  |                         |           |        |                         |            |       |         |                      |                      |                                                                           |
| Saadati et al. 2019                       |                         | 22.64     | 27     |                         | 27.79      | 23    | 4.9%    | -0.32 [-0.88, 0.24]  |                      | <b>0000</b>                                                               |
| Mirhafez et al. 2021                      | -9.09                   |           | 35     | 4.12                    |            | 37    | 5.2%    | -0.48 [-0.95, -0.01] |                      | <b></b>                                                                   |
| Cicero et al. 2020                        | 185                     | 13        | 40     | 189                     | 19         | 40    | 5.2%    | -0.24 [-0.68, 0.20]  |                      |                                                                           |
| Jarhahzadeh et al. 2021                   | 186.5                   | 36.49     |        | 182.62                  |            | 32    | 5.1%    | 0.12 [-0.37, 0.61]   |                      | <b>??</b>                                                                 |
| Jazayeri-Tehrani et al. 2019              | 195.2                   | 19.8      | 42     | 205                     | 20.5       | 42    | 5.3%    | -0.48 [-0.92, -0.05] |                      |                                                                           |
| Kalhori et al. 2017                       | 204                     | 39.1      | 21     | 217                     | 32.1       | 21    | 4.7%    | -0.36 [-0.97, 0.25]  |                      |                                                                           |
| Panahi et al.2017                         | -41.28                  |           | 44     | 15.3                    |            | 43    | 5.1%    | -1.47 [-1.95, -0.99] | <u> </u>             | <b>??</b>                                                                 |
| Saberi-Karimian et al. 2020               | -10.95                  |           | 27     | -4.48                   | 26.77      | 28    | 5.0%    | -0.25 [-0.78, 0.28]  |                      |                                                                           |
| Panahi et al.2019                         | -23.86                  | 9.32      | 35     | -19.21                  | 8.71       | 35    | 5.1%    | -0.51 [-0.99, -0.03] |                      |                                                                           |
| Rahmani et al. 2016                       | -24.22                  | 38.1      | 37     | 9.05                    |            | 40    | 5.1%    | -1.03 [-1.51, -0.55] |                      | <b>? ? + + ? +</b> +                                                      |
| le et al. 2024                            | 0.01                    | 0.11      | 40     | 0.07                    | 0.12       | 40    | 5.2%    | -0.52 [-0.96, -0.07] |                      |                                                                           |
| Safari et al. 2023                        | -3.5                    | 4.83      | 28     | -27.03                  | 8.31       | 28    | 4.0%    | 3.41 [2.57, 4.25]    | _                    | $\rightarrow$                                                             |
| Subtotal (95% CI)                         |                         |           | 408    |                         |            | 409   | 60.1%   | -0.23 [-0.69, 0.24]  | -                    |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.59; C | chi² = 111.             | .32, df = | 11 (P  | < 0.0000                | 1);  2 = 9 | 90%   |         |                      |                      |                                                                           |
| Test for overall effect: Z = 0.9          | 6 (P = 0.3              | 14)       |        |                         |            |       |         |                      |                      |                                                                           |
| Resveratrol                               |                         |           |        |                         |            |       |         |                      |                      |                                                                           |
| chen et al. 2016                          | -0.67                   | 0.5       | 30     | -0.15                   | 0.77       | 30    | 5.0%    | -0.79 [-1.32, -0.26] |                      | $\odot$                                                                   |
| chachay et al. 2014                       | 5.1                     | 1.1       | 10     | 4.3                     | 1.2        | 10    | 3.8%    | 0.67 [-0.24, 1.57]   |                      | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| aghihzadeh et al. 2014                    | -2.27                   | 37.08     | 25     | -8.31                   | 31.7       | 25    | 4.9%    | 0.17 [-0.38, 0.73]   | <u> </u>             | ??                                                                        |
| arzin et al. 2020                         | 217.56                  | 40.4      | 30     | 211.39                  | 34.48      | 30    | 5.1%    | 0.16 [-0.34, 0.67]   |                      | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
| Kantartzis et al. 2018                    | 200                     | 41        | 53     | 198                     | 41         | 52    | 5.4%    | 0.05 [-0.33, 0.43]   | +                    | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| Subtotal (95% CI)                         |                         |           | 148    |                         |            | 147   | 24.2%   | -0.00 [-0.41, 0.41]  | <b>•</b>             |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.14; C | chi² = 11.4             | 9, df = 4 | (P=(   | ).02); l <sup>2</sup> = | 65%        |       |         |                      |                      |                                                                           |
| Test for overall effect: Z = 0.0          | 0 (P = 1.0              | (0)       |        |                         |            |       |         |                      |                      |                                                                           |
| Silymarin                                 |                         |           |        |                         |            |       |         |                      |                      |                                                                           |
| Wah-Kheong et al. 2017                    | -0.33                   | 1.29      | 49     | -0.09                   | 0.88       | 50    | 5.4%    | -0.22 [-0.61, 0.18]  | -+                   | ••••                                                                      |
| Anushiravani et al. 2019                  | -1.4                    |           | 30     | -7                      | 52.06      | 30    | 5.1%    | 0.12 [-0.39, 0.62]   | <u>+-</u>            |                                                                           |
| Hashemi et al. 2009                       | 238.42                  |           | 50     | 220.82                  |            | 50    | 5.4%    | 0.31 [-0.09, 0.70]   |                      |                                                                           |
| Subtotal (95% CI)                         |                         | 00101     | 129    | LEGIOL                  |            | 130   | 15.8%   | 0.06 [-0.26, 0.39]   | +                    |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.03; C | chi <sup>2</sup> = 3.42 | df = 2    | P = 0. | 18): l <sup>2</sup> = - | 42%        |       |         |                      | [                    |                                                                           |
| Test for overall effect: Z = 0.3          |                         |           |        | ,.                      |            |       |         |                      |                      |                                                                           |
| Fotal (95% CI)                            |                         |           | 685    |                         |            | 686   | 100.0%  | -0.13 [-0.43, 0.17]  | •                    |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.40; C | hi2 - 140               | 12 df -   |        | < 0.0000                | 1). 12 - 1 |       | 100.076 | -0.10[-0.40, 0.17]   |                      | _                                                                         |
|                                           |                         |           | 19 (P  | < 0.0000                | 1); 1* = ( | 50%   |         |                      | -2 -1 0 1 2          |                                                                           |
| Test for overall effect: Z = 0.8          |                         |           | 0.0    | 0.001 17                | - 00/      |       |         |                      | experimental control |                                                                           |
| Test for subgroup differences             | -000 = 1.               | .03, di = | 2 (P = | 0.00), 1*               | - 0%       |       |         |                      |                      |                                                                           |
| Risk of bias legend                       |                         |           |        |                         |            |       |         |                      |                      |                                                                           |
| A) Random sequence gener                  |                         |           | is)    |                         |            |       |         |                      |                      |                                                                           |
| (B) Allocation concealment (s)            |                         |           |        |                         |            |       |         |                      |                      |                                                                           |
| C) Blinding of participants an            |                         |           |        | e bias)                 |            |       |         |                      |                      |                                                                           |
| D) Blinding of outcome asses              |                         |           | bias)  |                         |            |       |         |                      |                      |                                                                           |
| E) Incomplete outcome data                |                         | oias)     |        |                         |            |       |         |                      |                      |                                                                           |
| F) Selective reporting (report            | ing hige)               |           |        |                         |            |       |         |                      |                      |                                                                           |
| r) Selective reporting (report            | ing bias)               |           |        |                         |            |       |         |                      |                      |                                                                           |

В Experimental Control Std. Mean Difference Std. Mean Difference Risk of Bias dy or Subgro Curcumin SD Total SD Total Weight IV. Random, 95% CI IV. Random. 95% CI BCDEFG Stu ..... Cicero et al. 2020 151 40 157 19 40 5 3% -0 34 1-0 78 0 10 16 Jarhahzadeh et al. 2021 Jazayeri-Tehrani et al. 2019 141.78 142.5 65.57 32 42 155.62 175.3 85.35 62.5 32 42 21 37 43 35 40 23 40 5.1% 5.3% -0.18 [-0.67, 0.31] -0.57 [-1.01, -0.14] 49.9 106 38.97 24.31 18.67 49.07 47.18 80.2 41.6 29.81 248 1.34 5.61 Kalhori et al. 2017 Mirhafez et al. 2021 21 35 44 35 37 27 40 28 381 202 4.6% -0.48 [-1.09, 0.13] -0.09 5.2% -0.04 [-0.50, 0.43] Panahi et al.2017 -1.15 [-1.61, -0.70] 19.44 -6.62 16.52 Panahi et al.2019 -10.59 15.18 4.9% -1.75 [-2.30. -1.19] -26.24 -18.59 80.61 79.45 5.3% 4.8% -0.29 [-0.74, 0.16] -0.52 [-1.08, 0.05] Rahmani et al. 2016 Saadati et al. 2019 5.1% 4.8% 55.9% He et al. 2024 -0.1 0.05 0.11 0.21 -1.36 [-1.85, -0.87] 366666 366666 Safari et al. 2023 Subtotal (95% CI) 28 381 1.06 [0.49, 1.62] -0.51 [-0.92, -0.10] -13.03 16.52 -27.03 8.31 Heterogeneity: Tau<sup>2</sup> = 0.42; Chi<sup>2</sup> = 75.58, df = 10 (P < 0.00001); l<sup>2</sup> = 87% Test for overall effect: Z = 2.45 (P = 0.01) Resveratrol 0.49 0.85 0.77 30 13 10 -0.22 0.48 1.45 -22.2 0.62 1.09 0.86 30 13 10 5.1% 4.0% 3.6% -0.28 [-0.79, 0.23] -0.48 [-1.26, 0.31] 0.08 [-0.79, 0.96] Chen et al. 2016 Heebøll et al. 2016 -0.38 0 Chachay et al. 2014 25 30 52 160 -36.88 87.25 179.16 111.38 153 94 25 30 53 94.39 97.38 64 4.9% 5.1% 5.5% 28.1% Faghihzadeh et al. 2014 -0.16 [-0.71, 0.40] 171.46 Farzin et al. 2020 0.07 [-0.43, 0.58] Kantartzis et al. 2018 Subtotal (95% CI) 0.26 [-0.13, 0.64] -0.01 [-0.23, 0.21] 161 Heterogeneity: Tau<sup>2</sup> = 0.00; Chi<sup>2</sup> = 4.77, df = 5 (P = 0.44); l<sup>2</sup> = 0% Test for overall effect: Z = 0.10 (P = 0.92) Silymarin Wah-Kheong et al. 2017 -0.2 0.52 -4.7 57.09 49 0.04 0.44 5.5% -0.49 [-0.90, -0.09] 50 30 -6.5 49.19 50 268.52 102.68 129 30 50 130 5.1% 5.5% 16.0% 0.03 [-0.47, 0.54] -0.08 [-0.47, 0.31] -0.20 [-0.52, 0.12] Anushiravani et al. 2019 Hashemi et al. 2009 Subtotal (95% CI) 260.16 102.18 Heterogeneity: Tau<sup>2</sup> = 0.03; Chi<sup>2</sup> = 3.25, df = 2 (P = 0.20); l<sup>2</sup> = 38% Test for overall effect: Z = 1.24 (P = 0.21) Total (95% CI) -0.34 [-0.59, -0.08] 671 100.0% 671  $\label{eq:rescaled} \begin{array}{l} \mbox{Heterogeneity: Tau^2 = 0.27; Ch^{i2} = 98.89, df = 19 (P < 0.00001); i^2 = 81\% \\ \mbox{Test for overall effect: Z = 2.59 (P = 0.010) \\ \mbox{Test for subgroup differences: Ch^{i2} = 4.62, df = 2 (P = 0.10), i^2 = 56.7\% \\ \end{array}$ + .2 ò 2 4 control experimental Risk of bias legend (A) Random sequence generation (selection bias) (B) Allocation concealment (selection bias) (C) Blinding of participants and personnel (performance bias)
 (D) Blinding of outcome assessment (detection bias)
 (E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias)(G) Other bias



