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Abstract

The vision of precision medicine relies on the integration of large-scale clinical, molecular and 

environmental datasets. Data integration may be thought of along two axes: data fusion across 

institutions, and data fusion across modalities. Cross-institutional data sharing that maintains 

semantic integrity hinges on the adoption of data standards and a push toward ontology-driven 

integration. The goal should be the creation of query-able data repositories spanning primary and 

tertiary care providers, disease registries, research organizations etc. to produce rich longitudinal 

datasets. Cross-modality sharing involves the integration of multiple data streams, from structured 

EHR data (diagnosis codes, laboratory tests) to genomics, imaging, monitors and patient-

generated data including wearable devices. This integration presents unique technical, semantic, 

and ethical challenges; however recent work suggests that multi-modal clinical data can 

significantly improve the performance of phenotyping and prediction algorithms, powering 

knowledge discovery at the patient- and population-level.
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The quantity of digitized health information has increased exponentially over the past 

decade, with growing data repositories across all sectors of the health system [1]. The rise of 

electronic health records has enabled the creation of large datasets containing structured, 

semi-structured and unstructured data, ranging from diagnostic codes and laboratory results 

to continuous monitoring signals, clinical notes, medical imaging and pathology. However, 

there are also rich clinical, molecular and environmental datasets held by government 

agencies, disease registries, employers, pharmaceutical companies and research 

organizations. Meanwhile, the proliferation of health tracking apps, wearables and home 

sensors have created new clinical data streams controlled by the patient, which capture 

granular information about lifestyle and micro-environmental exposures. Even an 
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individual’s social media footprint may be considered as a source of clinical insights. Weber 

et al. have described the spectrum of clinical data available for an individual as a “tapestry of 

high-value information sources” ranging from the micro (genomic/molecular data) through 

to the macro (behavioral/lifestyle data) [2].

Many have predicted that the convergence of rich clinical, molecular and environmental data 

streams will accelerate knowledge discovery in biomedicine and help us to move toward the 

high-level goal of precision medicine [3,4]. Certainly, larger datasets combining information 

from numerous sources will improve the performance of diagnostic and prognostic machine 

learning algorithm, fuelling observational research and improving clinical decisions at the 

point of care. The critical challenge is how to integrate disparate clinical data streams in a 

flexible, query-able format while preserving patient privacy and data governance. This 

integration challenge may be thought of along two axes: data fusion across institutions, and 

data fusion across modalities.

The first challenge involves cross-institutional data sharing. Federal incentive programs 

launched through the Health Information Technology for Economic and Clinical Health 

(HITECH) Act supported the creation of health information exchanges (HIEs) as a platform 

for clinical data sharing; however based on a 2015 survey, only 23% of HIEs currently 

supported research, with a further 47% planning to support secondary use in the future [5]. 

Furthermore, a 2016 review found that the number of HIEs had declined between 2012 and 

2014 and only half report being financially sustainable [6]. In 2015, the Office of the 

National Coordinator of Health IT (ONC) published an Interoperability Roadmap, which 

outlines a national agenda for improving health information exchange [7]. One key objective 

is achieving syntactic and semantic interoperability by adoption of common vocabularies, 

including SNOMED-CT and RxNorm, and common data formats, including consolidated 

clinical document architecture (C-CDA) and Fast Health Interoperability Resources (FHIR). 

The roadmap also calls for the adoption of secure transport standards and outlines best 

practices for matching patient identities between sites. In parallel, there have been a number 

of academic endeavors to build platforms for observational clinical research, including the 

Observational Health Data Sciences and Informatics (OHDSI) network [8], SHARPn project 

[9], and the Informatics for Integrating Biology and the Bedside (i2b2) initiative [10].

An emerging theme throughout these cross-institutional data fusion efforts, from industry to 

academia, is the power of ontology-driven data integration, inspired by the rise of semantic 

web technologies [11–13]. This approach has a number of distinct advantages including the 

ability to synthesize across many disparate data sources via high-level ontologies and the 

ability to reason over a knowledge base [14]. Ongoing technical challenges include 

representing data provenance, temporal relationships and data quality [15]; however the 

prevailing challenge is operational - how to shift organizational culture toward 

interoperability and data sharing [16]. Beyond this, the infrastructure for interoperability 

may vary, with successful examples of centralized data warehouses [17], decentralized 

blockchain-based health records systems [18], and patient-controlled health records [19].