\_

| C                                                                             |                       |          |          |           |                       |       |        |                      |                      |                                                                           |
|-------------------------------------------------------------------------------|-----------------------|----------|----------|-----------|-----------------------|-------|--------|----------------------|----------------------|---------------------------------------------------------------------------|
|                                                                               | Exp                   | erimen   | tal      | c         | ontrol                |       |        | Std. Mean Difference | Std. Mean Difference | Risk of Bias                                                              |
| Study or Subgroup                                                             | Mean                  | SD       | Total    | Mean      | SD                    | Total | Weight | IV. Random, 95% CI   | IV, Random, 95% CI   | ABCDEFG                                                                   |
| Curcumin                                                                      |                       |          |          |           |                       |       |        |                      |                      |                                                                           |
| Panahi et al.2019                                                             | 0.45                  | 2.58     | 35       | 2.97      | 2.66                  | 35    | 4.9%   | -0.95 [-1.45, -0.46] | -                    | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| Rahmani et al. 2016                                                           | 2.42                  | 5.4      | 37       | 4.1       | 14.39                 | 40    | 5.1%   | -0.15 [-0.60, 0.30]  | -+                   | <b>? ? + + ? + </b> +                                                     |
| Saadati et al. 2019                                                           | -2.57                 | 9.56     | 27       | -0.15     | 0.37                  | 23    | 4.5%   | -0.34 [-0.90, 0.22]  | -+                   | $\bullet \bullet \bullet \bullet \circ \circ \bullet \bullet$             |
| Mirhafez et al. 2021                                                          | 0.49                  | 7.93     | 35       | -3.98     | 5.76                  | 37    | 5.0%   | 0.64 [0.17, 1.12]    | -                    | $\bullet \bullet \bullet \bullet \circ \circ \circ \bullet$               |
| Cicero et al. 2020                                                            | 44                    | 4        | 40       | 42        | 3                     | 40    | 5.1%   | 0.56 [0.11, 1.01]    |                      | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| Jarhahzadeh et al. 2021                                                       | 42.34                 | 4.13     | 32       | 44.59     | 7.17                  | 32    | 4.9%   | -0.38 [-0.87, 0.11]  | -1                   | <b>? ? + + + +</b> +                                                      |
| Jazayeri-Tehrani et al. 2019                                                  | 51.4                  | 6.6      | 42       | 43.8      | 5.4                   | 42    | 5.0%   | 1.25 [0.78, 1.72]    | -                    |                                                                           |
| Kalhori et al. 2017                                                           | 44.7                  | 7.19     | 21       | 40.8      | 7.67                  | 21    | 4.2%   | 0.51 [-0.10, 1.13]   |                      | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| Panahi et al.2017                                                             | -1.73                 | 4.62     | 44       | -0.88     | 5.22                  | 43    | 5.3%   | -0.17 [-0.59, 0.25]  | -+                   | <b>??</b>                                                                 |
| Saberi-Karimian et al. 2020                                                   | 1.36                  | 4.96     | 27       | 1.48      | 5.24                  | 28    | 4.7%   | -0.02 [-0.55, 0.51]  | +                    |                                                                           |
| He et al. 2024                                                                | 0.05                  | 0.23     | 40       | -0.01     | 0.03                  | 40    | 5.2%   | 0.36 [-0.08, 0.80]   | ·                    | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| Safari et al. 2023                                                            | 2.89                  | 2.67     | 28       | 1.57      | 1.91                  | 28    | 4.6%   | 0.56 [0.03, 1.10]    | <u></u>              | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| Subtotal (95% CI)                                                             |                       |          | 408      |           |                       | 409   | 58.4%  | 0.16 [-0.18, 0.50]   | <b>•</b>             |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.29; C                                     | hi² = 63.             | 52, df = | 11 (P    | < 0.000   | ); I <sup>2</sup> =   | 83%   |        |                      |                      |                                                                           |
| Test for overall effect: Z = 0.9                                              | 1 (P = 0.3            | 36)      |          |           |                       |       |        |                      |                      |                                                                           |
| Resveratrol                                                                   |                       |          |          |           |                       |       |        |                      |                      |                                                                           |
| Chen et al. 2016                                                              | 0.04                  | 0.36     | 30       | -0.02     | 0.41                  | 30    | 4.8%   | 0.15 [-0.35, 0.66]   | +                    | $\bullet$ ? $\bullet$ $\bullet$ $\bullet$ $\bullet$                       |
| Heebøll et al. 2016                                                           | -0.03                 | 0.31     | 13       | -0.02     | 0.3                   | 13    | 3.4%   | -0.03 [-0.80, 0.74]  | +                    | <b>??</b> 🕈 🖶 <b>?</b> 🖶 🗣                                                |
| Chachay et al. 2014                                                           | 1                     | 0.71     | 10       | 0.9       | 0.34                  | 10    | 2.9%   | 0.17 [-0.71, 1.05]   | +-                   | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
| Faghihzadeh et al. 2014                                                       | -6.47                 | 8.64     | 25       | -7.88     | 8.72                  | 25    | 4.5%   | 0.16 [-0.40, 0.72]   | +                    | ??                                                                        |
| Farzin et al. 2020                                                            | 37.12                 | 11.28    | 30       | 37.69     | 8.55                  | 30    | 4.8%   | -0.06 [-0.56, 0.45]  | +                    | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| Kantartzis et al. 2018                                                        | 51                    | 13       | 53       | 48        | 9                     | 52    | 5.5%   | 0.27 [-0.12, 0.65]   | t                    | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
| Subtotal (95% CI)                                                             |                       |          | 161      |           |                       | 160   | 25.9%  | 0.14 [-0.08, 0.36]   | •                    |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.00; C                                     |                       |          | 5 (P = 0 | 0.95); l² | = 0%                  |       |        |                      |                      |                                                                           |
| Test for overall effect: Z = 1.2                                              | 5 (P = 0.             | 22)      |          |           |                       |       |        |                      |                      |                                                                           |
| Silymarin                                                                     |                       |          |          |           |                       |       |        |                      |                      |                                                                           |
| Wah-Kheong et al. 2017                                                        | 0.07                  | 0.16     | 49       | 0.02      | 0.18                  | 50    | 5.5%   | 0.29 [-0.10, 0.69]   | ٣                    | <b></b>                                                                   |
| Anushiravani et al. 2019                                                      |                       | 11.45    | 30       | -0.3      | 7.71                  | 30    | 4.8%   | 0.04 [-0.47, 0.55]   | Ť                    |                                                                           |
| Hashemi et al. 2009                                                           | 40.9                  | 5.75     | 50       | 39.4      | 5.33                  | 50    | 5.5%   | 0.27 [-0.13, 0.66]   | t                    | $\bullet \bullet \bullet \bullet \bullet ? \bullet \bullet$               |
| Subtotal (95% CI)                                                             |                       |          | 129      |           |                       | 130   | 15.7%  | 0.22 [-0.02, 0.47]   | •                    |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.00; C<br>Test for overall effect: Z = 1.7 |                       |          | 2 (P = 0 | ).72); l² | = 0%                  |       |        |                      |                      |                                                                           |
| Total (95% CI)                                                                |                       |          | 698      |           |                       | 699   | 100.0% | 0.15 [-0.04, 0.35]   | •                    |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.14; C                                     | hi <sup>2</sup> = 65. | 66. df = | 20 (P    | < 0.000   | )1);   <sup>2</sup> = |       |        |                      | <u> </u>             | _                                                                         |
| Test for overall effect: Z = 1.5                                              |                       |          | (-       |           |                       |       |        |                      | -4 -2 0 2 4          |                                                                           |
| Test for subgroup differences                                                 |                       |          | = 2 (P   | = 0.87).  | $l^2 = 0\%$           |       |        |                      | experimental control |                                                                           |
| Dist of the local d                                                           |                       |          | - (.     |           | /0                    |       |        |                      |                      |                                                                           |

Test for subgroup differences: Chi<sup>2</sup> = 0.27, df = 2 (P = 0.87), P <u>Risk of bias legand</u>. (A) Random sequence generation (selection bias) (B) Allocation concealment (selection bias) (C) Blinding of participants and personnel (performance bias) (D) Blinding of outcome assessment (detection bias) (E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias) (G) Other bias

# D

|                                                                                        | Expe                    | erimenta   |          |                         | ontrol        |       |         | Std. Mean Difference | Std. Mean Difference | Risk of Bias                                                              |
|----------------------------------------------------------------------------------------|-------------------------|------------|----------|-------------------------|---------------|-------|---------|----------------------|----------------------|---------------------------------------------------------------------------|
| Study or Subgroup                                                                      | Mean                    | SD         | Total    | Mean                    | SD            | Total | Weight  | IV. Random, 95% CI   | IV. Random, 95% Cl   | ABCDEFG                                                                   |
| Curcumin                                                                               |                         |            |          |                         |               |       |         |                      |                      |                                                                           |
| Cicero et al. 2020                                                                     | 111                     | 8          | 40       | 116                     | 14            | 40    | 4.9%    | -0.43 [-0.88, 0.01]  |                      |                                                                           |
| Jarhahzadeh et al. 2021                                                                | 108.4                   | 26.83      | 32       | 104.6                   | 22.99         | 32    | 4.9%    | 0.15 [-0.34, 0.64]   |                      | <b>??</b>                                                                 |
| Jazayeri-Tehrani et al. 2019                                                           | 114.6                   | 20.5       | 42       | 125.7                   | 22.2          | 42    | 5.0%    | -0.51 [-0.95, -0.08] |                      | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
| Kalhori et al. 2017                                                                    | 119                     | 31.8       | 21       | 128                     | 28.3          | 21    | 4.6%    | -0.29 [-0.90, 0.32]  |                      | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
| Mirhafez et al. 2021                                                                   | -7.41                   | 27.91      | 35       | 11.02                   | 20.38         | 37    | 4.9%    | -0.75 [-1.23, -0.27] |                      | $\bullet \bullet \bullet \bullet ? \bullet \bullet$                       |
| Panahi et al.2017                                                                      | -30.25                  | 21.27      | 44       | 21.01                   | 29.36         | 43    | 4.8%    | -1.99 [-2.50, -1.47] |                      | ??                                                                        |
| Panahi et al.2019                                                                      | -18.96                  | 7.5        | 35       | -31.12                  | 6.45          | 35    | 4.7%    | 1.72 [1.17, 2.27]    |                      |                                                                           |
| Rahmani et al. 2016                                                                    | -11.46                  | 24.18      | 37       | 9.43                    | 23.5          | 40    | 4.9%    | -0.87 [-1.34, -0.40] |                      | ??                                                                        |
| Saadati et al. 2019                                                                    |                         | 20.91      | 27       | -8.39                   | 27.01         | 23    | 4.7%    | 0.05 [-0.50, 0.61]   |                      |                                                                           |
| Saberi-Karimian et al. 2020                                                            |                         | 19.75      | 27       |                         | 29.96         | 28    | 4.8%    | 0.19 [-0.34, 0.72]   |                      |                                                                           |
| He et al. 2024                                                                         | 0.17                    | 0.11       | 40       | 0.07                    | 0.11          | 40    | 4.9%    | 0.90 [0.44, 1.36]    |                      |                                                                           |
| Safari et al. 2023                                                                     | -1.77                   | 4.41       | 28       | 9.47                    | 4.58          | 28    | 4.4%    | -2.47 [-3.17, -1.76] |                      |                                                                           |
| Subtotal (95% CI)                                                                      |                         |            | 408      |                         |               | 409   | 57.6%   | -0.35 [-0.93, 0.23]  |                      |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.99; C                                              | $chi^2 = 172$           | 57. df =   | 11 (P    | < 0.0000                | 1): $ ^2 = 9$ | 94%   |         |                      |                      |                                                                           |
| Test for overall effect: Z = 1.1                                                       |                         |            |          |                         | .,            |       |         |                      |                      |                                                                           |
|                                                                                        | ,                       | ,          |          |                         |               |       |         |                      |                      |                                                                           |
| Resveratrol                                                                            |                         |            |          |                         |               |       |         |                      |                      |                                                                           |
| Chachay et al. 2014                                                                    | 3.5                     | 0.9        | 10       | 2.7                     | 0.9           | 10    | 3.9%    | 0.85 [-0.07, 1.78]   |                      |                                                                           |
| Chen et al. 2016                                                                       | -0.41                   | 0.35       | 30       | 0.08                    | 0.71          | 30    | 4.8%    | -0.86 [-1.39, -0.33] |                      | ••••                                                                      |
| Faghihzadeh et al. 2014                                                                | 8.3                     | 28.21      | 25       | -13.21                  | 25.01         | 25    | 4.7%    | 0.79 [0.22, 1.37]    |                      | ??                                                                        |
| Farzin et al. 2020                                                                     | 144.6                   | 35.23      | 30       | 139.41                  | 32.12         | 30    | 4.8%    | 0.15 [-0.35, 0.66]   | +                    |                                                                           |
| Heebøll et al. 2016                                                                    | 0.13                    | 1.34       | 13       | -0.11                   | 1.52          | 13    | 4.3%    | 0.16 [-0.61, 0.93]   | <u> </u>             | ??                                                                        |
| Kantartzis et al. 2018                                                                 | 112                     | 33         | 53       | 115                     | 31            | 52    | 5.0%    | -0.09 [-0.48, 0.29]  | -+                   |                                                                           |
| Subtotal (95% CI)                                                                      |                         |            | 161      |                         |               | 160   | 27.6%   | 0.12 [-0.36, 0.61]   | +                    |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.27; C                                              | chi² = 21.3             | 9, df = 5  | 5 (P = 0 | .0007); 1               | 2 = 77%       |       |         |                      |                      |                                                                           |
| Test for overall effect: Z = 0.4                                                       | 9 (P = 0.6              | i3)        |          |                         |               |       |         |                      |                      |                                                                           |
| Silymarin                                                                              |                         |            |          |                         |               |       |         |                      |                      |                                                                           |
| Wah-Kheong et al. 2017                                                                 | -0.31                   | 1.23       | 49       | -0.17                   | 0.78          | 50    | 5.0%    | -0.14 [-0.53, 0.26]  |                      | $\bullet \bullet \bullet \bullet \bullet \circ \circ \bullet \bullet$     |
| Anushiravani et al. 2019                                                               | -0.9                    | 38.8       | 30       | -0.6                    | 44.19         | 30    | 4.8%    | -0.01 [-0.51, 0.50]  | -                    |                                                                           |
| Hashemi et al. 2009                                                                    | 160.42                  | 48.47      | 50       | 142.96                  | 47.75         | 50    | 5.0%    | 0.36 [-0.04, 0.76]   | -                    | $\bullet \bullet \bullet \bullet \circ \circ \circ \circ \bullet \bullet$ |
| Subtotal (95% CI)                                                                      |                         |            | 129      |                         |               | 130   | 14.9%   | 0.08 [-0.23, 0.39]   | <b>•</b>             |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.03; C                                              | Chi <sup>2</sup> = 3.19 | , df = 2   | (P = 0.) | 20); l <sup>2</sup> = 3 | 37%           |       |         |                      |                      |                                                                           |
| Test for overall effect: Z = 0.5                                                       | 51 (P = 0.6             | (1)        |          |                         |               |       |         |                      |                      |                                                                           |
| Total (95% CI)                                                                         |                         |            | 698      |                         |               | 600   | 100.0%  | -0.15 [-0.51, 0.21]  |                      |                                                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.62; C                                              | hi2 = 207               | 06 df -    |          | < 0.0000                | 1)-12 = 0     |       | .00.0 % | -0.10[-0.01, 0.21]   |                      |                                                                           |
| Test for overall effect: Z = 0.82                                                      |                         |            | 20 (P    | - 0.0000                | 17, 1-43      | 50 70 |         |                      | -2 -1 0 1 2          |                                                                           |
| Test for subgroup differences                                                          |                         |            | 2 (D -   | 0 20) 12                | - 0%          |       |         |                      | experimental control |                                                                           |
|                                                                                        |                         | 00, di =   | 2 (P =   | 0.33), 1-               | - 0 %         |       |         |                      |                      |                                                                           |
| Risk of bias legend                                                                    | -New Josefer            | -the black |          |                         |               |       |         |                      |                      |                                                                           |
| (A) Random sequence generation                                                         |                         |            | as)      |                         |               |       |         |                      |                      |                                                                           |
| (B) Allocation concealment (s                                                          |                         |            |          |                         |               |       |         |                      |                      |                                                                           |
| (C) Blinding of participants an                                                        |                         |            |          | e bias)                 |               |       |         |                      |                      |                                                                           |
|                                                                                        |                         |            |          |                         |               |       |         |                      |                      |                                                                           |
|                                                                                        |                         |            | Dias)    |                         |               |       |         |                      |                      |                                                                           |
| <ul> <li>(D) Blinding of outcome asses</li> <li>(E) Incomplete outcome data</li> </ul> | (attrition b            |            | Dias)    |                         |               |       |         |                      |                      |                                                                           |
|                                                                                        | (attrition b            |            | Dias)    |                         |               |       |         |                      |                      |                                                                           |

FIGURE 4 | (Continued)

|                                           | Expe         | erimenta  |          |         | Control             |       |        | Std. Mean Difference | Std. Mean Difference | Risk of Bias                                                              |
|-------------------------------------------|--------------|-----------|----------|---------|---------------------|-------|--------|----------------------|----------------------|---------------------------------------------------------------------------|
| Study or Subgroup                         | Mean         | SD        | Total    | Mean    | SD                  | Total | Weight | IV, Fixed, 95% CI    | IV. Fixed. 95% Cl    | ABCDEFG                                                                   |
| Curcumin                                  |              |           |          |         |                     |       |        |                      |                      |                                                                           |
| Cicero et al. 2020                        | 101          | 6         | 40       | 105     | 8                   | 40    | 6.6%   | -0.56 [-1.01, -0.11] |                      |                                                                           |
| Jarhahzadeh et al. 2021                   | 101.08       |           | 32       |         | 10.94               | 32    | 5.4%   | 0.38 [-0.12, 0.87]   | <u>†</u>             | <b>??+++++</b>                                                            |
| Jazayeri-Tehrani et al. 2019              | 86.3         | 5.2       | 42       |         | 5.5                 | 42    | 7.1%   | -0.35 [-0.78, 0.08]  | 1                    |                                                                           |
| Kalhori et al. 2017                       | 85.23        |           | 21       | 86.28   | 9.34                | 21    | 3.6%   | -0.09 [-0.69, 0.52]  | _ <del>_</del> _     |                                                                           |
| virhafez et al. 2021                      | -8.83        | 48.41     | 35       | 1.81    | 10.66               | 37    | 6.1%   | -0.30 [-0.77, 0.16]  | +                    | <b></b>                                                                   |
| Rahmani et al. 2016                       | -4.08        | 19.42     | 37       | 1.27    | 13.31               | 40    | 6.5%   | -0.32 [-0.77, 0.13]  |                      | <b>? ? + + ? + </b> +                                                     |
| Saadati et al. 2019                       | 4.59         | 7.63      | 27       | 4.1     | 14.25               | 23    | 4.3%   | 0.04 [-0.51, 0.60]   |                      | $\bullet \bullet \bullet \bullet \bullet ? \bullet \bullet$               |
| Saberi-Karimian et al. 2020               | -5.27        | 22.38     | 27       | -1.2    | 9.68                | 28    | 4.7%   | -0.23 [-0.76, 0.30]  | -+                   | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| le et al. 2024                            | -0.03        | 0.02      | 40       | 0.03    | 0.03                | 40    | 4.0%   | -2.33 [-2.90, -1.76] |                      | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$         |
| Safari et al. 2023                        | 0.01         | 0.02      | 28       | 0.02    | 0.01                | 28    | 4.6%   | -0.62 [-1.16, -0.09] |                      | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
| Subtotal (95% CI)                         |              |           | 329      |         |                     | 331   | 53.0%  | -0.41 [-0.57, -0.25] | ◆                    |                                                                           |
| leterogeneity: Chi <sup>2</sup> = 58.25,  | df = 9 (P <  | 0.0000    | 1); l² = | 85%     |                     |       |        |                      |                      |                                                                           |
| Test for overall effect: Z = 5.0          | 05 (P < 0.0  | 0001)     |          |         |                     |       |        |                      |                      |                                                                           |
| Resveratrol                               |              |           |          |         |                     |       |        |                      |                      |                                                                           |
| Chachay et al. 2014                       | 5.4          | 0.5       | 10       | 5.6     | 0.5                 | 10    | 1.7%   | -0.38 [-1.27, 0.50]  | +-                   |                                                                           |
| chen et al. 2016                          | -0.64        | 0.31      | 30       | -0.1    | 0.82                | 30    | 4.7%   | -0.86 [-1.39, -0.33] |                      | $\bullet$                                                                 |
| aghihzadeh et al. 2014                    | -1.72        | 10.75     | 25       | 1.5     | 15.66               | 25    | 4.3%   | -0.24 [-0.79, 0.32]  | -+                   | ??+++++                                                                   |
| arzin et al. 2020                         | 91.24        | 7.21      | 30       | 91      | 7.15                | 30    | 5.2%   | 0.03 [-0.47, 0.54]   |                      | •••••                                                                     |
| Kantartzis et al. 2018                    | 5.4          | 0.61      | 53       | 5.51    | 0.64                | 52    | 9.0%   | -0.17 [-0.56, 0.21]  | -+                   | •••••                                                                     |
| Subtotal (95% CI)                         |              |           | 148      |         |                     | 147   | 24.8%  | -0.29 [-0.52, -0.06] | ◆                    |                                                                           |
| leterogeneity: Chi <sup>2</sup> = 6.42, d | f=4 (P=)     | 0.17); l² | = 38%    |         |                     |       |        |                      |                      |                                                                           |
| est for overall effect: Z = 2.4           |              |           |          |         |                     |       |        |                      |                      |                                                                           |
| Sılymarın                                 |              |           |          |         |                     |       |        |                      |                      |                                                                           |
| Vah-Kheong et al. 2017                    | 0.3          | 1.67      | 49       | 0.7     | 2.13                | 50    | 8.5%   | -0.21 [-0.60, 0.19]  | -+                   | $\bullet \bullet \bullet \bullet ? \bullet \bullet$                       |
| lashemi et al. 2009                       | 108.34       |           | 50       |         | 45.18               | 50    | 8.6%   | 0.03 [-0.37, 0.42]   | +                    | $\bullet \bullet \bullet \bullet \circ \circ \bullet \bullet$             |
| Anushiravani et al. 2019                  |              | 14.46     | 30       |         | 26.68               | 30    | 5.1%   | -0.23 [-0.74, 0.27]  | -+                   |                                                                           |
| Subtotal (95% CI)                         |              |           | 129      |         |                     | 130   | 22.2%  | -0.12 [-0.37, 0.12]  |                      |                                                                           |
| Heterogeneity: Chi <sup>2</sup> = 0.92, d | f = 2 (P = ( | 0.63); l² | = 0%     |         |                     |       |        |                      |                      |                                                                           |
| lest for overall effect: Z = 0.9          |              |           |          |         |                     |       |        |                      |                      |                                                                           |
| Fotal (95% CI)                            |              |           | 606      |         |                     | 608   | 100.0% | -0.31 [-0.43, -0.20] | •                    |                                                                           |
| Heterogeneity: Chi <sup>2</sup> = 69.36,  | df = 17 (P   | < 0.000   | 01); l²  | = 75%   |                     |       |        |                      | <u>t t t t</u>       | +                                                                         |
| Test for overall effect: Z = 5.3          |              |           | // .     |         |                     |       |        |                      | -4 -2 0 2            | 4                                                                         |
| lest for subgroup differences             |              |           | 2 (P =   | 0 15) 1 | <sup>2</sup> = 46 9 | %     |        |                      | experimental control |                                                                           |
| Risk of bias legend                       | = 0.         | , ui –    | - (7 -   | 00), 1  | 10.0                |       |        |                      |                      |                                                                           |

Risk of bias legend (A) Random sequence generation (selection bias)

(A) Kandom sequence generation (selection bias)
 (B) Allocation concealment (selection bias)
 (C) Blinding of participants and personnel (performance bias)
 (D) Blinding of outcome assessment (detection bias)
 (E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)(G) Other bias

# В

|                                           |            | erimen   |          | -        | ontrol                |                     |        | Mean Difference      | Mean Difference                   | Risk of Bias                                                                                                                                               |
|-------------------------------------------|------------|----------|----------|----------|-----------------------|---------------------|--------|----------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study or Subgroup                         | Mean       | SD       | Total    | Mean     | SD                    | Total               | Weight | IV, Random, 95% CI   | I IV. Random, 95% CI              | ABCDEFG                                                                                                                                                    |
| Curcumin                                  |            |          |          |          |                       |                     |        |                      |                                   |                                                                                                                                                            |
| Cicero et al. 2020                        | 3.8        | 1.1      | 40       | 4.7      | 1.4                   | 40                  | 8.7%   | -0.90 [-1.45, -0.35] |                                   |                                                                                                                                                            |
| Jazayeri-Tehrani et al. 2019              | 1.39       | 0.21     | 42       | 1.65     | 0.18                  | 42                  | 9.2%   | -0.26 [-0.34, -0.18] | •                                 |                                                                                                                                                            |
| Kalhori et al. 2017                       | 2.48       | 0.89     | 21       | 3.08     | 1.17                  | 21                  | 8.5%   | -0.60 [-1.23, 0.03]  |                                   |                                                                                                                                                            |
| Panahi et al.2017                         | -0.58      | 2.05     | 44       | -0.27    | 0.97                  | 43                  | 8.5%   | -0.31 [-0.98, 0.36]  | +                                 | ??++++                                                                                                                                                     |
| Saadati et al. 2019                       | -0.67      | 0.77     | 27       | -0.97    | 1.21                  | 23                  | 8.6%   | 0.30 [-0.27, 0.87]   |                                   | ++++                                                                                                                                                       |
| He et al. 2024                            | -2.34      | 1.23     | 40       | 3.64     | 2.1                   | 40                  | 8.3%   | -5.98 [-6.73, -5.23] | •                                 | $\bullet \bullet $ |
| Subtotal (95% CI)                         |            |          | 214      |          |                       | 209                 | 51.8%  | -1.27 [-2.53, -0.01] |                                   |                                                                                                                                                            |
| Heterogeneity: Tau <sup>2</sup> = 2.38; C | hi² = 227  | 7.72, di | f = 5 (P | < 0.00   | 001); l <sup>a</sup>  | ² = 98%             | ,      |                      |                                   |                                                                                                                                                            |
| Test for overall effect: Z = 1.9          | 8 (P = 0.  | 05)      |          |          |                       |                     |        |                      |                                   |                                                                                                                                                            |
| Resveratrol                               |            |          |          |          |                       |                     |        |                      |                                   |                                                                                                                                                            |
| Chachay et al. 2014                       | 3.7        | 1.26     | 10       | 3.08     | 0.48                  | 10                  | 8.1%   | 0.62 [-0.22, 1.46]   | <b>+-</b>                         | $\bullet \bullet $ |
| Chen et al. 2016                          | -0.6       | 1.15     | 30       | 0.09     | 1.37                  | 30                  | 8.5%   | -0.69 [-1.33, -0.05] |                                   | + $?$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                                                                                                              |
| Faghihzadeh et al. 2014                   | -0.26      | 1.48     | 25       | -0.74    | 1.23                  | 25                  | 8.3%   | 0.48 [-0.27, 1.23]   | +                                 | ??++++                                                                                                                                                     |
| Farzin et al. 2020                        | 1.84       | 2.03     | 30       | 2.79     | 3.53                  | 30                  | 6.6%   | -0.95 [-2.41, 0.51]  |                                   | $\bullet \bullet $ |
| Heebøll et al. 2016                       | -0.08      | 0.77     | 13       | -0.09    | 1.21                  | 13                  | 8.2%   | 0.01 [-0.77, 0.79]   |                                   | <b>??++?</b> ++                                                                                                                                            |
| Kantartzis et al. 2018                    | 3.83       | 1.49     | 53       | 4.45     | 2.13                  | 52                  | 8.4%   | -0.62 [-1.32, 0.08]  |                                   | <b>+++++</b> ++                                                                                                                                            |
| Subtotal (95% CI)                         |            |          | 161      |          |                       | 160                 | 48.2%  | -0.15 [-0.65, 0.36]  | <b>+</b>                          |                                                                                                                                                            |
| Heterogeneity: Tau <sup>2</sup> = 0.22; C | hi² = 11.  | 69, df   | = 5 (P = | = 0.04); | l² = 57               | %                   |        |                      |                                   |                                                                                                                                                            |
| Test for overall effect: Z = 0.5          | 8 (P = 0.  | 56)      |          |          |                       |                     |        |                      |                                   |                                                                                                                                                            |
| Total (95% CI)                            |            |          | 375      |          |                       | 369                 | 100.0% | -0.73 [-1.44, -0.02] | •                                 |                                                                                                                                                            |
| Heterogeneity: Tau <sup>2</sup> = 1.43; C | hi² = 240  | 0.38, di | f = 11 ( | P < 0.0  | 0001);                | l <sup>2</sup> = 95 | %      |                      |                                   | +                                                                                                                                                          |
| Test for overall effect: Z = 2.0          | 2 (P = 0.  | 04)      |          |          | ,                     |                     |        |                      | -4 -2 0 2<br>experimental control | 4                                                                                                                                                          |
| Test for subgroup differences             | : Chi² = 2 | 2.63, di | f = 1 (P | = 0.11)  | ), l <sup>2</sup> = 6 | 61.9%               |        |                      | experimental control              |                                                                                                                                                            |
| Risk of bias legend                       |            |          |          |          |                       |                     |        |                      |                                   |                                                                                                                                                            |
| (A) Random sequence genera                | ation (sel | lection  | bias)    |          |                       |                     |        |                      |                                   |                                                                                                                                                            |
| (B) Allocation concealment (s             | ,          |          | ,        |          |                       |                     |        |                      |                                   |                                                                                                                                                            |
| (C) Blinding of participants an           |            |          | erforma  | nce bia  | s)                    |                     |        |                      |                                   |                                                                                                                                                            |
| (D) Blinding of outcome asses             | •          |          |          |          | ,                     |                     |        |                      |                                   |                                                                                                                                                            |
| (E) Incomplete outcome data               | ,          |          |          | ,        |                       |                     |        |                      |                                   |                                                                                                                                                            |
| (F) Selective reporting (reporti          | •          |          |          |          |                       |                     |        |                      |                                   |                                                                                                                                                            |
| (C) Other bins                            | 5          |          |          |          |                       |                     |        |                      |                                   |                                                                                                                                                            |

(G) Other bias



analyses revealed that curcumin had the most pronounced effect on lowering FBG (WMD: -0.41, 95% CI: -0.57 to -0.25, p < 0.001), followed by resveratrol (WMD: -0.29, 95% CI: -0.52 to -0.06, p = 0.02), while silymarin did not demonstrate a significant effect (WMD: -0.12, 95% CI: -0.37 to 0.12, p = 0.32) (Figure 5A). Moreover, polyphenols were particularly effective in reducing FBG levels when the intervention period exceeded 12weeks (Figure S2H). Sensitivity analyses confirmed the robustness of the results, as no significant changes were observed upon the exclusion of any individual study.

Twelve studies, encompassing 744 participants (375 polyphenol users and 369 placebo users), reported on changes in HOMA-IR before and after treatment. Analysis of 12 effect sizes indicated a significant impact of curcumin, resveratrol, and silymarin on HOMA-IR in patients with MASLD (MD: -0.73, 95% CI: -1.44 to -0.02, p = 0.04,  $I^2 = 95\%$ ) (Figure 5B). Subgroup analysis revealed that curcumin had a significant effect on reducing HOMA-IR (MD: -1.27, 95% CI: -2.53 to -0.01, p = 0.05), while resveratrol did not show significant differences between the treatment and control groups (MD: -0.15, 95% CI: -0.65 to 0.36, p=0.56) (Figure 5B). The intervention duration had little effect on blood pressure (Figure S2I). Silymarin was involved in only one study, so it was not subjected to subgroup analysis. Sensitivity analysis confirmed that the overall effect size remained consistent, with no significant changes observed upon the exclusion of any individual study.