The second major component of data fusion is cross-modality integration. Most EHRs 

contain a diversity of data types that have traditionally been analyzed independently, ranging 
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from structured diagnosis codes to signal data, clinical notes and imaging. Furthermore, the 

interoperability advances mentioned above are making it possible to harmonize traditional 

EHR data with novel clinical data streams including genomic, microbiome, metabolic and 

patient-generated health data (PGHD). There is an expanding evidence base showing that 

multi-modal data integration can support precision medicine by stratifying patients based on 

their ‘deep phenotype’ [20]; improving the performance of clinical decision support 

algorithms for diagnosis and prediction [21]; and uncovering new phenotypes altogether 

[22]. For example, Zhao et al. developed a risk prediction model for cardiovascular events 

using EHR data, but found a significant performance boost when those data were fused with 

patient-level genomic information [23]. Meanwhile, by using unsupervised learning on a 

combined dataset of metabolome, microbiome, genetics and imaging data, Shomorony et al. 
were able to identify a signature of biomarkers that identified diabetic patients more 

accurately than traditional clinical metrics (glucose, insulin resistance, and body-mass-

index) - suggesting novel pathways that may be involved in the development of diabetes 

[24].

The combination of traditional health data with PGHD or social media data has enabled 

knowledge discovery in the realms of both precision medicine and population health. 

Santillana et al. combined hospital visit data with Twitter, Google searches, and posts on an 

online health forum to predict influenza incidence [25]. Vilar et al. describe efforts to 

identify drug-drug interactions by combining social media posts with the biomedical 

literature [26]. On a more granular level, there is a push to integrate patient-reported 

outcomes (PROs) into EHRs as a way to promote patient-centric care (an example of 

heterogeneous data fusion potentially driving behavior change) [27] which has fueled 

interesting insights into the relationship between PROs and clinical outcomes such as 

mortality [28]. The rise of the ‘Internet of Things’ in healthcare - the ecosystem of 

connected monitoring devices that surround a patient - as well as ambient information such 

as geo-location are creating opportunities for even richer multi-modal datasets [29–31]. 

These data no longer reside exclusively in hospitals. Private sector initiatives such as 

Verily’s Project Baseline and Apple’s HealthKit program are enabling patients to aggregate 

multiple medical data sources [32,33]. Meanwhile, the All Of Us initiative is a National 

Institutes of Health program to collect molecular, clinical and environmental data on a 

diverse cohort of volunteers for research purposes [34]. As the pathophysiology behind 

chronic disease is a complex interplay of clinical, molecular and behavioral factors acting 

over extended time periods, the datasets required to tackle the global epidemic of chronic 

disease will need to be similarly layered and sophisticated. There is both a clinical 

opportunity and an economic one, with increasing evidence to suggest that data integration 

can reduce overall healthcare costs [35].

Cross-modality data integration is associated with a number of challenges, of which we 

highlight three below. First, there is the issue of how to harmonize data from distant parts of 

a knowledge graph reflecting radically different levels of abstraction e.g. diagnosis codes 

(high-level) with proteomic data (low-level). This creates challenges for data storage and 

makes it difficult to generate feature vectors to train classifiers. Several recent studies have 

shown that deep learning can be used to create efficient abstract representations of structured 

and unstructured EHR data, for example the DeepPatient representation using stacked 
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denoising autoencoders [36]. A similar approach might be considered for a broader range of 

input data. A second caveat is around data stewardship, particularly with respect to privacy 

and security [37]. Fusion of data streams may accelerate scientific discovery and clinical 

care, but this comes with an increased risk of patient re-identification. Further work is 

needed around de-identification, consent processes and access control when data are 

contributed to shared repositories. The increasing volume of digital health information 

available to clinicians also raises questions around liability and duty of care i.e. the extent to 

which clinicians are responsible for the full expanse of information in an aggregated health 

repository. A third challenge is around equity and inclusion. A 2018 report by Ferryman et 
al. on ‘Fairness in precision medicine’ highlights the potential for bias in large-scale 

biomedical training data, stemming from historical discrimination in the health system and 

recruitment biases at academic medical centers [38]. Data-fusion efforts must be cognizant 

of the distribution of important demographic variables, such as gender, ethnicity and 

socioeconomic status in their input data.

The fusion of heterogeneous datasets from different institutions and across different 

modalities presents a powerful opportunity to drive knowledge discovery in biomedicine. 

There are technical and operational challenges to enable data sharing across borders of 

institutional ownership, which we are beginning to overcome with interoperability standards 

and data sharing platforms. Arguably the more nuanced problem today is how to grapple 

with extremely diverse data types that encompass the micro and macro scales of a patient’s 

data signature, including how to create flexible data storage and machine learning 

architectures, and how to design stewardship processes to govern these data appropriately. 

Holzinger et al. claimed in 2014 that “biomedical research is drowning in data, yet starving 

for knowledge”. Today we have more health data than ever before, but the challenge remains 

how to harmonize, structure and learn from multi-modal datasets [39].
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