### 4.3.4 | Body Mass Index (BMI)

Based on a random-effects model (p < 0.001,  $I^2 = 71\%$ ), an analysis of 19 studies involving 1170 participants (587 in the polyphenol group and 583 in the placebo group) demonstrated that curcumin, resveratrol, and silymarin significantly reduced BMI (MD: -0.36, 95% CI: -0.58 to -0.14, p = 0.002) (Figure 6). Subgroup analysis revealed that curcumin contributed to a significant reduction in BMI (MD: -0.35, 95% CI: -0.65 to -0.04, p = 0.02) (Figure 6), particularly in studies with an intervention period exceeding 12 weeks (Figure S2J). Sensitivity analyses confirmed the robustness of these findings, as no significant changes occurred upon the exclusion of any single study.

### 4.3.5 | Blood Pressure (SBP and DBP)

Ten studies, comprising 609 participants (305 in the polyphenol group and 304 in the placebo group), evaluated the effects of curcumin, resveratrol, and silymarin on blood pressure. The analysis indicated that polyphenol intake did not significantly affect systolic blood pressure (SBP), with a weighted mean difference (WMD) of -0.41 mmHg (95% CI: -1.04 to 0.23, p = 0.21), according to the random-effects model ( $p < 0.01, I^2 = 71\%$ ) (Figure 7A). However, sensitivity analysis revealed that upon excluding the study by (Faghihzadeh et al. 2014), heterogeneity decreased to 38%, and resveratrol was found to significantly reduce SBP (MD: -5.78 mmHg, 95% CI: -9.67 to -1.90, p = 0.004). Additionally, resveratrol intake was associated with a significant reduction in DBP (MD:

-2.97 mmHg, 95% CI: -5.70 to -0.24, p = 0.03) (Figure 7B). A significant improvement in SBP was observed in interventions lasting longer than 12 weeks (Figure S2K,L). Sensitivity analyses confirmed the robustness of the results, with no significant changes detected after excluding any individual study. Notably, no studies assessed the impact of silymarin on blood pressure in this context.

### 4.3.6 | Inflammatory Factor (TNF-α)

Six studies included290 participants (147 polyphenols users and 143 placebo users). We found that curcumin, resveratrol, and silymarin significantly reduced TNF- $\alpha$  (MD: -1.57 pg/mL, 95% CI: -2.70, -0.44, p = 0.007) (Figure 8) based on the random-effects model while the intervention duration more than 12 weeks (Figure S2M). However, there was no significant difference in individual subgroup (Figure 8). The overall effect size remained unchanged after performing sensitivity analysis. No study assessed the impact of resveratrol in this regard.

### 4.4 | Publication Bias

To identify the publication bias among the eligible studies, the Egger test was utilized. Publication bias analysis did not highlight any differences between the observed and estimated values (p > 0.05) (Figure S3).

### 5 | Discussion

### 5.1 | Principal Findings

In this meta-analysis, we systematically evaluated the effects of the three polyphenols (curcumin, resveratrol, and silymarin) on hepatic steatosis, transaminase levels, blood lipids, and other related indicators in patients with MASLD. The results demonstrated that these polyphenols were associated with improvements in hepatic steatosis, glycemic control, lipid metabolism, and inflammation. Subgroup analysis revealed that curcumin had the most pronounced effect in reducing hepatic steatosis, along with significant improvements in transaminase levels and various metabolic markers. Silymarin showed the strongest effect in lowering transaminase levels. While not the strongest in any specific outcomes, resveratrol still was associated with significant improvements in hepatic steatosis and metabolic parameters.

### 5.2 | Potential Mechanisms

Polyphenols have a common anti-MASLD mechanism, ranging from lipogenesis regulation to modulation of insulin resistance, oxidative stress modification, and inflammation control (Prochazkova, Bousova, and Wilhelmova 2011); (Rafiei, Omidian, and Bandy 2017), (Figure 9). In terms of specific molecular mechanisms, (Kang et al. 2013). found that curcumin activates AMP-activated protein kinase (AMPK) and inhibits sterol regulatory element-binding protein (SREBP-1c)



(G) Other bias

**FIGURE 6** | Forest plots of the effect of polyphenols on BMI. BMI, body mass index.

and fatty acid synthase expression in hepatocytes, leading to reduced hepatic lipogenesis. Another study found that the inhibitory effect of curcumin on HSC activation depends on blocking of NF-kB and ERK signaling (Chen and Zheng 2008) and inducing of PPAR- $\gamma$  (Lin et al. 2012). Several studies have shown that resveratrol can also activate AMPK and regulate SIRT1 to improve hepatic lipid metabolism (Baur et al. 2006; Lagouge et al. 2006). At the same time, it can treat experimental NASH by inhibiting fat synthesis [down-regulating SREBP-1, fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)], promoting fat acid oxidation (up-regulation of CPT-1 and ACO) (Alberdi et al. 2013; Gomez-Zorita et al. 2012), and regulating intestinal microflora (Heeboll et al. 2015; Lagouge et al. 2006; Shang et al. 2008); (Salamone et al. 2012) and (Zhang et al. 2013) confirmed that silymarin can inhibit the activity of nuclear factor-*k*B (NF-*k*B) and regulate IRS-1/PI3K/AKT pathway to alleviate IR. Different polyphenols, such as resveratrol and curcumin, exert their effects through similar molecular targets acting on the AMPK pathway, suggesting that these compounds may share the same molecular pathway in lipid metabolism (Cheng et al. 2020). In addition, curcumin and silymarin both act on the NF-κB

pathway to relieve inflammation, indicating that they may share the same molecular mechanism in the inflammatory response. We summarized 16 RCT studies of polyphenolic compounds in the treatment of MASLD through systematic review and meta-analysis to provide the latest clinical evidence for clinicians and patients in the future.

# 5.3 | Comparison With Other Studies

Previous studies reviewed the effects of polyphenols on MASLD, with curcumin, resveratrol, and silymarin being the most examined compounds (Bayram, Majoo, and Ozturkcan 2021). In line with these findings, we conducted a meta-analysis that utilized more objective data and employed rigorous methodologies to further validate the therapeutic effects of curcumin, resveratrol, and silymarin.

In addition, Yang et al. conducted a meta-analysis evaluating the effects of polyphenols on MASLD but did not exclude studies involving combination therapies, nor did they compare the efficacy of different polyphenols (Yang et al. 2022). To address

| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Expe<br>Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eriment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                     | (<br>Mean                                                                                                                                          | Control                                                                                                                      | Total                                                                                        | Weight                                                                                    | Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                                                           | Mean Difference<br>IV, Random, 95% CI | Risk of Bias                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Curcumin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | wear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total                                                                                                                                                                                                                                               | wear                                                                                                                                               | 30                                                                                                                           | TOtal                                                                                        | weight                                                                                    | 14, Nanuolii, 95% Cl                                                                                                                                                                                                                                                            |                                       |                                                                                                                                                            |
| Cicero et al. 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                  | 127                                                                                                                                                | 9                                                                                                                            | 40                                                                                           | 3.2%                                                                                      | -1.00 [-4.35, 2.35]                                                                                                                                                                                                                                                             | +                                     | $\bullet \bullet $ |
| Jazayeri-Tehrani et al. 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                  |                                                                                                                                                    | 4.9                                                                                                                          | 42                                                                                           | 7.6%                                                                                      | -1.40 [-3.39, 0.59]                                                                                                                                                                                                                                                             | -                                     | $\bullet \bullet $ |
| Kalhori et al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                                                                                                                                                                                                                                                  | -0.17                                                                                                                                              | 0.8                                                                                                                          | 21                                                                                           | 26.4%                                                                                     | -0.26 [-0.72, 0.20]                                                                                                                                                                                                                                                             | +                                     | $\bullet \bullet $ |
| Panahi et al.2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                                                                                                                                                  | -0.08                                                                                                                                              | 0.96                                                                                                                         | 43                                                                                           | 28.3%                                                                                     | 0.15 [-0.19, 0.49]                                                                                                                                                                                                                                                              | <b>+</b>                              | <b>??</b> + + + + €                                                                                                                                        |
| Saberi-Karimian et al. 2020<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27<br>174                                                                                                                                                                                                                                           | -0.25                                                                                                                                              | 0.52                                                                                                                         | 28<br>174                                                                                    | 29.0%<br><b>94.4%</b>                                                                     | 0.15 [-0.13, 0.43]<br>0.03 [-0.21, 0.28]                                                                                                                                                                                                                                        | t t                                   |                                                                                                                                                            |
| Heterogeneity: Tau <sup>2</sup> = 0.01; C<br>Test for overall effect: Z = 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 (P = (                                                                                                                                                                                                                                            | ).29); l²                                                                                                                                          | = 19%                                                                                                                        |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| Resveratrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |                                                                                                                                                    |                                                                                                                              |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| Chachay et al. 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                  | 124                                                                                                                                                | 7                                                                                                                            | 10                                                                                           | 0.6%                                                                                      | 4.00 [-4.08, 12.08]                                                                                                                                                                                                                                                             |                                       |                                                                                                                                                            |
| Chen et al. 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                  | 1.73                                                                                                                                               | 16                                                                                                                           | 30                                                                                           | 0.7%                                                                                      | -0.46 [-8.16, 7.24]                                                                                                                                                                                                                                                             |                                       |                                                                                                                                                            |
| Faghihzadeh et al. 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                  |                                                                                                                                                    | 5.5                                                                                                                          | 25                                                                                           | 2.5%                                                                                      | -8.82 [-12.67, -4.97]                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                            |
| Heebøll et al. 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                  | 4                                                                                                                                                  |                                                                                                                              | 13                                                                                           | 0.3%                                                                                      | -9.00 [-20.40, 2.40]                                                                                                                                                                                                                                                            |                                       | <b>? ? + + ? +</b>                                                                                                                                         |
| Kantartzis et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53                                                                                                                                                                                                                                                  | 139                                                                                                                                                | 15                                                                                                                           | 52                                                                                           | 1.5%                                                                                      | -4.00 [-9.04, 1.04]                                                                                                                                                                                                                                                             |                                       | $\bullet \bullet $ |
| Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 16.65;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Ch^{2} = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 131<br>- 4 (P                                                                                                                                                                                                                                       | - 0 02)-                                                                                                                                           | 12 - 600                                                                                                                     | 130                                                                                          | 5.6%                                                                                      | -3.92 [-8.64, 0.80]                                                                                                                                                                                                                                                             |                                       |                                                                                                                                                            |
| Test for overall effect: $Z = 1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4(P                                                                                                                                                                                                                                                | - 0.03),                                                                                                                                           | 1 02                                                                                                                         | 0                                                                                            |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305                                                                                                                                                                                                                                                 |                                                                                                                                                    |                                                                                                                              | 304                                                                                          | 100.0%                                                                                    | -0.41 [-1.04, 0.23]                                                                                                                                                                                                                                                             |                                       |                                                                                                                                                            |
| Heterogeneity: Tau <sup>2</sup> = 0.34; C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 (P =                                                                                                                                                                                                                                              | 0.0003                                                                                                                                             | ); l² = 7′                                                                                                                   | %                                                                                            |                                                                                           |                                                                                                                                                                                                                                                                                 | -20 -10 0 10 20                       |                                                                                                                                                            |
| Test for overall effect: Z = 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |                                                                                                                                                    |                                                                                                                              |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 | experimental control                  |                                                                                                                                                            |
| Test for subgroup differences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : Chi² = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.69, df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 1 (P                                                                                                                                                                                                                                              | = 0.10),                                                                                                                                           | l² = 62.                                                                                                                     | 8%                                                                                           |                                                                                           |                                                                                                                                                                                                                                                                                 | Saperine near control                 |                                                                                                                                                            |
| Risk of bias legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |                                                                                                                                                    |                                                                                                                              |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| (A) Random sequence genera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation (sel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ection b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oias)                                                                                                                                                                                                                                               |                                                                                                                                                    |                                                                                                                              |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| (B) Allocation concealment (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | election b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oias)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                                   |                                                                                                                                                    |                                                                                                                              |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| (C) Blinding of participants an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | formar                                                                                                                                                                                                                                              | nce bias                                                                                                                                           | )                                                                                                                            |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| (D) Blinding of outcome asses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |                                                                                                                                                    | ,                                                                                                                            |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| (E) Incomplete outcome data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                   |                                                                                                                                                    |                                                                                                                              |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| (F) Selective reporting (report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |                                                                                                                                                    |                                                                                                                              |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
| (G) Other bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>j</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |                                                                                                                                                    |                                                                                                                              |                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     | -                                                                                                                                                  |                                                                                                                              |                                                                                              |                                                                                           | N                                                                                                                                                                                                                                                                               | Mana Diff                             |                                                                                                                                                            |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eriment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                     | Co                                                                                                                                                 | ontrol                                                                                                                       |                                                                                              |                                                                                           | Mean Difference                                                                                                                                                                                                                                                                 | Mean Difference                       |                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total                                                                                                                                                                                                                                               | Mean                                                                                                                                               | SD T                                                                                                                         | <u>otal</u> V                                                                                | Veight                                                                                    | IV, Random, 95% CI                                                                                                                                                                                                                                                              | IV, Random, 95% Cl                    | Risk of Bias<br>A B C D E F G                                                                                                                              |
| Curcumin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total                                                                                                                                                                                                                                               | Mean                                                                                                                                               | SD T                                                                                                                         | otal V                                                                                       | Veight                                                                                    | IV, Random, 95% Cl                                                                                                                                                                                                                                                              |                                       | ABCDEFG                                                                                                                                                    |
| Curcumin<br>Cicero et al. 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>SD</u><br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>Total</u><br>40                                                                                                                                                                                                                                  | Mean<br>81                                                                                                                                         | <u>SD T</u><br>6                                                                                                             | <u>otal V</u><br>40                                                                          | <u>Veight</u><br>3.4%                                                                     | IV. Random, 95% Cl<br>3.00 [0.14, 5.86]                                                                                                                                                                                                                                         |                                       |                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |                                                                                                                                                    |                                                                                                                              | 40                                                                                           | -                                                                                         |                                                                                                                                                                                                                                                                                 |                                       | ABCDEFG                                                                                                                                                    |
| Cicero et al. 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84<br>77.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                  | 81                                                                                                                                                 | 6<br>3.4                                                                                                                     | 40<br>42                                                                                     | 3.4%                                                                                      | 3.00 [0.14, 5.86]                                                                                                                                                                                                                                                               |                                       |                                                                                                                                                            |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84<br>77.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7<br>2.9<br>1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40<br>42                                                                                                                                                                                                                                            | 81<br>78.7                                                                                                                                         | 6<br>3.4<br>0.72                                                                                                             | 40<br>42<br>21                                                                               | 3.4%<br>11.2%                                                                             | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]                                                                                                                                                                                                                 |                                       | <u>A B C D E F G</u>                                                                                                                                       |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84<br>77.9<br>-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>2.9<br>1.21<br>0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40<br>42<br>21                                                                                                                                                                                                                                      | 81<br>78.7<br>-0.24                                                                                                                                | 6<br>3.4<br>0.72<br>0.66                                                                                                     | 40<br>42<br>21<br>43                                                                         | 3.4%<br>11.2%<br>23.4%                                                                    | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]                                                                                                                                                                                                                                        |                                       | A B C D E F G                                                                                                                                              |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84<br>77.9<br>-0.5<br>0.07<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>2.9<br>1.21<br>0.59<br>0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40<br>42<br>21<br>44<br>27<br>174                                                                                                                                                                                                                   | 81<br>78.7<br>-0.24<br>-0.12<br>0.17                                                                                                               | 6<br>3.4<br>0.72<br>0.66<br>1.05                                                                                             | 40<br>42<br>21<br>43<br>28                                                                   | 3.4%<br>11.2%<br>23.4%<br>30.0%                                                           | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]                                                                                                                                                                                           |                                       | A B C D E F G                                                                                                                                              |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40<br>42<br>21<br>44<br>27<br>174                                                                                                                                                                                                                   | 81<br>78.7<br>-0.24<br>-0.12<br>0.17                                                                                                               | 6<br>3.4<br>0.72<br>0.66<br>1.05                                                                                             | 40<br>42<br>21<br>43<br>28                                                                   | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%                                                  | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]                                                                                                                                                                    |                                       | A B C D E F G                                                                                                                                              |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: $Z = 0.1$<br>Resveratrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0                                                                                                                                                                                                       | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup>                                                                                      | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%                                                                                    | 40<br>42<br>21<br>43<br>28<br>174                                                            | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%                                         | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]                                                                                                                                             |                                       | A B C D E F G                                                                                                                                              |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0                                                                                                                                                                                                       | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup><br>81                                                                                | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%                                                                                    | 40<br>42<br>21<br>43<br>28<br>174                                                            | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%                                         | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]                                                                                                                                             |                                       | A B C D E F G                                                                                                                                              |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: $Z = 0.1$<br>Resveratrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.3<br>82<br>-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>88)<br>8<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>10<br>30                                                                                                                                                                                           | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup><br>81<br>0.63                                                                        | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%                                                                                    | 40<br>42<br>21<br>43<br>28<br>174                                                            | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%                                         | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]                                                                                                                                             |                                       | A B C D E F G<br>• • • • • • • • •<br>• • • • • • • • •<br>• • • •                                                                                         |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.3<br>82<br>-1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0                                                                                                                                                                                                       | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup><br>81<br>0.63<br>-3.85                                                               | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91                                                               | 40<br>42<br>21<br>43<br>28<br>174                                                            | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%                                         | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]                                                                                                                                             |                                       | A B C D E F G<br>• • • • • • • • • •<br>• • • • • • • • •                                                                                                  |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.4<br>82<br>-1.2<br>-8.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>88)<br>8<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>10<br>30                                                                                                                                                                                           | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup><br>81<br>0.63<br>-3.85                                                               | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%                                                                                    | 40<br>42<br>21<br>43<br>28<br>174                                                            | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>0.9%<br>1.4%<br>0.7%         | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]                                                                                                                                             |                                       | A B C D E F G<br>• • • • • • • • •<br>• • • • • • • • •<br>• • • •                                                                                         |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al. 2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018                                                                                                                                                                                                                                                                                                                                                                                    | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.4<br>82<br>-1.2<br>-8.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>88)<br>8<br>12<br>8.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>10<br>30<br>25                                                                                                                                                                                     | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup><br>81<br>0.63<br>-3.85                                                               | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91                                                               | 40<br>42<br>21<br>43<br>28<br>174                                                            | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>0.9%<br>1.4%                 | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]                         |                                       | A B C D E F G<br>• • • • • • • • • •<br>• • • • • • • • •                                                                                                  |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016                                                                                                                                                                                                                                                                                                                                                                                                               | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.4<br>82<br>-1.2<br>-8.44<br>-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>88)<br>8<br>12<br>8.97<br>9.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>10<br>30<br>25<br>13                                                                                                                                                                               | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup><br>81<br>0.63<br>-3.85<br>5                                                          | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91<br>8.54                                                       | 40<br>42<br>21<br>43<br>28<br>174                                                            | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>0.9%<br>1.4%<br>0.7%         | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]                                                |                                       | A B C D E F G<br>• • • • • • • • • •<br>• • • • • • • • •                                                                                                  |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al. 2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018                                                                                                                                                                                                                                                                                                                                                                                    | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.8<br>82<br>-1.2<br>-8.44<br>-4<br>86<br>Chi <sup>2</sup> = 5.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>88)<br>8<br>12<br>8.97<br>9.17<br>10<br>6, df = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>10<br>30<br>25<br>13<br>53<br>131                                                                                                                                                                  | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup><br>81<br>0.63<br>-3.85<br>5<br>88                                                    | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91<br>8.54<br>9                                                  | 40<br>42<br>21<br>43<br>28<br>174<br>10<br>30<br>25<br>13<br>52                              | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>0.9%<br>1.4%<br>0.7%<br>2.2% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]                         |                                       | A B C D E F G<br>• • • • • • • • • •<br>• • • • • • • • •                                                                                                  |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br><u>Resveratrol</u><br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 2.83; Cl                                                                                                                                                                                                                                                                                                           | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.8<br>82<br>-1.2<br>-8.44<br>-4<br>86<br>Chi <sup>2</sup> = 5.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>88)<br>8<br>12<br>8.97<br>9.17<br>10<br>6, df = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>10<br>30<br>25<br>13<br>53<br>131                                                                                                                                                                  | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup><br>81<br>0.63<br>-3.85<br>5<br>88                                                    | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91<br>8.54<br>9<br>= 29%                                         | 40<br>42<br>21<br>43<br>28<br>174<br>10<br>30<br>25<br>13<br>52<br>130                       | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>0.9%<br>1.4%<br>0.7%<br>2.2% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]                         |                                       | A B C D E F G<br>• • • • • • • • •<br>• • • • • • • • •<br>• • • •                                                                                         |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al. 2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: $Z = 0.1$<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 2.83; C<br>Test for overall effect: $Z = 2.1$                                                                                                                                                                                                                                                                          | 8477.9-0.50.070.02Chi2 = 8.335 (P = 0.35 (P = 0.382-1.2-8.44-486Chi2 = 5.664 (P = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7<br>2.9<br>1.21<br>0.73<br>9, df = 4<br>88)<br>8<br>12<br>8.97<br>9.17<br>10<br>6, df = 4<br>03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>30<br>25<br>13<br>53<br>131<br>131<br>4 (P = 0<br>305                                                                                                                                              | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08); I <sup>2</sup><br>81<br>0.63<br>-3.85<br>5<br>88<br>0.23); I <sup>2</sup>                           | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91<br>8.54<br>9<br>= 29%                                         | 40<br>42<br>21<br>43<br>28<br>174<br>10<br>30<br>25<br>13<br>52<br>130                       | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>1.4%<br>0.7%<br>2.2%<br>6.0% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]<br>-2.97 [-5.70, -0.24] | IV. Random. 95% Cl                    | A B C D E F G<br>• • • • • • • • • •<br>• • • • • • • • •                                                                                                  |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 2.83; C<br>Test for overall effect: Z = 2.1<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.25; C<br>Test for overall effect: Z = 0.7                                                                                                                                                                            | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>$Chi^2 = 8.33$<br>5 (P = 0.8<br>82<br>-1.2<br>-8.44<br>-4<br>86<br>$Chi^2 = 5.66$<br>4 (P = 0.0<br>$Chi^2 = 20.6$<br>1 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7<br>2.9<br>0.59<br>0.73<br>9, df = 4<br>889<br>8.97<br>9.17<br>10<br>6, df = 4<br>03)<br>64, df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>300<br>53<br>131<br>4 (P = 0<br>305<br>9 (P =                                                                                                                                                      | 81<br>78.7<br>-0.24<br>0.12<br>0.17<br>0.08);  ²<br>81<br>0.63<br>-3.85<br>5<br>88<br>8.<br>23);  ²<br>0.01);                                      | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91<br>8.54<br>9<br>= 29%                                         | 40<br>42<br>21<br>43<br>28<br>174<br>174<br>10<br>30<br>25<br>13<br>30<br>52<br>130<br>304 1 | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>1.4%<br>0.7%<br>2.2%<br>6.0% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]<br>-2.97 [-5.70, -0.24] |                                       | A B C D E F G<br>• • • • • • • • • •<br>• • • • • • • • •                                                                                                  |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 2.83; C<br>Test for overall effect: Z = 2.1<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.25; C<br>Test for overall effect: Z = 0.7<br>Test for subgroup differences                                                                                                                                           | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>$Chi^2 = 8.33$<br>5 (P = 0.8<br>82<br>-1.2<br>-8.44<br>-4<br>86<br>$Chi^2 = 5.66$<br>4 (P = 0.0<br>$Chi^2 = 20.6$<br>1 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7<br>2.9<br>0.59<br>0.73<br>9, df = 4<br>889<br>8.97<br>9.17<br>10<br>6, df = 4<br>03)<br>64, df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>300<br>53<br>131<br>4 (P = 0<br>305<br>9 (P =                                                                                                                                                      | 81<br>78.7<br>-0.24<br>0.12<br>0.17<br>0.08);  ²<br>81<br>0.63<br>-3.85<br>5<br>88<br>8.<br>23);  ²<br>0.01);                                      | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91<br>8.54<br>9<br>= 29%                                         | 40<br>42<br>21<br>43<br>28<br>174<br>174<br>10<br>30<br>25<br>13<br>30<br>52<br>130<br>304 1 | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>1.4%<br>0.7%<br>2.2%<br>6.0% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]<br>-2.97 [-5.70, -0.24] | IV. Random. 95% Cl                    | A B C D E F G<br>• • • • • • • • •<br>• • • • • • • • •<br>• • • •                                                                                         |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al. 2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 2.83; C<br>Test for overall effect: Z = 2.1<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.25; C<br>Test for overall effect: Z = 0.7<br>Test for subgroup differences<br>Risk of bias legend                                                                                                                   | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>$hi^2 = 8.39$<br>5 (P = 0.8<br>82<br>-1.2<br>-8.44<br>-4<br>86<br>$hi^2 = 5.61$<br>4 (P = 0.1<br>$hi^2 = 5.61$<br>4 (P = 0.1<br>$hi^2 = 5.61$<br>4 (P = 0.1)<br>$hi^2 = 20.1$<br>1 (P = 0.4)<br>$hi^2 = 20.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>888)<br>8<br>8<br>9, df = 4<br>8.87<br>9.17<br>10<br>6, df = 4<br>03)<br>64, df = 4<br>88, df = 4<br>8.33<br>10<br>8, df = 4<br>8, df = 4 | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>30<br>5<br>33<br>5<br>31<br>31<br>4 (P = 0<br>305<br>9 (P =<br>= 1 (P +                                                                                                                            | 81<br>78.7<br>-0.24<br>0.12<br>0.17<br>0.08);  ²<br>81<br>0.63<br>-3.85<br>5<br>88<br>8.<br>23);  ²<br>0.01);                                      | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91<br>8.54<br>9<br>= 29%                                         | 40<br>42<br>21<br>43<br>28<br>174<br>174<br>10<br>30<br>25<br>13<br>30<br>52<br>130<br>304 1 | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>1.4%<br>0.7%<br>2.2%<br>6.0% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]<br>-2.97 [-5.70, -0.24] | IV. Random. 95% Cl                    | A B C D E F G<br>• • • • • • • • • •<br>• • • • • • • • •                                                                                                  |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: $Z = 0.1$<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 2.83; C<br>Test for overall effect: $Z = 2.1$<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.25; C<br>Test for subgroup differences<br><u>Risk of bias legend</u><br>(A) Random sequence generat                                                                                                              | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.39<br>5 (P = 0.4<br>82<br>-1.2<br>-8.44<br>-4<br>86<br>Chi <sup>2</sup> = 5.60<br>4 (P = 0.4<br>Chi <sup>2</sup> = 20.6<br>Chi <sup>2</sup> = 20.6<br>Chi <sup>2</sup> = 4<br>(P = 0.4)<br>Chi <sup>2</sup> = 4<br>(P = 0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>8.87<br>9.17<br>10<br>6, df = 4<br>03)<br>64, df =<br>48)<br>.36, df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = 0<br>30<br>5<br>33<br>5<br>31<br>31<br>4 (P = 0<br>305<br>9 (P =<br>= 1 (P +                                                                                                                            | 81<br>78.7<br>-0.24<br>0.12<br>0.17<br>0.08);  ²<br>81<br>0.63<br>-3.85<br>5<br>88<br>8.<br>23);  ²<br>0.01);                                      | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>7.91<br>8.54<br>9<br>= 29%                                         | 40<br>42<br>21<br>43<br>28<br>174<br>174<br>10<br>30<br>25<br>13<br>30<br>52<br>130<br>304 1 | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>1.4%<br>0.7%<br>2.2%<br>6.0% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]<br>-2.97 [-5.70, -0.24] | IV. Random. 95% Cl                    | A B C D E F G<br>• • • • • • • • • •<br>• • • • • • • • •                                                                                                  |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 2.83; C<br>Test for overall effect: Z = 2.1<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.25; C<br>Test for overall effect: Z = 0.7<br>Test for subgroup differences<br><u>Risk of bias legend</u><br>(A) Random sequence generar<br>(B) Allocation concealment (s                                             | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>Chi <sup>2</sup> = 8.33<br>5 (P = 0.4<br>82<br>-1.2<br>-8.44<br>86<br>Chi <sup>2</sup> = 5.64<br>4 (P = 0.4<br>Chi <sup>2</sup> = 20.6<br>1 (P = 0.4<br>Chi <sup>2</sup> = 20.6<br>1 (P = 0.4)<br>Chi <sup>2</sup> = 20.6<br>Chi <sup>2</sup> = | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>8.87<br>9.17<br>10<br>6, df = 4<br>8.9<br>7<br>10<br>6, df = 4<br>8.3<br>003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40<br>42<br>21<br>44<br>27<br>174<br>4 (P = (<br>0<br>30<br>25<br>313<br>131<br>4 (P = (<br>305<br>9 (P =<br>= 1 (P                                                                                                                                 | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08);   <sup>2</sup><br>81<br>0.03;   <sup>2</sup><br>88<br>0.23);   <sup>2</sup><br>0.01);  <br>= 0.04), | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>8.54<br>9<br>= 29%<br>2 <sup>2</sup> = 56%<br>1 <sup>2</sup> = 77. | 40<br>42<br>21<br>43<br>28<br>174<br>174<br>10<br>30<br>25<br>13<br>30<br>52<br>130<br>304 1 | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>1.4%<br>0.7%<br>2.2%<br>6.0% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]<br>-2.97 [-5.70, -0.24] | IV. Random. 95% Cl                    | A B C D E F G<br>• • • • • • • • •<br>• • • • • • • • •<br>• • • •                                                                                         |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: $Z = 0.1$<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 2.83; C<br>Test for overall effect: $Z = 2.1$<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.25; C<br>Test for overall effect: $Z = 0.7$<br>Test for subgroup differences<br><u>Risk of bias legend</u><br>(A) Random sequence generation<br>(B) Allocation concealment (s<br>(C) Blinding of participants an | 84<br>77.9<br>-0.5<br>0.02<br>$Chi^2 = 8.33$<br>5 (P = 0.4<br>82<br>-1.2<br>-8.44<br>-4<br>86<br>$Chi^2 = 5.64$<br>4 (P = 0.0<br>$Chi^2 = 20.0$<br>1 (P = 0.4<br>$Chi^2 = 4$<br>attion (seleted to the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7<br>2.9<br>1.21<br>0.59<br>0.73<br>9, df = 4<br>8.87<br>10<br>6, df = 4<br>03)<br>64, df = 4<br>88, df = 4<br>8, df = 4<br>8, df = 4<br>8, df = 4<br>10<br>3, df = 4<br>8, df = 4<br>8, df = 4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 40\\ 42\\ 21\\ 44\\ 27\\ 174\\ 4 \left( P = 0 \right) \\ 10\\ 30\\ 25\\ 13\\ 131\\ 4 \left( P = 0 \right) \\ 305\\ 9 \left( P = 1 \right) \\ 10\\ 305\\ 9 \left( P = 1 \right) \\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$ | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08);   <sup>2</sup><br>81<br>0.03;   <sup>2</sup><br>88<br>0.23);   <sup>2</sup><br>0.01);  <br>= 0.04), | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>8.54<br>9<br>= 29%<br>2 <sup>2</sup> = 56%<br>1 <sup>2</sup> = 77. | 40<br>42<br>21<br>43<br>28<br>174<br>174<br>10<br>30<br>25<br>13<br>30<br>52<br>130<br>304 1 | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>1.4%<br>0.7%<br>2.2%<br>6.0% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]<br>-2.97 [-5.70, -0.24] | IV. Random. 95% Cl                    | A B C D E F G<br>• • • • • • • • •<br>• • • • • • • • •<br>• • • •                                                                                         |
| Cicero et al. 2020<br>Jazayeri-Tehrani et al. 2019<br>Kalhori et al. 2017<br>Panahi et al.2017<br>Saberi-Karimian et al. 2020<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.10; C<br>Test for overall effect: Z = 0.1<br>Resveratrol<br>Chachay et al. 2014<br>Chen et al. 2016<br>Faghihzadeh et al. 2014<br>Heebøll et al. 2016<br>Kantartzis et al. 2018<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 2.83; C<br>Test for overall effect: Z = 2.1<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.25; C<br>Test for overall effect: Z = 0.7<br>Test for subgroup differences<br>Risk of bias legend<br>(A) Random sequence generar<br>(B) Allocation concealment (s                                                    | 84<br>77.9<br>-0.5<br>0.07<br>0.02<br>$Chi^2 = 8.33$<br>5 (P = 0.3<br>5 (P = 0.3<br>-1.2<br>-8.44<br>-4<br>86<br>$Chi^2 = 5.60$<br>4 (P = 0.0<br>Chi^2 = 20.0<br>(1 (P = 0.4<br>Chi^2 = 4)<br>ation (selection t<br>detection t<br>detection t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7<br>2.9<br>0.73<br>9, df = 4<br>889<br>8.97<br>9.17<br>10<br>6, df = 4<br>03)<br>64, df = 4<br>83<br>8.36, df = 4<br>10<br>64, df = 4<br>83<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 40\\ 42\\ 21\\ 44\\ 27\\ 174\\ 4 \left( P = 0 \right) \\ 10\\ 30\\ 25\\ 13\\ 131\\ 4 \left( P = 0 \right) \\ 305\\ 9 \left( P = 1 \right) \\ 10\\ 305\\ 9 \left( P = 1 \right) \\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$ | 81<br>78.7<br>-0.24<br>-0.12<br>0.17<br>0.08);   <sup>2</sup><br>81<br>0.03;   <sup>2</sup><br>88<br>0.23);   <sup>2</sup><br>0.01);  <br>= 0.04), | 6<br>3.4<br>0.72<br>0.66<br>1.05<br>= 52%<br>5<br>10.8<br>8.54<br>9<br>= 29%<br>2 <sup>2</sup> = 56%<br>1 <sup>2</sup> = 77. | 40<br>42<br>21<br>43<br>28<br>174<br>174<br>10<br>30<br>25<br>13<br>30<br>52<br>130<br>304 1 | 3.4%<br>11.2%<br>23.4%<br>30.0%<br>26.0%<br>94.0%<br>0.9%<br>1.4%<br>0.7%<br>2.2%<br>6.0% | 3.00 [0.14, 5.86]<br>-0.80 [-2.15, 0.55]<br>-0.26 [-0.86, 0.34]<br>0.19 [-0.07, 0.45]<br>-0.15 [-0.63, 0.33]<br>-0.03 [-0.45, 0.38]<br>1.00 [-4.85, 6.85]<br>-1.83 [-7.61, 3.95]<br>-4.59 [-9.28, 0.10]<br>-9.00 [-15.81, -2.19]<br>-2.00 [-5.64, 1.64]<br>-2.97 [-5.70, -0.24] | IV. Random. 95% Cl                    | A B C D E F G<br>• • • • • • • • •<br>• • • • • • • • •<br>• • • •                                                                                         |

(F) Selective reporting (reporting bias)

(G) Other bias

FIGURE 7 | Forest plots of the effect of polyphenols on blood pressure, including (A) SBP and (B) DBP. SBP: systolic blood pressure. DBP, diastolic blood pressure.

these limitations, our meta-analysis adopted a more stringent approach by focusing exclusively on placebo-controlled studies where polyphenols were used as the sole intervention. Additionally, we conducted subgroup analyses to directly compare the therapeutic efficacy of curcumin, resveratrol, and silymarin. This careful selection allowed us to provide more definitive and reliable evidence on the efficacy of polyphenols in the management of MASLD.

Hepatic steatosis is a hallmark of MASLD (Younossi et al. 2018). Previous studies suggested that polyphenolic compounds may reduce hepatic fat accumulation (Bayram, Majoo, and

|                                           | Expe                   | erimen   | tal      | С         | ontrol   |       |        | Mean Difference       | Mean Difference                         | Risk of Bias                                        |
|-------------------------------------------|------------------------|----------|----------|-----------|----------|-------|--------|-----------------------|-----------------------------------------|-----------------------------------------------------|
| Study or Subgroup                         | Mean                   | SD       | Total    | Mean      | SD       | Total | Weight | IV, Random, 95% CI    | IV. Random, 95% Cl                      | ABCDEFG                                             |
| Curcumin                                  |                        |          |          |           |          |       |        |                       |                                         |                                                     |
| Jazayeri-Tehrani et al. 2019              | 7.3                    | 2.9      | 42       | 13.7      | 4        | 42    |        | -6.40 [-7.89, -4.91]  | •                                       |                                                     |
| Saadati et al. 2019                       | -2.83                  | 0.9      | 27       | -2.09     | 0.1      | 23    | 24.9%  | -0.74 [-1.08, -0.40]  |                                         | ••••                                                |
| Subtotal (95% CI)                         |                        |          | 69       |           |          | 65    | 42.5%  | -3.52 [-9.07, 2.02]   |                                         |                                                     |
| Heterogeneity: Tau <sup>2</sup> = 15.71;  |                        |          | = 1 (P · | < 0.000   | 01); I²  | = 98% |        |                       |                                         |                                                     |
| Test for overall effect: Z = 1.2          | 4 (P = 0.2             | 21)      |          |           |          |       |        |                       |                                         |                                                     |
| Resveratrol                               |                        |          |          |           |          |       |        |                       |                                         |                                                     |
| Chachay et al. 2014                       | 9.53                   | 4.73     | 10       | 8.14      | 3.53     | 10    | 7.0%   | 1.39 [-2.27, 5.05]    |                                         |                                                     |
| Chen et al. 2016                          | -0.53                  | 1.3      | 30       | -0.16     | 1        | 30    | 23.8%  | -0.37 [-0.96, 0.22]   | •                                       | $\bullet ? \bullet \bullet \bullet \bullet \bullet$ |
| Faghihzadeh et al. 2014                   | -3.71                  | 16.75    | 25       | 4.07      | 9.44     | 25    | 2.1%   | -7.78 [-15.32, -0.24] |                                         | ??                                                  |
| Heebøll et al. 2016                       | -0.25                  | 0.56     | 13       | 0.18      | 0.48     | 13    | 24.7%  | -0.43 [-0.83, -0.03]  | 7                                       | ?? 🛨 🛨 ? 🛨 🛨                                        |
| Subtotal (95% CI)                         |                        |          | 78       |           |          | 78    | 57.5%  | -0.40 [-0.96, 0.15]   | •                                       |                                                     |
| Heterogeneity: $Tau^2 = 0.10$ ; C         |                        | ,        | 3 (P = 0 | 0.20); l² | = 35%    | )     |        |                       |                                         |                                                     |
| Test for overall effect: Z = 1.4          | 2(P = 0.7)             | 15)      |          |           |          |       |        |                       |                                         |                                                     |
| Total (95% CI)                            |                        |          | 147      |           |          | 143   | 100.0% | -1.57 [-2.70, -0.44]  | •                                       |                                                     |
| Heterogeneity: Tau <sup>2</sup> = 1.31; C | hi² = 63.              | 54, df = | 5 (P <   | 0.0000    | 1); l² = | 92%   |        |                       |                                         | —                                                   |
| Test for overall effect: Z = 2.7          | 2 (P = 0.0             | 007)     |          |           |          |       |        |                       | -20 -10 0 10 20<br>experimental control |                                                     |
| Test for subgroup differences             | : Chi <sup>2</sup> = 1 | .20, df  | = 1 (P = | = 0.27),  | l² = 16  | 5.8%  |        |                       | experimental control                    |                                                     |
| Risk of bias legend                       |                        |          |          |           |          |       |        |                       |                                         |                                                     |
| (A) Random sequence genera                | ation (sel             | ection t | oias)    |           |          |       |        |                       |                                         |                                                     |
| (B) Allocation concealment (s             | election b             | oias)    |          |           |          |       |        |                       |                                         |                                                     |
| (C) Blinding of participants an           | d person               | nel (pe  | rforman  | ice bias  | )        |       |        |                       |                                         |                                                     |
| (D) Blinding of outcome asses             | ssment (c              | detectio | n bias)  |           |          |       |        |                       |                                         |                                                     |
| (E) Incomplete outcome data               | (attrition             | bias)    |          |           |          |       |        |                       |                                         |                                                     |
| (F) Selective reporting (report           | ing bias)              |          |          |           |          |       |        |                       |                                         |                                                     |
| (G) Other bias                            |                        |          |          |           |          |       |        |                       |                                         |                                                     |
|                                           |                        |          |          |           |          |       |        |                       |                                         |                                                     |

FIGURE 8 | Forest plots of the effect of polyphenols on inflammatory factor (TNF-α). TNF-α, tumor necrosis factor-α.

Ozturkcan 2021; Peng et al. 2020). However, to our best knowledge, this is the first meta-analysis of published randomized controlled trials to comprehensively evaluate the effectiveness of polyphenolic compounds on hepatic steatosis in MASLD patients. The eleven RCTs included in our analysis showed that the overall effect of the three polyphenols—curcumin, resveratrol, and silymarin—significantly increased the odds of improvement from mild, moderate, or severe hepatic steatosis. Curcumin supplementation improved MASLD severity as assessed by liver ultrasonography findings, which is consistent with recent metaanalyses of curcumin's effect on MASLD (Ngu et al. 2022). Different from other meta-analyses, we further found that curcumin had the most pronounced effect on improving hepatic steatosis, followed by resveratrol based on the subgroup results.

The decision to use ALT and AST levels as primary outcomes was because these are main markers of hepatocellular injury, which is more pronounced in patients with MASLD (Giannini, Testa, and Savarino 2005). The effects of some polyphenolic compounds on liver enzymes appear to be inconsistent. Our study indicated that curcumin supplementation reduced AST and ALT levels, which is consistent with recent reports (Ebrahimzadeh et al. 2024; Molani-Gol, Dehghani, and Rafraf 2024). In the meta-analysis conducted by Zhang et al. resveratrol was demonstrated not to affect the activity of liver enzymes (Zhang et al. 2016). In turn, a study focusing on patients with MASLD showed that a six-month therapy with resveratrol supplementation contributed to decreasing the levels of hepatic enzymes (Jakubczyk et al. 2020; Wei and Yu 2021). In the present study, it was demonstrated that the decline in ALT following resveratrol treatment in MASLD patients was not statistically significant. These discrepancies may be attributed to differences in resveratrol dosage, treatment duration, and patient characteristics across studies. The previous study found that silymarin has anti-inflammatory, immunomodulatory,

antifibrotic, antioxidant, and liver regeneration properties in the treatment of MASLD (Abenavoli et al. 2018; Salvoza et al. 2022). Our results showed that silymarin had the strongest effect on decreasing ALT and AST followed by curcumin.

Cardiovascular diseases (CVDs) are the leading cause of death in patients with MASLD (Targher, Byrne, and Tilg 2020). One reason for the development of CVDs is atherogenic dyslipidemia, characterized by low HDL-C and high LDL-C, TC, and TG levels. Our subgroup analysis found that curcumin significantly reduced TG compared with placebo, whereas resveratrol and silymarin did not show significant effects. This finding is consistent with previous studies suggesting that curcumin has lipid-lowering effects (Sahebkar et al. 2016).

In terms of glucose metabolism, our results showed that resveratrol and curcumin reduced fasting blood glucose (FBG) levels; additionally, curcumin had a significant effect on HOMA-IR. These findings are consistent with previous meta-analyses (Jakubczyk et al. 2020; Molani-Gol, Dehghani, and Rafraf 2024). The hypoglycemic effects of curcumin may be attributed to its ability to enhance insulin sensitivity and modulate inflammatory pathways. This meta-analysis found that curcumin significantly reduced BMI. This is similar to previously published studies showing that polyphenols have anti-obesity properties that can increase energy expenditure and lipolysis (Boccellino and D'Angelo 2020).

# 5.4 | Strengths and Limitations

Our study has several notable strengths. First, a key strength lies in the direct comparison of the effects of polyphenolic compounds in patients with MASLD, providing a clear assessment of their efficacy. Second, we exclusively included



**FIGURE 9** | Molecular effects of polyphenols on MASLD. (1) In the hepatocytes, polyphenols inhibit lipogenesis and promote FA oxidation and stimulate insulin (IRS/PI3K/AKT) and AMPK signaling; (2) Inhibition of the activation of HSC, reduce the production of ROS and fibrogenic cytokines; (3) Inhibition of ROS and inflammatory cytokines production in Kupfer cells. MASLD: Non-alcoholic fatty liver disease, FA: fatty acid, IRS/PI3K/AKT: Insulin receptor substrate 1/phosphatidylinositol-3-kinase/protein kinase B. AMPK, AMP-activated protein kinase; HSC, hepatic stellate cells; ROS, reactive oxygen species.

randomized controlled trials (RCTs), which are considered the gold standard for evaluating intervention effectiveness. The use of randomization minimizes selection bias, enhancing the reliability of the pooled results (Ijaz et al. 2014). Third, the literature search was comprehensive, making the conclusions credible.

Our study is not without limitations. First, although no statistical publication bias was found, regional and publication biases remain a concern, as most studies were conducted in Iran, and potential unpublished studies may limit generalizability. Additionally, bias detection methods have limitations (Loomba and Sanyal 2013), underscoring the need for larger, more diverse studies to confirm these findings across different populations. Second, the sensitivity analysis revealed both variability in study quality and significant heterogeneity in some outcomes, which could affect the robustness of our conclusions. Third, only a limited number of studies provided data from sequential liver biopsies conducted before and after treatment, restricting our ability to fully assess treatment efficacy over time. Despite these shortcomings, we believe that our results support the consideration of well-designed and larger studies to assess polyphenols as a treatment option for MASLD.

# 5.5 | Clinical Implications

This study has implications for future clinical practice. Hepatic steatosis, with elevated transaminase levels, is the most common clinical manifestation of MASLD. Though most studies used ALT, AST, and B-ultrasound not liver biopsy to evaluate the efficacy of drugs, this meta-analysis showed that curcumin, resveratrol, and silymarin can effectively improve liver steatosis, reduce serum transaminase activity, and inhibit inflammation. The finding will push for the creation of new trials whose solid

endpoints are the histological improvement. And these results suggest polyphenol may be a promising complementary and alternative therapy for MASLD.

# 5.6 | Conclusion

The current meta-analysis suggests that curcumin, resveratrol, and silymarin offer some benefits in treating MASLD. Among the polyphenols studied, curcumin shows the most promise in reducing hepatic steatosis, silymarin has the strongest effect on lowering transaminase levels. While not the strongest in any specific outcomes, resveratrol still was associated with significant improvements in steatosis and metabolic parameters. However, due to the potential biases and limitations in the included studies, further high-quality research, particularly with larger cohorts of biopsy-proven MASLD patients, is needed to confirm these findings.

### Author Contributions

Qian Huang: data curation (equal), formal analysis (equal), investigation (equal), writing – original draft (lead). Ziming An: investigation (equal). Xin Xin: investigation (equal). Xiaojun Gou: funding acquisition (equal). Xiaoting Tian: writing – review and editing (equal). Yiyang Hu: writing – review and editing (equal). Zubing Mei: methodology (equal). Qin Feng: funding acquisition (equal), methodology (equal), writing – review and editing (equal).

### **Conflicts of Interest**

The authors declare no conflicts of interest.

### Data Availability Statement

Data can be available upon request.

### References

Abenavoli, L., A. A. Izzo, N. Milic, C. Cicala, A. Santini, and R. Capasso. 2018. "Milk Thistle (*Silybum marianum*): A Concise Overview on Its Chemistry, Pharmacological, and Nutraceutical Uses in Liver Diseases." *Phytotherapy Research* 32, no. 11: 2202–2213. https://doi.org/10.1002/ptr.6171.

Alberdi, G., V. M. Rodriguez, M. T. Macarulla, J. Miranda, I. Churruca, and M. P. Portillo. 2013. "Hepatic Lipid Metabolic Pathways Modified by Resveratrol in Rats Fed an Obesogenic Diet." *Nutrition* 29, no. 3: 562–567. https://doi.org/10.1016/j.nut.2012.09.011.

Anushiravani, A., N. Haddadi, M. Pourfarmanbar, and V. Mohammadkarimi. 2019. "Treatment Options for Nonalcoholic Fatty Liver Disease: A Double-Blinded Randomized Placebo-Controlled Trial." *European Journal of Gastroenterology & Hepatology* 31, no. 5: 613–617. https://doi.org/10.1097/MEG.00000000001369.

Asghari, S., M. Asghari-Jafarabadi, M. H. Somi, S. M. Ghavami, and M. Rafraf. 2018. "Comparison of Calorie-Restricted Diet and Resveratrol Supplementation on Anthropometric Indices, Metabolic Parameters, and Serum Sirtuin-1 Levels in Patients With Nonalcoholic Fatty Liver Disease: A Randomized Controlled Clinical Trial." *Journal of the American College of Nutrition* 37, no. 3: 223–233. https://doi.org/10. 1080/07315724.2017.1392264.

Baur, J. A., K. J. Pearson, N. L. Price, et al. 2006. "Resveratrol Improves Health and Survival of Mice on a High-Calorie Diet." *Nature* 444, no. 7117: 337–342. https://doi.org/10.1038/nature05354. Bayram, H. M., F. M. Majoo, and A. Ozturkcan. 2021. "Polyphenols in the Prevention and Treatment of Non-alcoholic Fatty Liver Disease: An Update of Preclinical and Clinical Studies." *Clinical Nutrition ESPEN* 44: 1–14. https://doi.org/10.1016/j.clnesp.2021.06.026.

Beheshti Namdar, A., M. Ahadi, S. M. Hoseini, et al. 2023. "Effect of Nano-Micelle Curcumin on Hepatic Enzymes: A New Treatment Approach for Non-Alcoholic Fatty Liver Disease (NAFLD)." *Avicenna Journal of Phytomedicine* 13, no. 6: 615–625. https://doi.org/10.22038/AJP.2023.21919.

Boccellino, M., and S. D'Angelo. 2020. "Anti-Obesity Effects of Polyphenol Intake: Current Status and Future Possibilities." *International Journal of Molecular Sciences* 21, no. 16: 42. https://doi.org/10.3390/ijms21165642.

Calzadilla Bertot, L., and L. A. Adams. 2016. "The Natural Course of Non-Alcoholic Fatty Liver Disease." *International Journal of Molecular Sciences* 17, no. 5: 74. https://doi.org/10.3390/ijms17050774.

Chachay, V. S., G. A. Macdonald, J. H. Martin, et al. 2014. "Resveratrol Does Not Benefit Patients With Nonalcoholic Fatty Liver Disease." *Clinical Gastroenterology and Hepatology* 12, no. 12: e2091–e2096. https://doi.org/10.1016/j.cgh.2014.02.024.

Chen, A., and S. Zheng. 2008. "Curcumin Inhibits Connective Tissue Growth Factor Gene Expression in Activated Hepatic Stellate Cells In Vitro by Blocking NF-kappaB and ERK Signalling." *British Journal of Pharmacology* 153, no. 3: 557–567. https://doi.org/10.1038/sj.bjp.0707542.

Chen, S., X. Zhao, L. Ran, et al. 2015. "Resveratrol Improves Insulin Resistance, Glucose and Lipid Metabolism in Patients With Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial." *Digestive and Liver Disease* 47, no. 3: 226–232. https://doi.org/10.1016/j.dld.2014.11.015.

Cheng, C., Z. Li, X. Zhao, et al. 2020. "Natural Alkaloid and Polyphenol Compounds Targeting Lipid Metabolism: Treatment Implications in Metabolic Diseases." *European Journal of Pharmacology* 870: 172922. https://doi.org/10.1016/j.ejphar.2020.172922.

Cicero, A. F. G., A. Sahebkar, F. Fogacci, M. Bove, M. Giovannini, and C. Borghi. 2020. "Effects of Phytosomal Curcumin on Anthropometric Parameters, Insulin Resistance, Cortisolemia and Non-Alcoholic Fatty Liver Disease Indices: A Double-Blind, Placebo-Controlled Clinical Trial." *European Journal of Nutrition* 59, no. 2: 477–483. https://doi.org/ 10.1007/s00394-019-01916-7.

Ebrahimzadeh, A., S. Mohseni, M. Safargar, et al. 2024. "Curcumin Effects on Glycaemic Indices, Lipid Profile, Blood Pressure, Inflammatory Markers and Anthropometric Measurements of Non-Alcoholic Fatty Liver Disease Patients: A Systematic Review and Meta-Analysis of Randomized Clinical Trials." *Complementary Therapies in Medicine* 80: 103025. https://doi.org/10.1016/j.ctim.2024.103025.

Faghihzadeh, F., P. Adibi, R. Rafiei, and A. Hekmatdoost. 2014. "Resveratrol Supplementation Improves Inflammatory Biomarkers in Patients With Nonalcoholic Fatty Liver Disease." *Nutrition Research* 34, no. 10: 837–843. https://doi.org/10.1016/j.nutres.2014.09.005.

Farzin, L., S. Asghari, M. Rafraf, M. Asghari-Jafarabadi, and M. Shirmohammadi. 2020. "No Beneficial Effects of Resveratrol Supplementation on Atherogenic Risk Factors in Patients With Nonalcoholic Fatty Liver Disease." *International Journal for Vitamin and Nutrition Research* 90, no. 3–4: 279–289. https://doi.org/10.1024/0300-9831/a000528.

Ghaffari, A., M. Rafraf, R. Navekar, B. Sepehri, M. Asghari-Jafarabadi, and S. M. Ghavami. 2019. "Turmeric and Chicory Seed Have Beneficial Effects on Obesity Markers and Lipid Profile in Non-Alcoholic Fatty Liver Disease (NAFLD)." *International Journal for Vitamin and Nutrition Research* 89, no. 5-6: 293–302. https://doi.org/10.1024/0300-9831/a000568.

Giannini, E. G., R. Testa, and V. Savarino. 2005. "Liver Enzyme Alteration: A Guide for Clinicians." *CMAJ* 172, no. 3: 367–379. https://doi.org/10.1503/cmaj.1040752.

Gomez-Zorita, S., A. Fernandez-Quintela, M. T. Macarulla, et al. 2012. "Resveratrol Attenuates Steatosis in Obese Zucker Rats by Decreasing Fatty Acid Availability and Reducing Oxidative Stress." *British Journal of Nutrition* 107, no. 2: 202–210. https://doi.org/10.1017/S000711451 1002753.

Harrison, S. A., P. Bedossa, C. D. Guy, et al. 2024. "A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH With Liver Fibrosis." *New England Journal of Medicine* 390, no. 6: 497–509. https://doi.org/10.1056/NEJMoa2309000.

Hashemi, S., H. Eskandar, and E. Sardabi. 2009. "A Placebo-Controlled Trial of Silymarin in Patients With Nonalcoholic Fatty Liver Disease." *Hepatitis Monthly* 9, no. 4: 265–270. https://doi.org/10.1136/gut.2008. 174516corr1.

He, Y., X. Chen, Y. Li, et al. 2024. "Curcumin Supplementation Alleviates Hepatic Fat Content Associated With Modulation of Gut Microbiota-Dependent Bile Acid Metabolism in Patients With Nonalcoholic Simple Fatty Liver Disease: A Randomized Controlled Trial." *American Journal of Clinical Nutrition* 120, no. 1: 66–79. https://doi.org/10.1016/j.ajcnut. 2024.05.017.

Heeboll, S., M. Kreuzfeldt, S. Hamilton-Dutoit, et al. 2016. "Placebo-Controlled, Randomised Clinical Trial: High-Dose Resveratrol Treatment for Non-Alcoholic Fatty Liver Disease." *Scandinavian Journal of Gastroenterology* 51, no. 4: 456–464. https://doi.org/10.3109/ 00365521.2015.1107620.

Heeboll, S., K. L. Thomsen, A. Clouston, et al. 2015. "Effect of Resveratrol on Experimental Non-Alcoholic Steatohepatitis." *Pharmacological Research* 95-96: 34–41. https://doi.org/10.1016/j.phrs.2015.03.005.

Higgins, J. P. T., and S. E. Green. 2011. "Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration 2011." http://handbook.cochrane.

Higgins, J. P. T., T. Li, and J. J. Deeks. 2021. "Choosing Effect Measures and Computing Estimates of Effect. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2." https://training. cochrane.org/handbook/archive/v6.2.

Ijaz, S., J. H. Verbeek, C. Mischke, and J. Ruotsalainen. 2014. "Inclusion of Nonrandomized Studies in Cochrane Systematic Reviews Was Found to Be in Need of Improvement." *Journal of Clinical Epidemiology* 67, no. 6: 645–653. https://doi.org/10.1016/j.jclinepi.2014.01.001.

Jakubczyk, K., K. Skonieczna-Zydecka, J. Kaldunska, E. Stachowska, I. Gutowska, and K. Janda. 2020. "Effects of Resveratrol Supplementation in Patients With Non-Alcoholic Fatty Liver Disease—A Meta-Analysis." *Nutrients* 12, no. 8: 435. https://doi.org/10.3390/nu12082435.

Jalali, M., M. Mahmoodi, Z. Mosallanezhad, R. Jalali, M. H. Imanieh, and S. P. Moosavian. 2020. "The Effects of Curcumin Supplementation on Liver Function, Metabolic Profile and Body Composition in Patients With Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials." *Complementary Therapies in Medicine* 48: 102283. https://doi.org/10.1016/j.ctim.2019. 102283.

Jarhahzadeh, M., P. Alavinejad, F. Farsi, D. Husain, and A. Rezazadeh. 2021. "The Effect of Turmeric on Lipid Profile, Malondialdehyde, Liver Echogenicity and Enzymes Among Patients With Nonalcoholic Fatty Liver Disease: A Randomized Double Blind Clinical Trial." *Diabetology and Metabolic Syndrome* 13, no. 1: 112. https://doi.org/10.1186/s13098-021-00731-7.

Jazayeri-Tehrani, S. A., S. M. Rezayat, S. Mansouri, et al. 2019. "Nano-Curcumin Improves Glucose Indices, Lipids, Inflammation, and Nesfatin in Overweight and Obese Patients With Non-Alcoholic Fatty Liver Disease (NAFLD): A Double-Blind Randomized Placebo-Controlled Clinical Trial." *Nutrition & Metabolism (London)* 16: 8. https://doi.org/10.1186/s12986-019-0331-1.

Kalhori, A., M. Rafraf, R. Navekar, A. Ghaffari, and M. A. Jafarabadi. 2022. "Effect of Turmeric Supplementation on Blood Pressure and

Serum Levels of Sirtuin 1 and Adiponectin in Patients With Nonalcoholic Fatty Liver Disease: A Double-Blind, Randomized, Placebo-Controlled Trial." *Prev Nutr Food Sci* 27, no. 1: 37–44. https://doi.org/10.3746/pnf. 2022.27.1.37.

Kang, O. H., S. B. Kim, Y. S. Seo, et al. 2013. "Curcumin Decreases Oleic Acid-Induced Lipid Accumulation via AMPK Phosphorylation in Hepatocarcinoma Cells." *European Review for Medical and Pharmacological Sciences* 17, no. 19: 2578–2586.

Kantartzis, K., L. Fritsche, M. Bombrich, et al. 2018. "Effects of Resveratrol Supplementation on Liver Fat Content in Overweight and Insulin-Resistant Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial." *Diabetes, Obesity & Metabolism* 20, no. 7: 1793–1797. https://doi.org/10.1111/dom.13268.

Khan, N., and H. Mukhtar. 2018. "Tea Polyphenols in Promotion of Human Health." *Nutrients* 11, no. 1: 39. https://doi.org/10.3390/nu110 10039.

Lagouge, M., C. Argmann, Z. Gerhart-Hines, et al. 2006. "Resveratrol Improves Mitochondrial Function and Protects Against Metabolic Disease by Activating SIRT1 and PGC-1alpha." *Cell* 127, no. 6: 1109–1122. https://doi.org/10.1016/j.cell.2006.11.013.

Larussa, T., E. Suraci, R. Marasco, M. Imeneo, L. Abenavoli, and F. Luzza. 2019. "Self-Prescribed Dietary Restrictions Are Common in Inflammatory Bowel Disease Patients and Are Associated With Low Bone Mineralization." *Medicina (Kaunas, Lithuania)* 55, no. 8: 7. https://doi.org/10.3390/medicina55080507.

Lin, J., Y. Tang, Q. Kang, Y. Feng, and A. Chen. 2012. "Curcumin Inhibits Gene Expression of Receptor for Advanced Glycation End-Products (RAGE) in Hepatic Stellate Cells In Vitro by Elevating PPARgamma Activity and Attenuating Oxidative Stress." *British Journal of Pharmacology* 166, no. 8: 2212–2227. https://doi.org/10. 1111/j.1476-5381.2012.01910.x.

Loguercio, C., P. Andreone, C. Brisc, et al. 2012. "Silybin Combined With Phosphatidylcholine and Vitamin E in Patients With Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial." *Free Radical Biology & Medicine* 52, no. 9: 1658–1665. https://doi.org/10.1016/j.freer adbiomed.2012.02.008.

Loomba, R., and A. J. Sanyal. 2013. "The Global NAFLD Epidemic." *Nature Reviews. Gastroenterology & Hepatology* 10, no. 11: 686–690. https://doi.org/10.1038/nrgastro.2013.171.

Masoodi, M. R., M. Panahian, and M. Vojdanian. 2013. "Effects of Silymarin on Reducing Liver Aminotransferases in Patients With Nonalcoholic Fatty Liver Diseases." *Govaresh* 18: 181–185.

Mirhafez, S. R., M. Azimi-Nezhad, M. Dehabeh, et al. 2021. "The Effect of Curcumin Phytosome on the Treatment of Patients With Non-Alcoholic Fatty Liver Disease: A Double-Blind, Randomized, Placebo-Controlled Trial." *Advances in Experimental Medicine and Biology* 1308: 25–35. https://doi.org/10.1007/978-3-030-64872-5\_3.

Mirhafez, S. R., M. Dehabeh, M. Hariri, et al. 2021. "Curcumin and Piperine Combination for the Treatment of Patients With Non-alcoholic Fatty Liver Disease: A Double-Blind Randomized Placebo-Controlled Trial." *Advances in Experimental Medicine and Biology* 1328: 11–19. https://doi.org/10.1007/978-3-030-73234-9\_2.

Molani-Gol, R., A. Dehghani, and M. Rafraf. 2024. "Effects of Curcumin/Turmeric Supplementation on the Liver Enzymes, Lipid Profiles, Glycemic Index, and Anthropometric Indices in Non-Alcoholic Fatty Liver Patients: An Umbrella Meta-Analysis." *Phytotherapy Research* 38, no. 2: 539–555. https://doi.org/10.1002/ptr.8051.

Moradi Kelardeh, B., S. Rahmati-Ahmadabad, P. Farzanegi, M. Helalizadeh, and M. A. Azarbayjani. 2020. "Effects of Non-Linear Resistance Training and Curcumin Supplementation on the Liver Biochemical Markers Levels and Structure in Older Women With Non-Alcoholic Fatty Liver Disease." *Journal of Bodywork and Movement Therapies* 24, no. 3: 154–160. https://doi.org/10.1016/j.jbmt.2020.02.021.

Navarro, V. J., S. H. Belle, M. D'Amato, et al. 2019. "Silymarin in Non-Cirrhotics With Non-Alcoholic Steatohepatitis: A Randomized, Double-Blind, Placebo Controlled Trial." *PLoS One* 14, no. 9: e0221683. https://doi.org/10.1371/journal.pone.0221683.

Navekar, R., M. Rafraf, A. Ghaffari, et al. 2017. "Turmeric Supplementation Improves Serum Glucose Indices and Leptin Levels in Patients with Nonalcoholic Fatty Liver Diseases." *Journal of the American College of Nutrition* 36, no. 4: 261–267. https://doi.org/10. 1080/07315724.2016.1267597.

Ngu, M. H., M. N. Norhayati, Z. Rosnani, and M. M. Zulkifli. 2022. "Curcumin as Adjuvant Treatment in Patients With Non-Alcoholic Fatty Liver (NAFLD) Disease: A Systematic Review and Meta-Analysis." *Complementary Therapies in Medicine* 68: 102843. https://doi.org/10. 1016/j.ctim.2022.102843.

Panahi, Y., P. Kianpour, R. Mohtashami, R. Jafari, L. E. Simental-Mendia, and A. Sahebkar. 2017. "Efficacy and Safety of Phytosomal Curcumin in Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial." *Drug Res (Stuttg)* 67, no. 4: 244–251. https://doi.org/ 10.1055/s-0043-100019.

Panahi, Y., G. Valizadegan, N. Ahamdi, S. Ganjali, M. Majeed, and A. Sahebkar. 2019. "Curcuminoids Plus Piperine Improve Nonalcoholic Fatty Liver Disease: A Clinical Trial." *Journal of Cellular Biochemistry* 120, no. 9: 15989–15996. https://doi.org/10.1002/jcb.28877.

Peng, C., A. G. Stewart, O. L. Woodman, R. H. Ritchie, and C. X. Qin. 2020. "Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments." *Frontiers in Pharmacology* 11: 603926. https://doi.org/10.3389/fphar.2020.603926.

Petroff, D., V. Blank, P. N. Newsome, et al. 2021. "Assessment of Hepatic Steatosis by Controlled Attenuation Parameter Using the M and XL Probes: An Individual Patient Data Meta-Analysis." *Lancet Gastroenterology & Hepatology* 6, no. 3: 185–198. https://doi.org/10. 1016/S2468-1253(20)30357-5.

Prochazkova, D., I. Bousova, and N. Wilhelmova. 2011. "Antioxidant and Prooxidant Properties of Flavonoids." *Fitoterapia* 82, no. 4: 513–523. https://doi.org/10.1016/j.fitote.2011.01.018.

Rafiei, H., K. Omidian, and B. Bandy. 2017. "Comparison of Dietary Polyphenols for Protection Against Molecular Mechanisms Underlying Nonalcoholic Fatty Liver Disease in a Cell Model of Steatosis." *Molecular Nutrition & Food Research* 61, no. 9: 81. https://doi.org/10.1002/mnfr. 201600781.

Rahmani, S., S. Asgary, G. Askari, et al. 2016. "Treatment of Non-Alcoholic Fatty Liver Disease With Curcumin: A Randomized Placebo-Controlled Trial." *Phytotherapy Research* 30, no. 9: 1540–1548. https:// doi.org/10.1002/ptr.5659.

Rinella, M. E., J. V. Lazarus, V. Ratziu, et al. 2023. "A Multi-Society Delphi Consensus Statement on New Fatty Liver Disease Nomenclature." *Hepatology* 78: 1966–1986. https://doi.org/10.1097/HEP.000000000 000520.

Rodriguez-Ramiro, I., D. Vauzour, and A. M. Minihane. 2016. "Polyphenols and Non-Alcoholic Fatty Liver Disease: Impact and Mechanisms." *Proceedings of the Nutrition Society* 75, no. 1: 47–60. https://doi.org/10.1017/S0029665115004218.

Saadati, S., B. Hatami, Z. Yari, et al. 2019. "The Effects of Curcumin Supplementation on Liver Enzymes, Lipid Profile, Glucose Homeostasis, and Hepatic Steatosis and Fibrosis in Patients With Non-Alcoholic Fatty Liver Disease." *European Journal of Clinical Nutrition* 73, no. 3: 441–449. https://doi.org/10.1038/s41430-018-0382-9.

Saadeh, S., Z. M. Younossi, E. M. Remer, et al. 2002. "The Utility of Radiological Imaging in Nonalcoholic Fatty Liver Disease." *Gastroenterology* 123, no. 3: 745–750. https://doi.org/10.1053/gast.2002. 35354.

Saberi-Karimian, M., M. Keshvari, M. Ghayour-Mobarhan, et al. 2020. "Effects of Curcuminoids on Inflammatory Status in Patients With Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial." *Complementary Therapies in Medicine* 49: 102322. https://doi.org/10. 1016/j.ctim.2020.102322.

Safari, Z., M. Bagherniya, Z. Khoram, et al. 2023. "The Effect of Curcumin on Anthropometric Indices, Blood Pressure, Lipid Profiles, Fasting Blood Glucose, Liver Enzymes, Fibrosis, and Steatosis in Non-Alcoholic Fatty Livers." *Frontiers in Nutrition* 10: 1163950. https://doi.org/10.3389/fnut.2023.1163950.

Sahebkar, A., A. F. G. Cicero, L. E. Simental-Mendia, B. B. Aggarwal, and S. C. Gupta. 2016. "Curcumin Downregulates Human Tumor Necrosis Factor-Alpha Levels: A Systematic Review and Meta-Analysis Ofrandomized Controlled Trials." *Pharmacological Research* 107: 234–242. https://doi.org/10.1016/j.phrs.2016.03.026.

Salamone, F., F. Galvano, F. Cappello, A. Mangiameli, I. Barbagallo, and G. Li Volti. 2012. "Silibinin Modulates Lipid Homeostasis and Inhibits Nuclear Factor Kappa B Activation in Experimental Nonalcoholic Steatohepatitis." *Translational Research* 159, no. 6: 477–486. https://doi.org/10.1016/j.trsl.2011.12.003.

Salvoza, N., P. J. Giraudi, C. Tiribelli, and N. Rosso. 2022. "Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates." *International Journal of Molecular Sciences* 23, no. 5: 64. https://doi.org/10.3390/ijms23052764.

Shang, J., L. L. Chen, F. X. Xiao, H. Sun, H. C. Ding, and H. Xiao. 2008. "Resveratrol Improves Non-Alcoholic Fatty Liver Disease by Activating AMP-Activated Protein Kinase." *Acta Pharmacologica Sinica* 29, no. 6: 698–706. https://doi.org/10.1111/j.1745-7254.2008.00807.x.

Siddiqui, M. S., R. Vuppalanchi, M. L. Van Natta, et al. 2019. "Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease." *Clinical Gastroenterology and Hepatology* 17, no. 1: 156–163 e152. https://doi. org/10.1016/j.cgh.2018.04.043.

Solhi, H., R. Ghahremani, A. M. Kazemifar, and Z. Hoseini Yazdi. 2014. "Silymarin in Treatment of Non-Alcoholic Steatohepatitis: A Randomized Clinical Trial." *Caspian Journal of Internal Medicine* 5, no. 1: 9–12.

Sterne, J. A., D. Gavaghan, and M. Egger. 2000. "Publication and Related Bias in Meta-Analysis: Power of Statistical Tests and Prevalence in the Literature." *Journal of Clinical Epidemiology* 53, no. 11: 1119–1129. https://doi.org/10.1016/s0895-4356(00)00242-0.

Talamantes, S., M. Lisjak, E. H. Gilglioni, C. J. Llamoza-Torres, B. Ramos-Molina, and E. N. Gurzov. 2023. "Non-Alcoholic Fatty Liver Disease and Diabetes Mellitus as Growing Aetiologies of Hepatocellular Carcinoma." *JHEP Rep* 5, no. 9: 100811. https://doi.org/10.1016/j.jhepr. 2023.100811.

Targher, G., C. D. Byrne, and H. Tilg. 2020. "NAFLD and Increased Risk of Cardiovascular Disease: Clinical Associations, Pathophysiological Mechanisms and Pharmacological Implications." *Gut* 69, no. 9: 1691–1705. https://doi.org/10.1136/gutjnl-2020-320622.

Van De Wier, B., G. H. Koek, A. Bast, and G. R. Haenen. 2017. "The Potential of Flavonoids in the Treatment of Non-Alcoholic Fatty Liver Disease." *Critical Reviews in Food Science and Nutrition* 57, no. 4: 834–855. https://doi.org/10.1080/10408398.2014.952399.

Wah Kheong, C., N. R. Nik Mustapha, and S. Mahadeva. 2017. "A Randomized Trial of Silymarin for the Treatment of Nonalcoholic Steatohepatitis." *Clinical Gastroenterology and Hepatology* 15, no. 12: 1940–1949 e1948. https://doi.org/10.1016/j.cgh.2017.04.016.

Wei, S., and X. Yu. 2021. "Efficacy of Resveratrol Supplementation on Liver Enzymes in Patients With Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis." *Complementary Therapies in Medicine* 57: 102635. https://doi.org/10.1016/j.ctim.2020.102635.

Williamson, G., and K. Sheedy. 2020. "Effects of Polyphenols on Insulin Resistance." *Nutrients* 12, no. 10: 35. https://doi.org/10.3390/nu121 03135.

Yang, K., J. Chen, T. Zhang, et al. 2022. "Efficacy and Safety of Dietary Polyphenol Supplementation in the Treatment of Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis." *Frontiers in Immunology* 13: 949746. https://doi.org/10.3389/fimmu.2022.949746.

Younossi, Z., Q. M. Anstee, M. Marietti, et al. 2018. "Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention." *Nature Reviews. Gastroenterology & Hepatology* 15, no. 1: 11–20. https://doi.org/10.1038/nrgastro.2017.109.

Zeraattalab-Motlagh, S., A. Jayedi, and S. Shab-Bidar. 2021. "The Effects of Resveratrol Supplementation in Patients With Type 2 Diabetes, Metabolic Syndrome, and Nonalcoholic Fatty Liver Disease: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials." *American Journal of Clinical Nutrition* 114, no. 5: 1675–1685. https://doi.org/10.1093/ajcn/nqab250.

Zhang, C., W. Yuan, J. Fang, et al. 2016. "Efficacy of Resveratrol Supplementation Against Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Placebo-Controlled Clinical Trials." *PLoS One* 11, no. 8: e0161792. https://doi.org/10.1371/journal.pone.0161792.

Zhang, Y., J. Hai, M. Cao, et al. 2013. "Silibinin Ameliorates Steatosis and Insulin Resistance During Non-Alcoholic Fatty Liver Disease Development Partly Through Targeting IRS-1/PI3K/Akt Pathway." *International Immunopharmacology* 17, no. 3: 714–720. https://doi.org/10.1016/j.intimp.2013.08.019.

# **Supporting Information**

Additional supporting information can be found online in the Supporting Information section.